
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

544 | P a g e  

www.ijacsa.thesai.org 

Marine Predator Algorithm and Related Variants: 

A Systematic Review 

Emmanuel Philibus1, Azlan Mohd Zain2, Didik Dwi Prasetya3, Mahadi Bahari4, Norfadzlan bin Yusup5, 

Rozita Abdul Jalil6, Mazlina Abdul Majid7, Azurah A Samah8 

Department of Computer Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia1, 2, 8 

Department of Computer Science, Kaduna State College of Education, Gidan Waya, Kafanchan, Nigeria1 

Department of Electrical Engineering and Informatics, State University of Malang, Malang, Indonesia3 

Department of Information Systems, Universiti Teknologi Malaysia, Johor Bahru, Malaysia4 

Department of Software Engineering, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia5 

Department of Software Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Malaysia6 

Centre for Artificial Intelligence & Data Science, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia7 

 

 
Abstract—The Marine Predators Algorithm (MPA) is 

classified under swarm intelligence methods based on its type of 

inspiration. It is a population-based metaheuristic optimization 

algorithm inspired by the general foraging behavior exhibited in 

the form of Levy and Brownian motion in ocean predators 

supported by the policy of optimum success rate found in the 

biological relationship between prey and predators. The algorithm 

is easy to implement and robust in searching, yielding better 

solutions to many real-world problems. It is attracting huge and 

growing interest. This paper provides a systematic review of the 

research progress and applications of the MPA by analyzing more 

than 100 articles sourced from Scopus and Web of Science 

databases using the PRISMA approach. The study expounded the 

classical MPA’s workflow. It also unveiled a steady upward trend 

in the use of the algorithm. The research presented different 

improvements and variants of MPA including parameter-tuning, 

enhancement of the balance between exploration and exploitation, 

hybridization of MPA with other techniques to harness the 

strengths of each of the algorithms towards complementing the 

weaknesses of the other, and more recently proposed advances. It 

further underscores the application of MPA in various areas such 

as Engineering, Computer Science, Mathematics, and Energy. 

Findings reveal several search strategies implemented to improve 

the algorithm’s performance. In conclusion, although MPA has 

been widely accepted, other areas remain yet to be applied, and 

some improvements are yet to be covered. These have been 

presented as recommendations for future research direction. 

Keywords—Exploitation-exploration; marine predator 

algorithm; metaheuristic algorithms; metaheuristic-hybridization; 

meta-heuristics; optimization; predator prey systems 

I. INTRODUCTION 

There is a proliferation of optimization methods for finding 
optimum solutions to engineering, scientific, real-world, and 
social problems [1, 2]. This is necessitated by the corresponding 
increase in complex optimization problems that require 

solutions. These methods can broadly be classified into 
deterministic and stochastic methods (Fig. 1). The deterministic 
methods can be further classified into gradient-based and non-
gradient-based methods. For instance, mathematical linear and 
non-linear programming methods are all gradient-based since 
they rely on gradient computation to locate global solutions. 
Conversely, non-gradient-based deterministic methods use 
direct algorithms, conditions, and static, and dynamic data 
structures instead of gradients to compute the global optimum 
solution [3–6]. 

One prevailing limitation of mathematical programming 
methods includes greater chances of local optima stagnation 
while searching in non-linear space. As such, researchers have 
used different initial designs, hybridization, and modifications 
to overcome the drawbacks. This, however, makes the solution 
problem specific. Non-gradient deterministic methods possess 
weaknesses including difficult implementation and require a 
deep knowledge of mathematics before application. 

One of the ways by which researchers address the drawbacks 
of the deterministic methods is by exploring alternatives from 
the stochastic approaches. The popular stochastic method in use 
is metaheuristics [1, 7] which uses random variables and 
operators to perform a global search while trying to avoid being 
trapped in local optima. Metaheuristic algorithms are now being 
applied in several research fields such as business management, 
medical imaging, environmental studies, engineering design, 
mathematics, robotics, image segmentation, etc., changing the 
trends and the look and feel of the research world. These 
methods are simple and easy to understand and implement. 
However, they do not guarantee a global solution despite 
possessing outstanding qualities such as being gradient-free, 
problem-independent, adaptable, and near-global solutions over 
other optimization methods.
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Fig. 1. Category of optimization algorithms featuring metaheuristics.

Metaheuristic methods can be grouped into three groups 
based on their type of inspiration (Fig. 1). These are evolutionary 
algorithms, physics-based, and swarm intelligence methods. 

Evolutionary algorithms are the oldest form of 
metaheuristics, grouped based on biological interaction within 
the space of nature. In this group, the earliest method proposed 
in the 1970s was the Genetic Algorithm (GA) [8]. GA is hinged 
on two biological concepts: mutation and cross-over, used in 
domain search and improvement of initialized random 
populations. Other popular algorithms proposed by this group 
about the same time include Evolution Strategy (ES) in 1977 [9], 
Genetic Programming (GP) in 1992 [10], Differential Evolution 
(DE) in 1997 [11], etc. 

The second group of metaheuristic methods classified in this 
study is physics-based. In this group, inspiration is drawn from 
various laws of physical nature. The search for optimal solutions 
is strictly based on the laws of physics. Inspired by the laws of 
thermodynamics, the oldest popular method first proposed under 
this group is Simulated Annealing (SA) in 1983 [12]. A 
Gravitational Search Algorithm (GSA) was later proposed in 
2009 [13] which is based on Newton's law of masses gravity and 
interaction as a way of position update to search for the optimum 
solution. Swarm intelligence is the third group of these 
metaheuristic approaches in this study. In this group, the 
algorithms imitate a set of behaviors found in flocks, swarms, 
schools, and herds of several natural creatures. The first method 
proposed in this group was Particle Swarm Optimization (PSO) 
in 1995 [14]. PSO is an optimization algorithm inspired by the 
behavior of schools of birds or fish. Subsequent algorithms 
proposed in this group include Ant Colony Optimization (ACO) 
in 2006 [15], Cuckoo Search (CS) in 2009 [16], Grey Wolf 
Optimizer in 2014 [17, 18], Salp Swarm Algorithm (SSA) in 
2017 [19], and Marine Predator Algorithm (MPA) in 2020 [1] 
to mention a few. 

The Marine Predators Algorithm (MPA) is a population-
based metaheuristic optimization algorithm inspired by the 
general foraging behavior exhibited in the form of Levy and 
Brownian motion in ocean predators supported by the policy of 
optimum success rate found in the biological relationship 
between prey and predators [1]. MPA is characterized by being 
simple in implementation and robust in solution search yielding 

better solutions to many real-world problems [20]. It is swarm-
based, a relatively new algorithm introduced in 2020 by 
Faramarzi and his team, and it is attracting huge and growing 
interest. The algorithm was originally proposed for use in 
engineering and mathematical problems. However, due to its 
high performance and search success, it has gained wide 
acceptance, and it has been applied in several domains. It uses 
two motions: Levy flight and Brownian motions to perform a 
search for local or global solutions. The strategies employed by 
MPA for use in different situations as originally proposed by [1] 
are: 

 When the search encounters sparsely populated prey, 
MPA applies the Levy flight grazing strategy and later 
changes to Brownian motion when a crowded population 
of prey is detected.  

 In addition to the swift fluctuation of the hunting 
strategy, the predators transform their actions towards 
finding locations with more crowded prey.  

 The predators are too smart in retention of visited 
locations, keeping the memory to provide information 
that could help other predators when needed.  

 Being easy to implement, possessing fewer parameters, 
and yielding good results, MPA has taken over the 
metaheuristic space as seen in the literature. 

The MPA, introduced in 2020 and utilized across various 
domains, faces challenges associated with exploration-
exploitation imbalance common among intelligent algorithms 
[21–23]. In addition, weaknesses such as poor solution quality, 
easily trapped in local optima, and slow convergence speed have 
been noticed. Consequently, many researchers have proposed 
various improvements and variants of the algorithm through 
parameter tuning, hybridization, and enhancements 
(modifications). Among these include a hybridization of 
Improved MPA and PSO known as IMPAPSO [24], enhanced 
MPA (EMPA)[25], four new variants of MPA: (i) multi-
objective MPA (MMPA) (ii) modified MMPA (M-MMPA) (iii) 
Gaussian-based mutation M-MMPA (M-MMPA-GM), and (iv) 
Nelder-Mead simplex technique into M-MMPA (M-MMPA-
NMM)[2], Three-scale image decomposition (TSD), Kirsch 
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compass operator (FR-KCO), and MPA (TSD-FR-KCO-MPA) 
[26], Local Escaping Operator MPA (LEO-MPA) [20], 
opposition based learning MPA and grey wolf optimization 
(MPAOBL-GWO) [27], Tuned-MPA [28], a hybrid method that 
combines MPA with Fuzzy Proportional-Integral-Derivative 
with Filter (FPIDF) (MPA-FPIDF) [29], Boost MPA 
(BMPA)[30], combining the MPA with CNN (IMPA-
CNN)[31], a modified version of MPA known as MMPA[32], 
MPALS and HMPA [33], modified type of MPA (MMPA)[34], 
hybrid MPA-Support Vector Machine (MPA-SVM) [35], MPA 
to optimize a trained ANN (MPA-ANN) [36], an improved 
MPA and ResNet50 (IMPA-ResNet50) [37], MPA and 
Proportional-Integral-Derivative-Acceleration (PIDA) (MPA-
PIDA)[38], advanced MPA (AMPA) [39], MPA and multi-
verse optimization algorithm (MPA-MVO)[40], Learning-
Automata (LA)-based Jellyfish search MPA (LA-JS-MPA) 
[41], fractional-order comprehensive learning MPA 
(FOCLMPA) [42], Fusion Multi-Strategy Marine Predator 
Algorithm (FMMPA) [43], reinforcement learning (RL) and 
MPA (Deep-MPA)[44], MPA and naked mole-rat algorithm 
(NMRA)(MpNMRA) [45], Dynamic Foraging Strategy MPA 
(DFSMPA) [46], MPA with mechanism for teaching and 
learning (MTLMPA) [47], diversity-aware MPA (DAMPA) 
[48], MPA, modified conformable fractional-order 
accumulation operation (MCFAO) [49], two variants: BBD-
based MPA, and CCD-based MPA [50], an enhanced version of 
the MPA (EMPA)[51], an enhanced multi-strategy MPA -
Variational Mode Decomposition (MPA-VMD) [52], Tuned-
MPA proportional–integral–derivative proportional derivative 
(PID-PD) controller [53], Open Circuit Voltage MPA (OCV-
MPA) [54], Marine Predator Algorithm and Hide Object Game 
Optimization (MPA-HOGO) [55], multi-stage improvement of 
the MPA (MSMPA)[56], etc. This study presents an extensive 
review of MPA and its variants based on improvements. It 
analyzes its strengths and improvements and provides future 
research directions. The major contributions of this study can be 
summarized as follows: 

 A detailed and clear explanation of the workflow of the 
classical MPA including a flowchart and pseudocode is 
provided, see Section II. 

 A steady upward trend in MPA has been revealed based 
on some qualitative statistics of the articles published 
over the years, see Section III. 

 The review highlights MPA’s uniqueness based on the 
predator's ability to execute various movements 
corresponding to the prey’s behavior. 

 Several variants of the MPA have been presented which 
are made up of various search improvement strategies, 
see Section VI. 

The rest of this paper is organized as follows: Section II 
presents the standard MPA with its source of inspiration, major 
components, and flowchart steps. Section III presents the 
materials and method used in this research, where the PRISMA 
approach is highlighted. Section IV discusses proposed variants 
of MPA for performance improvement. Section V showcases 
the application of MPA in different areas. Furthermore, Section 
VI gives supporting discussions. Section VII presents future 

research directions. Finally, Section VIII presents the conclusion 
of the entire research work. 

II. STANDARD MPA 

The MPA is a population-based metaheuristic optimization 
algorithm inspired by the general foraging behavior exhibited in 
the form of Levy and Brownian motion in ocean predators 
supported by the policy of optimum success rate found in the 
biological relationship between prey and predators [1]. The 
algorithm was objectively proposed for use in engineering and 
mathematical problems. 

It is a popular fact that the entire search strength of every 
metaheuristic algorithm is measured in three characteristics: 
exploration, exploitation, and the ability to escape local 
minimum/optima [57]. Exploitation serves as the main ability of 
the algorithm to search for every nearby detail while exploration 
ensures that the algorithm completes its search of the entire 
search space. The MPA uses two motions, Levy flight, and 
Brownian motions to search for local or global solutions. 
Because Levy flight is associated with mostly short steps, it is 
well suited to local search or exploitation. However, the 
Brownian motion on the other hand is associated with larger step 
sizes and hence it is suitable for global search or exploration. 
Either of these two motions alone cannot be sufficient in 
performing a search, and therefore the two are combined to 
improve the searchability of MPA. The algorithm is unique and 
widely acceptable compared to other metaheuristic algorithms 
due to its search strategies and memory recall as proposed by 
[1]. 

Based on its similarities to other metaheuristic algorithms, 
the MPA begins by defining an initial uniform population 
distribution of solutions in the search space based on trial using 
Eq. (1). 

X0=Xmin+rand(Xmax − Xmin)                  (1) 

Here, Xmin and X
max

 are referred to as the lower and upper 

bound variables, respectively, while 𝑟𝑎𝑛𝑑  is the uniform 
random vector of a range 0 to 1. 

Next, a matrix of top predators also called Elite is created 
based on the generated distribution in Eq. (1). Additionally, top 
predators according to the survival of the fittest theory are more 
gifted at foraging. Therefore, a matrix of top predators is 
constructed that serves as a tentative solution known as Elite. 
This matrix's array supervises the search for locating prey 
relative to its available information or address as given in Eq. 
(2). 

Elite =

[
 
 
 
 
 
X1,1

I X1,2
I ⋯ X1,d

I

X2,1
I X2,2

I ⋯ X2,d
I

⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮

Xn,1
I Xn,2

I ⋯ Xn,d
I

]
 
 
 
 
 

n×d

                  (2) 

Here, XI⃗⃗  ⃗denotes a vector of the top predator that is duplicated 
‘n’ times to form the Elite matrix, ‘n’ is known as the number of 
search agents, and ‘d’ represents the dimensions. Every predator 
is a search agent and a potential prey as they both search for 
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food. When each iteration is completed, the Elite is updated 
where better predators replace top predators. 

Furthermore, a second matrix of the same size as the Elite 
matrix known as Prey is formed and its predators' addresses are 
updated according to the Elite's as depicted in Eq. (3), where Xi,j 

denotes the jth dimension of ith prey. MPA depends on these 
two matrices throughout its iterations. 

Prey =

[
 
 
 
 
X1,1 X1,2 ⋯ X1,d

X2,1 X2,2 ⋯ X2,d

⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮

Xn,1 Xn,2 ⋯ Xn,d]
 
 
 
 

n×d

             (3) 

A. The Core of the MPA Optimization Process and Modeling 

Based on the proposed model by [1], the optimization 
workflow of the MPA goes through three conditions while 
imitating the entire life of predators and prey. These three phases 
are split across three levels of velocity scenarios experienced by 
these aquatic creatures: 

Condition 1: "When the speed of the predator gets faster 
than that of the prey" (high-velocity ratio). 

Condition 2: "When the speed of the predator becomes 
almost equal to that of the prey" (unit velocity ratio). 

Condition 3: "When the speed of the predator becomes 
slower than that of the prey" (low velocity ratio). 

When condition 1 holds, this implies that the velocity ratio 
is high (𝑉 ≥ 10), and consequently, the algorithm applies the 
best strategy for the predator which is to stand still without any 
movement. This approach [1] is expressed and modeled 
mathematically by Eq. (4).  

From Eq. (4), 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑙 = (𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑙 + 𝑃. �⃗� ⨂𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑙)  where 

�⃗� 𝐵  is a vector containing the Brownian motion’s normal 
distribution of random numbers. 

While Iter < 
1

3
 Max_Iter then, 

stepsize⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
l
=R⃗⃗ B⨂(Elite⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

l − R⃗⃗ B⨂Prey⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
l
), l = 1,… , 𝑛     (4) 

The operator ⨂ is an element-wise product. Computing the 

product of �⃗� 𝐵  by prey simulates the prey's movement. The 
symbol P=0.5 is a constant control parameter that 
minimizes/maximizes predator or prey's step sizes, while R 
denotes a vector of uniform random numbers in the range [0, 1]. 
The first condition’s scenario occurs at one-third of the entire 
iterations where the step size is high due to the high velocity of 
movement toward achieving high exploration. The variable Iter 
represents the current iteration while Max_Iter stands for the 
maximum iteration. 

Next, when condition 2 occurs, that is, the predator and prey 
are moving at almost the same velocity (unit velocity ratio i.e., 
𝑉 ≈ 1), depicting a scenario where both are searching for their 

food, the algorithm tries to detect the type of motion used by 
each. At this point, if the prey is moving in Levy motion, the 
predator's best approach becomes switching to Brownian 
motion. The situation happens in the middle of the optimization 
process when exploration attempts to switch to exploitation. 
Thus, both behaviors would matter, and half of the population 
would be assigned to exploration while the other half would be 
assigned to exploitation. Assuming the prey and predator are 
moving in Levy and Brownian motions, respectively, this can be 
represented or modeled mathematically by Eq. (5 and 6): 

𝑊ℎ𝑖𝑙𝑒 1 3⁄ < 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 < 2
3⁄  𝑀𝑎𝑥_𝐼𝑡𝑒𝑟, then 

Considering the first half of the population, 

stepsize⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
l
=R⃗⃗ L⨂(Elite⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

l − R⃗⃗ L⨂Prey⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
l
), l=1, …,

n

2
 

Prey⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
l
=Prey⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

l
 +P.R⃗⃗ ⨂stepsize⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

l
                       (5) 

From Eq. (5), �⃗� 𝐿is a vector containing the Levy motion’s 

distribution of random numbers. The vector �⃗� 𝐿  and Prey are 
multiplied to simulate the Levy-wise movement of the Prey. The 
step size is added to the location of the Prey to complete this 
simulation. 

On the other hand, the assumption for the second half of the 
population is thus: 

stepsize⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
l
=R⃗⃗ B⨂(R⃗⃗ B⨂ Elite⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

l − Prey⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
l
),l=

n

2
, …,n 

Prey⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
l
=Elite⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

l +P.CF⨂stepsize⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
l
                       (6) 

Where CF=(1−
Iter

Max_Iter
)
(2

Iter

Max_Iter
)

 represents an adaptive 

parameter that regulates the step size of a predator's movement. 

The vector �⃗� 𝐵  is multiplied with the Elite to mimic the 
movement of the predator Brownian-wise and update the prey's 
location based on the predator's Brownian-wise movement. 

Condition 3 occurs when the velocity of the predator 
becomes slower than that of the prey (low-velocity ratio, usually 
V = 0.1). This scenario usually occurs at the final phase of the 
optimization workflow, and it commonly targets high 
exploitation performance. The best option for the predator at this 
point is Levy's motion. This scenario is modeled mathematically 
by Eq. (7): 

While Iter > 
2

3
 Max_Iter 

stepsize⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
l
=R⃗⃗ L⨂(R⃗⃗ L⨂ Elite⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

l − Prey⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
l
)         l=1, …,n 

Prey⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
l
=Elite⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

l +P.CF⨂stepsize⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
l
                   (7) 

where the vector �⃗� 𝐿 is multiplied with the Elite to simulate 
the predator's movement in Levy form and adding the step-size 
to the location of the Elite to mimic the predator's movement 
aids in updating the location of the prey. The algorithm is 
presented thus (Algorithm 1): 
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Algorithm 1: Standard MPA Pseudocode  

Step 1: Initializing Phase 
(1) Initialize the parameters of the algorithm (Population size, dimensions, maximum Iterations)  
(2) Uniformly distribute the initial solution using Equation 1.  

Step 2: Evaluation Phase 
(3) while (the termination condition does not satisfy)  
(4) Evaluate the fitness of the solutions  
 Step 3: Construction Phase 
(5) Construct the Elite matrix using Equation 2 
(6) Construct the Prey matrix using Equation 3 

Step 4: Optimisation Phase  
 Stage 1: High Velocity Ratio 

(7) if (𝐼𝑡𝑒𝑟 <  
1

3
 𝑀𝑎𝑥𝐼𝑡𝑒𝑟) 𝑡ℎ𝑒𝑛  

(8) Update Prey using Equation 4 
  Stage 2: Unit Velocity Ratio 

(9) Else if ( 
1

3
 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 < 𝐼𝑡𝑒𝑟 <  

2

3
 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟) 𝑡ℎ𝑒𝑛  

(10) Considering the first half of the population (𝑙 = 1,… ,
𝑛

2
) 

(11) Update Prey using Equation 5 

(12) For the second half of the population (𝑙 =
𝑛

2
, … , 𝑛) 

(13) Update Prey using Equation 6  
 Stage 3: Low Velocity Ratio 

(14) Else if (𝐼𝑡𝑒𝑟 >  
2

3
 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟) then, 

(15) Update Prey using Equation 7 
(16) end if 
(17) end if 
(18) end if 
 Step 5: Update Phase 
(19) Update the Elite matrix and save it in memory. 
(20) Apply the FADs effect, then update using Equation 8 
(21) Further, Update the Elite matrix and update the memory. 
(22) end while 

Overall, the steps proposed by [1] imitate the movement of 
predators and prey when seeking food in aquatic habitats. Their 
work assumes that there is an equal percentage of Levy and 
Brownian motion over the lifetime of a predator.  

Because Fish Aggregating Devices (FADs) influence the 
time taken by predators at a particular place and point in time, 

e.g., sharks spend 80% of the time around them and 20% at other 
places, the attraction by FADs is creating a local optimum and 
their jump to search other places is seen as avoidance of being 
trapped. The effect of FADs is therefore modelled 
mathematically as follows: 

Prey⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
l
= {

Prey⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
l
+CF[X⃗⃗ min+R⃗⃗  ⨂ (X⃗⃗ max − X⃗⃗ min)]⨂ U⃗⃗  if r≤FADs

Prey⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
l
+[FADs(1 − r)+r](Prey⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

r1
− Prey⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

r2
) if r>FADs

                                                   (8)

From Eq. (8), FADs are assigned the value 0.2 (i.e., FADs = 
0.2) which is defined as the probability of its effect in the 

optimization process, and �⃗⃗�  denotes a binary vector that 
contains arrays inclusive of zero and one. The array is formed 
by first generating random numbers in [0, 1] and thereafter, 
transforming it such that the array becomes zero if it is less than 
0.2 and one otherwise. The parameter r represents a uniform 

number in [0,1]. 𝑋 𝑚𝑎𝑥  and 𝑋 𝑚𝑖𝑛 are vectors that contain upper 
and lower limits respectively of the dimensions. The subscripts 
r1 and r2 represent the prey's matrix indexes [1]. 

The MPA as depicted in ‘Algorithm 1’ and Fig. 2, has good 
provision for memory tracking and recalling. This helps the 
predator remember foraging success from the places it has 
visited. The flow requires updating the prey, applying the FADs 
effect, and evaluating the matrix for possible fitness updates for 
the Elite. At each stage of the iteration, the fitness value is 
compared with that of the previous iteration, and the best 
overwrites the current solution. This continually refines the 
quality of the solution as each iteration elapses.
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Fig. 2.  MPA flowchart.

III. MATERIALS AND METHOD 

This study applies the Preferred Reporting Items for 
Systematic Reviews and Meta-Analysis (PRISMA) approach 
[58] in searching, collecting, synthesizing, and analyzing a 
systematic literature review (SLR) of the original MPA, 
proposing related modifications, and variants according to some 
selected articles. The study uses two databases: Scopus and Web 
of Science, and an additional database: Google Scholar (for 
verification purposes only). 

First, to validate the proposed topic, a search for the terms 
“Marine Predator Algorithm and Related Variants: A 
Systematic Review” was carried out which gave no single result 
from the Scopus database. A similar search was also conducted 
with the same search string in the Web of Science database, and 
it also did not produce a result. Furthermore, a search for the 
exact match of the same title on Google Scholar yielded no 
results.

 
Fig. 3. The complete SLR process.



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

550 | P a g e  

www.ijacsa.thesai.org 

In Fig. 3, the complete SLR process is presented beginning 
with the formation of the research questions until the final data 
synthesis. It is important to note that the extraction of 
information from the articles was limited to the name of the 
author(s), publication years, journal quartile, Scopus CiteScore, 
Scopus IF according to Journal Indexed by Thomson Reuters 
(Clarivate Analytics), Web of Science IF, the algorithm or 
method used by the author(s), the article type (i.e., experimental 
result or review), main goal of the research, strategy for optimal 
search, parameters, major contributions, and the research 
domain. 

Secondly, a careful search string was constructed to obtain 
relevant information and related articles (Fig. 4). An advanced 
search of the Scopus database using the constructed search string 
yielded 140 documents and a similar search conducted on the 
Web of Science database gave 143 papers as of 1st August 2024. 
The two search results were combined, and duplicate records 
were removed, reducing the document size to 170. A title-
abstract screening was conducted where 11 articles were further 
excluded based on relevance and 1 other article was excluded, 
being written in Chinese language. Furthermore, 22 articles 
were excluded due to lack of full access. Overall, 136 articles 
were used in the entire synthesis of this review process. 

 

Fig. 4. Articles search and screening process.

The pie chart in Fig. 5 presents the diagrammatic distribution 
of retrieved MPA-related articles according to subject areas 
based on Scopus data. The top five subject areas are 

Engineering, Computer Science, Mathematics, Energy, and 
Material Science, with 28.2%, 26.0%, 10.9%, 7.1%, and 5.8%, 
respectively. 

 

Fig. 5. MPA-related articles according to subject areas (Source: Scopus).
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The research trend of the application of MPA for solving 
various problems is depicted based on the number of research 
articles that are published per year (Fig. 6,). The record shows a 
steady upward trend in the number of articles published over the 
years, reflecting a strong growth in the algorithm’s usage. 
Beginning with 12 journal articles in 2020, the number 
progressively increased to 168 by 2023, showcasing a 93% rise 

over the observed period. As of the search date, the record of 
published articles in 2024 was 148 while still counting. More 
publications are underway as the year progresses. This 
significant growth highlights the major rapid application of the 
algorithm, indicating positive acceptance and potential usage for 
further development and innovation. 

 

Fig. 6. MPA-related publications by year (Source: Scopus). 

MPA stands out from other algorithms due to the predator's 
ability to execute various movements based on prey behavior. 
The predator can opt for Levy motion or Brownian motion based 
on the best encounter strategy, ensuring a dynamic connection 
between predator and prey. Specifically, the predator employs 
the Levy strategy when prey density is low and switches to 
Brownian motion when prey density is high. 

As a metaheuristic algorithm, MPA is expected to meet some 
requirements of the major characteristics that measure its ability 
to solve optimization problems which include the ability to 
handle exploration, exploitation, local optimums, and 
convergence rate [41]. Each metaheuristic method differs in the 
way it does this based on the nature of the problem under 
consideration. 

Three control parameters determine the sensitivity of MPA. 
The first is fish aggregating devices (FADs), which control the 
effect of FADs alongside their influence on the optimization 
flow. Secondly, P minimizes/maximizes predator’s or prey's 
step sizes. Adjusting the step sizes in MPA helps to regulate its 
exploration and exploitation. The third parameter is the control 
factor (CF), which is an adaptive parameter that regulates the 
step size of a predator's movement. In study [1], it was found 
that the parameter ‘P’ became more sensitive than FADs to 
optimizing some unimodal functions. However, in multimodal 
functions, FADs gave higher performance. In some instances, 
the parameters presented no sensitivity. 

IV. PROPOSED VARIANTS OF MPA FOR PERFORMANCE 

IMPROVEMENT 

A. Parameter-tuned MPA 

One of the earliest approaches adopted by researchers 
towards improving the performance of MPA was the application 
of parameter tuning. It is a general approach used in 

optimization and machine learning modeling to obtain optimum 
parameter values. The process requires tweaking some set of 
parameters used in controlling the behavior of the 
model/algorithm that are also adjustable to obtain an improved 
model with optimal performance. 

In the original MPA, all population position updates are 
influenced by a constant value, denoted as P. As per the 
described position updating equations of MPA, there is a risk of 
premature convergence during the optimization iteration, 
limiting the exploration of the entire search space. Additionally, 
the alternation between Brownian and Lévy motions in the 
optimization process may lead to significant steps, causing the 
optimal solution to be crossed. Instead, dynamic updates of 
population positions could be achieved by incorporating other 
approaches such as the sine and cosine functions to improve the 
MPA’s performance [32]. 

Some researchers such as [28] tried to improve the 
performance of MPA through a tuning process. Their study 
looked at the three most sensitive aspects of performance control 
of MPA which included the way the iterations are distributed 
across the iterations’ phases, the size of the population in the 
second phase, and the effect of FADs. The experiment first 
tested different values of the iterations on each phase of the 
algorithm's optimization process e.g., allocating one-third of the 
iterations to each phase and later changing it produced little 
improvement in the results. The tests reveal that the least cost of 
optimal power flow (OPF) optimization in IEEE 48-Bus using 
MPA can be obtained in the first phase of the algorithm at three-
fifths, phase two at one-fifth, and phase three at one-fifth of the 
iterations, respectively. 

Concerning population size, the tasks of exploration and 
exploitation in MPA ideally require splitting the entire 
population size into two halves. However, it is important to note 
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that some optimizations’ minimum can be achieved when the 
population is divided into two-thirds and one-third for the prey 
and predators, respectively [28]. While maintaining the classical 
fact that FAD or eddy current effect in MPA is meant to keep 
the iteration from being trapped at the local minimum, however, 
the mathematical representation shows that FADs are also local 
minima. Therefore, a search could be conducted to obtain the 
optimal value of FADs as in [28], starting with an initial value 
of 0.2 until better performance was obtained at FAD = 0.3. This 
shows that tuning the value of FAD in the IEEE 48-Bus system 
could yield better performance. After tuning and obtaining the 
optimal parameter values for the iterations’ distribution, 
population size, and FADs for the MPA, an experiment was set 
up in two folds: holistic and inter-bounded OPF and ultimately 
comparing the performance of the tuned-MPA with GA. Overall 
findings showed that the tuned MPA outperformed GA in 
convergence, accuracy, and computational requirements. 
Furthermore, the holistic fold produces better solutions and 
requires higher computational power. While the inter-bounded 

OPF generates faster results and is less computationally 
intensive. 

Another similar MPA parameter-tuning case is found in 
[53], which in a bid to obtain the optimum load frequency 
control (LFC) settings to create a balance between power 
generation and demand, proposed a novel PD-P-PID cascade 
controller for LFC applications, utilizing the MPA for optimal 
parameter tuning. Tested on various power systems, including 
single and multi-area setups, the MPA-tuned PID-PD controllers 
exhibited superior performance compared to existing literature. 
The controller's robustness was evaluated on various power 
systems, and its parameters were optimized using MPA, 
demonstrating superior performance in terms of settling time 
and oscillations in frequency and tie-line power deviation 
compared to existing works. Their findings underscore the 
effectiveness of the MPA-tuned PD-P-PID controller in LFC 
applications. Table I provides more related works on MPA 
hyperparameter tuning where various degrees of success were 
achieved using parameter tuning.

TABLE I. RELATED WORKS ON MPA HYPERPARAMETER-TUNING 

Ref. J. Quart. 

Scopus 

CiteScore 

(2022) 

Scopus IF WOS IF Algorithm Article Type 
Strategies for 

optimal search 
Major Contributions Research Domain 

[28] Q1 9.0 4.342 3.9 Tuned-MPA Experiment/Result Parameter tuning 

Tuning was done to obtain 

the optimal parameter 

values for the iteration 

distribution, population 

size, and FADs for the 

MPA. 

Optimal power 

flow 

[26] Q1 8.2 5.861 3.88 
TSD-FR-

KCO-MPA 
Experiment/Result Levy and Brownian 

MPA was used to obtain 

optimum parameters 

Medical image 

fusion 

[40] Q4 2.0 1.771 0.5 MPA, MVO Experiment/Result Levy and Brownian 
MPA is used to solve the 

final optimization problem 
Electric vehicles 

[59] Q3 3.0 3.536 2.0 MPA Experiment/Result 
barrier parameters' 

influence 

Incorporating barrier 

parameters influence, MPA 

is compared with GWO, 

and EO for effectiveness 

Transformer oil 

breakdown 

[60] Q2 5.6 5.127 6.87 MPA Experiment/Result 
Levy and Brownian 

motion 

MPA was used to obtain 

optimum parameters 

Wind renewable 

energy 

[61] Q1 3.5 2.4 2.4 MPA Experiment/Result 

MPA is combined 

with the principle of 

key-term separation 

MPA is combined with the 

principle of key-term 

separation 

Mathematical 

computation 

[62] Q1 10.0 5.599 5.606 MPA Experiment/Result 
Levy and Brownian 

motion 

compares several 

metaheuristic optimization 

algorithms that are used as 

frameworks for 

optimization 

Selective 

harmonic 

elimination 

[7] Q1 14.1 9.177 9.7 MPA Review   
Microgrid, feature 

selection, etc. 

[63] Q2 4.7 3.271 2.9 MPA Experiment/Result 

Seven robust 

battery models were 

proposed for 

Lithium-ion 

batteries. 

MPA is used as an 

optimizer of the objective 

function for the proposed 

seven models. 

Li-ion batteries 

[53] Q2 7.7 4.203 4.1 
Tuned-MPA 

PID-PD 
Experiment/Result Tuning 

the performance of the 

Load Frequency Controller 

(LFC) was greatly 

improved by using tuned-

MPA. 

load frequency 

controller design 

B. Improvements in MPA Exploitation-exploration Balance 

The balance between exploration and exploitation is crucial 
in metaheuristic algorithms for effective optimization. The MPA 
addresses this balance by dynamically adjusting the exploration 
rate during optimization iterations. This adjustment facilitates a 
combination of exploration and exploitation, strategically 
applied at the start and end of the optimization process. MPA 
utilizes a control factor (CF) as an adaptive parameter to regulate 
step size for predator movement, contributing to the algorithm's 

effectiveness in navigating the search space. Because of the 
spread of iterations that are partitioned into stages, the search 
agents in MPA do not have sufficient trials for the search and 
discovery of spaces and the exploitation of optimal solutions 
[42]. 

Some researchers criticized the exploitation and exploration 
searchability of the classical MPA proposed by study [1]. The 
study in [45] opined that the step sizes that are randomly 
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generated by the Levy distribution are large and best suited for 
exploration. This happens in some instances, probably 
occasioned by sudden jumps from smaller step sizes to larger 
ones during the search transition from exploitation to 
exploration [1]. They further stated that many modifications 
would be required to improve its exploitation ability. While 
possessing a convergence factor advantage, the larger steps 
generated by the Levy motion could jump the global minimum. 
As such, many of them focused on how to improve this aspect 
of the algorithm. 

One possible solution found in the literature in this aspect is 
in the work done by [24], which proposed a hybridization of 
Improved MPA and PSO known as IMPAPSO algorithm for the 
optimization of the non-linear optimal reactive power dispatch 
(ORPD) problem. To improve MPA's exploration stage, they 
replaced the Brownian motion's random walk of the search 
agents with a high-tailed Weibull distribution. Secondly, the 
exploitation stage of classical MPA which is in phase 3 was also 
modified to use either PSO or MPA based on probability, to 
improve the convergence of the algorithm. The proposed 
IMPAPSO was evaluated using various test suites including 
IEEE 30, IEEE 57, and IEEE 118 bus systems. The strength of 
the proposed algorithm was examined in a rigorous comparison 
with other methods. Overall, the proposed IMPAPSO yielded an 
outstandingly high speed of convergence, outperforming its 
counterparts. The power loss was minimized to 96%, 10%, and 
9% in IEEE 30, IEEE 57, and IEEE 118 bus systems, 
respectively. 

Another example is found in study [2], which applies a 
strategy known as the dominance strategy based on exploration-
exploitation (DSEE) to improve search exploitation-exploration. 
First, the classical MPA was modified to produce a multi-
objective MPA (MMPA). Secondly, a strategic technique called 
dominance strategy based on exploration-exploitation (DSEE) 
was applied to count the returned dominant solutions in every 
returned solution, from which exploitation is carried out during 
the exploitation phase. This version was called M-MMPA. 
Thirdly, the Gaussian-based approach was incorporated into 
MPA to produce M-MMPA-GM which is a version that delves 
deeper into the present to discover better non-dominated 
solutions. This helps to discover better solutions by taking some 
distance from the present solution. The fourth version was 
incorporated with Nelder Mead simplex at the beginning of the 
optimization phase to build a front that helps MPA realize better 
solutions within the optimization flow. 

Additionally, a multi-stage improvement of the MPA 
(MSMPA) was proposed by study [56]. MSMPA maintains the 
multi-stage search advantage and incorporates a linear flight 

strategy in the middle stage to enhance predator interaction, 
especially for those further from the historical optimum, 
promoting exploration. In the middle and late stages, the search 
mechanism of PSO is integrated to boost exploitation 
capabilities, reducing stochasticity and effectively constraining 
predators from jumping out of the optimal region. Additionally, 
a self-adjusting weight was employed to regulate convergence 
speed, achieving a balanced exploration-exploitation capability. 
The algorithm was tested on various CEC2017 benchmark test 
functions and three multidimensional nonlinear structure design 
optimization problems, which demonstrated superior 
convergence speed and accuracy compared to other recent 
algorithms. 

Furthermore, the study in [45] applied the exploitation 
ability of NMRA to MPA in a bid to address its poor search 
exploitation. The authors proposed the hybridization of MPA 
and a naked mole-rat algorithm (NMRA) named MpNMRA – a 
self-adaptive algorithm. While retaining all the main parameters 
of both approaches, the basic part of MPA was attached to the 
worker stage of NMRA to improve search exploitation and 
exploration. The MpNMRA converges faster than other 
algorithms in comparison. The study in [55] applied HOGO to 
modify the search transition in MPA to gradually shift from 
exploration to exploitation as iterations progress, utilizing the 
global most appropriate solution at each iteration. 

Other studies that worked on improving the exploitation-
exploration of MPA are highlighted in Table II. These include 
[20] which incorporated local escaping operator (LEO) into 
classical MPA to tackle poor exploitation and exploration; [27] 
applied opposition based learning (OBL) strategy with Grey 
Wolf Optimizer (GWO) into MPA to overcome weaknesses; 
[43] incorporated MPA with spiral complex path search strategy 
based on Archimedes’ spiral curve for perturbation, expanding 
the global exploration range and strengthening the algorithm's 
overall search capabilities; [44] integrated reinforcement 
learning (RL) into MPA to improve its global searchability; [39] 
combined chaotic sequence parameter and adaptive mechanism 
for velocity update to better MPA's exploitation and exploration 
search; [34] adopted comprehensive learning (CL) approach that 
improves search and transitioning within exploration and 
exploitation on MPA; [51] applied ranking-based mutation 
operator to identify the best search agent, enhancing exploitation 
capabilities and preventing premature convergence; [46] used 
dynamic foraging strategy (DFS) to tackle sudden transition 
between the Levy Flight and Brownian Motion; and [47] 
incorporated teaching mechanism into MPA's first phase to 
promote its global search ability. Table II summarizes the major 
improvements in MPA exploitation and exploration with 
various major contributions.
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TABLE II. IMPROVEMENTS IN MPA EXPLOITATION-EXPLORATION 

Ref. 
J. 

Quart. 

Scopus 

CiteScore 

(2022) 

Scopus 

IF 

WOS 

IF 
Algorithm Article Type 

Strategies for 

optimal search 
Major Contributions 

Research 

Domain 

[24] Q3 5.5 3.542 3.2 IMPAPSO Experiment/Result 
high-tailed Weibull 

distribution and PSO 

Exploration is improved by replacing the 

Brownian motion's random walk of the 

search agents with a high-tailed Weibull 

distribution. The exploitation stage in 

phase 3 is also modified to use PSO or 

MPA based on probability.  

Optimal 

reactive 

power 

dispatch 

[64] Q1 19.1 11.057 10.4 EMPA Experiment/Result 

Differential 

Evolution (DE) 

operator 

DE operator is integrated into the 

exploration face of the standard MPA to 

escape local solution 

PV 

Modelling 

[2] Q1 9.0 4.342 3.367 

MMPA 

Experiment/Result 

multi-objective, 

dominance strategy 

based on 

exploration-

exploitation (DSEE), 

Gaussian-based 

approach, and Nelder 

Mead simplex 

MMPA adopts classical MPA's search for 

MOPs, multi-objective modified MPA 

(M-MMPA) is a modification of the 

classical MPA to use DSEE strategy 

search phase for exploration and 

exploitation, Gaussian-based mutation 

(GM) was integrated into M-MMPA to 

have a new model M-MMPA-GM, and 

Nelder-Mead simple method (NMM) was 

integrated to M-MMPA-GM to create a 

front for it to get to a better solution while 

maintaining the minimum possible time 

(NMM-M-MMPA-GM). 

Engineering 

design 

M-MMPA 

M-

MMPA-

GM 

M-

MMPA-

GM-NMM 

[26] Q1 8.2 5.861 3.88 

TSD-FR-

KCO-

MPA 

Experiment/Result 
Levy and Brownian 

motion 

MPA is combined with two other 

methods to address some drawbacks 

faced in medical image fusion that 

includes loss of edges due to ineffective 

high-frequency part of the fusion’s rules, 

and low-contrast in fused images 

Medical 

image fusion 

[20] Q1 12.3 8.664 8.038 LEO-MPA Experiment/Result 
Local Escaping 

Operator (LEO) 

LEO is incorporated into classical MPA 

to tackle poor exploitation and 

exploration 

Engineering 

design  

[27] Q1 12.6 9.602 8.5 
MPAOBL-

GWO 
Experiment/Result OBL and GWO 

OBL strategy with Grey Wolf Optimizer 

(GWO) is integrated into MPA to 

overcome weaknesses. 

PV System 

[43] Q2 4.5 3.143 2.7 FMMPA Experiment/Result Fusion multi-strategy 

MPA is incorporated with a spiral 

complex path search strategy based on 

Archimedes’ spiral curve for 

perturbation, expanding the global 

exploration range and strengthening the 

algorithm's overall search capabilities 

Robot path 

planning 

[44] Q1 12.3 8.635 8.0 
Deep-

MPA 
Experiment/Result 

reinforcement 

learning (RL) 

RL is integrated with MPA to improve its 

global searchability. 

Renewable 

energy 

system 

design 

[39] Q2 6.8 4.352 3.9 AMPA Experiment/Result 

chaotic sequence 

parameter and 

adaptive mechanism 

for velocity update 

AMPA combines chaotic sequence 

parameters and adaptive mechanisms for 

velocity update to better MPA's 

exploitation and exploration search 

Antenna 

Signals 

[34] Q1 11.9 7.811 5.431 MMPA Experiment/Result 

Comprehensive 

Learning (CL) 

approach 

CL approach that improves search and 

transitioning within exploration and 

exploitation is used on MPA 

Economic 

emission 

dispatch. 

[51] Q2 4.7 3.308 3.5 EMPA Experiment/Result 
ranking-based 

mutation operator 

the ranking-based mutation operator is 

used to identify the best search agent, 

enhancing exploitation capabilities and 

preventing premature convergence. 

ANN 

classification 

[45] Q1 12.6 9.602 8.5 MpNMRA Experiment/Result  
the basic part of MPA is attached to the 

worker stage of NMRA 

Engineering 

Design 

[46] Q1 12.3 8.635 8.0 DFSMPA Experiment/Result 
Dynamic Foraging 

Strategy (DFS) 

DFS is used to tackle sudden transitions 

between the Levy Flight and Brownian 

Motion 

Real-world 

engineering 

[47] Q3 3.9 2.393 2.6 MTLMPA Experiment/Result 
Mechanism for 

Teaching & Learning 

teaching mechanism is incorporated into 

MPA's first phase to promote its global 

search ability 

Engineering 

Design 

C. Hybridization of MPA with other Techniques 

Hybridization is the combination of two or more techniques 
to solve problems. The primary purpose of doing this is to 
harness the strengths of each approach and use them to 
complement the weaknesses of the other. Literature has shown 
that by combining MPA with other algorithms, there could be 
high-performance improvements. For instance, [45] combined 
MPA with NMRA with the sole aim of addressing the 

limitations of MPA (i.e., poor exploitation) and NMRA (i.e., 
narrow exploration) while leveraging the strengths of the two. 
MPA suffers from poor exploitation while NMRA suffers from 
weak exploration, and they both get into local optimum 
stagnation due to early or untimely convergence. Therefore, the 
strengths of MPA (i.e., good exploration) and NMRA (i.e., good 
exploitation) were used to address their weaknesses and to 
improve the entire performance. Overall, the authors reported a 
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significant performance improvement. The proposed 
hybridization (MpNMRA) was found to be more suitable for 
lower dimensional problems, even though it also provides 
satisfactory performance in high dimensional cases. 

Another example is found in study [29], which proposed a 
hybrid method known as MPA-FPIDF, a combination of MPA 
and Fuzzy Proportional-Integral-Derivative with Filter (FPIDF) 
to optimize Fuzzy PIDF-LFC to enhance the performance of a 
hybrid microgrid system, incorporating PV and wind energy 
sources along with real irradiance and wind speed data, as well 
as energy storage devices. The MPA was used to optimize the 
input scaling factors, output gains, and membership function 
boundaries of the proposed FPIDF controller. The performance 
of MPA-FPIDF controller is compared with the conventional 
MPA-PIDF controller and other controllers reported in the 
literature for the same case study, including PSO-PIDF, COR-
PIDF, and COR-FPIDF controllers. In addition, various 
scenarios are implemented to assess the robustness and 
sensitivity of the proposed controller to step load perturbations, 
variations in system parameters, and uncertainties associated 
with renewable energy sources such as wind speed fluctuations 
and solar irradiance variations. 

In study [44], a hybrid method that combines reinforcement 
learning (RL) and MPA known as Deep-MPA was proposed to 
minimize the cost of the microgrid power system. RL was 
integrated with MPA to improve global searchability. The 
proposed Deep-MPA design was validated against various 
algorithms, demonstrating a 6% reduction in energy costs. 

Furthermore, the study in [52] proposed an enhanced multi-
strategy MPA-Variational Mode Decomposition (MPA-VMD) 
method for pipeline leakage detection. This was meant to 

address the limitations of MPA by focusing on improving 
convergence speed and avoiding local optima. The enhanced 
MPA was used to find critical parameters in variational mode 
decomposition (VMD), and dynamic entropy was employed to 
select effective modes. The algorithm incorporates strategies 
like a good point set at the initial population stage to enhance 
search accuracy. It introduces a nonlinear convergence factor 
and Cauchy distribution during the search process to optimize 
the predator step size for better global search capabilities. The 
method effectively escapes local optima, leading to improved 
convergence speed. 

The studied literature reported diverse hybridizations of 
MPA with other techniques, yielding various performance 
improvements (Table III). These include [24] which combined 
high-tailed Weibull distribution’s improved MPA and PSO; [27] 
which integrated MPA, OBL, and GWO; [29] where MPA was 
integrated with Proportional-Integral-Derivative-Acceleration 
(PIDA); [35] coupled MPA and SVM where MPA was used to 
optimize SVM classifier's hyper-parameters for FS and 
classification; [36] which hybridized MPA and ANN, where 
MPA was used to optimize a trained ANN along with its fitness 
function; [37] which proposed IMPA-ResNet50, an improved 
version of MPA (IMPA) that was improved using OBL and TL, 
and ResNet50; [31] combined IMPA and CNN – a modified 
MPA algorithm for CNN hyperparameter selection, enhancing 
output performance for classification; [52] combined MPA with 
variational mode decomposition (MPA-VMD); [54] hybridized 
Open Circuit Voltage (OCV) reconfiguration model and MPA; 
[55] integrates MPA with HOGO; [45] integrated MPA with 
NMRA called MpNMRA, etc. Table III summarizes the major 
hybridizations of MPA with other techniques. 

TABLE III. HYBRIDIZATION OF MPA WITH OTHER TECHNIQUES 

Ref. 
J. 

Quart. 

Scopus 

CiteScore 

(2022) 

Scopus 

IF 

WOS 

IF 
Algorithm Article Type 

Strategies for 

optimal search 
Major Contributions 

Research 

Domain 

[24] Q3 5.5 3.542 3.2 IMPAPSO Experiment/Result 

high-tailed 

Weibull 

distribution and 

PSO 

Exploration is improved by replacing the 

Brownian motion's random walk of the 

search agents with a high-tailed Weibull 

distribution. The exploitation stage in phase 3 

is also modified to use PSO or MPA based 

on probability.  

Optimal 

reactive 

power 

dispatch 

[27] Q1 12.6 9.602 8.5 
MPAOBL-

GWO 
Experiment/Result OBL and GWO 

OBL strategy with Grey Wolf Optimizer 

(GWO) is integrated into MPA to overcome 

weaknesses. 

PV System 

[29] Q2 9.0 4.342 3.9 
MPA-

FPIDF 
Experiment/Result 

Fuzzy 

Proportional-

Integral-

Derivative with 

Filter (FPIDF) 

MPA is combined with FPIDF to optimize 

Fuzzy PIDF Load Frequency Controller 

(PIDF-LFC) to enhance the performance of a 

hybrid microgrid system 

Microgrid 

system 

[38] Q1 9.1 6.765 6.8 MPA-PIDA Experiment/Result 
Levy and 

Brownian motion 

MPA is used to optimize the gains of the 

PIDA controller. 

Power 

modulation 

[35] Q1 11.9 7.415 5.772 MPA-SVM Experiment/Result 
Levy and 

Brownian motion 

MPA was used to optimize the SVM 

classifier's hyper-parameters for FS and 

classification. 

ligament 

deficiency 

detection 

[36] Q2 3.2 2.59 NA MPA-ANN Experiment/Result 
Levy and 

Brownian motion 

MPA is used to optimize a trained ANN 

along with its fitness function. 

Transistor’s 

design 

[37] Q1 10.0 5.599 5.606 
IMPA-

ResNet50 
Experiment/Result 

Transfer 

Learning and 

Opposition-

Based Learning 

OBL is used to improve MPA and TL is used 

to improve IMPA-ResNet50 

Breast 

cancer 

diagnosis 
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[31] Q1 12.6 9.602 8.5 IMPA-CNN Experiment/Result 

automating the 

tuning of 

hyperparameters 

in CNN 

using a modified MPA algorithm for CNN 

hyperparameter selection, enhancing output 

performance for classification. 

arrhythmia 

classification 

[49] Q1 11.9 7.811 5.431 MCFAO Experiment/Result 

time-delay 

polynomials are 

applied to 

improve the 

model's 

performance in 

prediction 

MPA is used to optimize the model’s 

hyperparameters 

Time series 

prediction 

[50] Q3 5.0 2.606 2.363 

BBD-based 

MPA 

Experiment/Result 

Incorporates two 

Response 

Surface 

Methodologies 

(RSMs): Box 

Behnken Design 

(BBD) and 

Central 

Composite 

Design (CCD) 

MPA is used for biological decolorization 

process parameter optimization on BBD and 

CCD. 

Biological 

Processes 
CCD-based 

MPA 

[52] Q2 4.8 2.795 4.1 MPA-VMD Experiment/Result 

Good point set in 

the initial 

population stage 

improvements involves initializing a good 

point set and enhancing convergence factor 

(CF) and Cauchy distribution. 

Pipeline 

leakage 

detection 

[54] Q2 5.4 5.784 4.0 OCV-MPA Experiment/Result 

Open Circuit 

Voltage (OCV) 

reconfiguration 

model and MPA 

OCV model is used to measure the internal 

aging mechanism as influenced by the 

external factors of the lithium battery 

capacity decay, while MPA is used to detect 

the aging mode associate parameters. 

Battery 

aging 

mechanism 

[55] Q3 2.0 1.347 0.6 
MPA-

HOGO 
Experiment/Result 

Hide Object 

Game 

Optimization 

(HOGO) 

HOGO modifies the search transition in 

MPA to gradually shift from exploration to 

exploitation as iterations progress, utilizing 

the global best solution at each iteration. 

Engineering 

design 

[45] Q1 12.6 9.602 8.5 MpNMRA Experiment/Result  
the basic part of MPA is attached to the 

worker stage of NMRA 

Engineering 

Design 

D. Proposed MPA Variants 

Another way researchers address the limitations found in 
classical MPA is by modifying one or more aspects of the 
algorithm to create variants. An example is in study [46], which 
proposed a soft dynamic transformation to tackle the MPA’s 
tendency to be trapped in local optima during transitioning from 
Levy Flight to Brownian motion when optimizing real-world 
problems. The proposed Dynamic Foraging Strategy MPA 
(DFSMPA) replicates the traditional MPA, imitating the step 
size taken to grab prey. It then applies the dynamic foraging 
strategy (DFS) to reach deeper search locations for a complete 
global, faster, and more efficient search. This could help prevent 
being trapped. Instead of the usual three phases that are used in 
classical MPA to mimic the behavior of predator and prey, the 
DFSMPA uses the continuous model to convert the various 
phases. In the two phases of exploration and extraction, the 
continuous model alternates between the search agents. 

In addition, the study in [25] developed an enhanced MPA 
(EMPA) to identify hidden parameters in various PV and static 
PV models. In their work, the differential evolution (DE) 
operator was integrated into the exploration face of the standard 
MPA to escape local solutions for stability and performance 
reliability in handling nonlinear optimization cases of modeling 
PV. The strengths of the proposed enhancement are: (i) 
maintaining various new solutions in the search and optimizing 
unexpected convergence. (ii) avoiding being trapped by leaders 
and the population. (iii) using diverse search mechanisms that 
combine populations to create a balance between exploration 
and exploitation. (iv) dynamically changing the solutions by the 

algorithm to ensure effectiveness and efficiency. (v) dynamic 
adjustment of the optimization problem and concurrently 
covering various multi-dimensional areas of the search space. 

Furthermore, the study in [51] proposed an enhanced variant 
of the MPA, called the EMPA, designed for training 
Feedforward Neural Networks (FNNs). EMPA was intended to 
minimize classification, prediction, and approximation errors by 
adjusting connection weights and deviation values. It 
incorporates a ranking-based mutation operator to identify the 
strongest search agent, enhancing exploitation capabilities and 
preventing premature convergence. EMPA combines 
exploration and exploitation, providing stability and flexibility 
in achieving optimal solutions. Experimental results on 
seventeen datasets show that EMPA exhibits faster 
convergence, higher calculation accuracy, increased 
classification rates, and strong stability and robustness, 
improving its productivity and reliability in training FNNs. 

Other modifications proposed are presented in Table IV. 
They include the use of mechanism for teaching and learning to 
balance search exploitation and exploration [47]; combining 
chaotic sequence parameter and adaptive mechanism for 
velocity update to better MPA's exploitation and exploration 
search [39]; modifying the classical MPA to produce a multi-
objective MPA (MMPA), applying a strategic technique called 
dominance strategy based on exploration-exploitation (DSEE) 
to count the returned dominant solutions in every returned 
solution from which exploitation is carried out during the 
exploitation phase, incorporating Gaussian-based approach into 
MPA to produce M-MMPA-GM, and incorporating Nelder 
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Mead simplex at the beginning of the optimization process, 
building a front that helps MPA realise better solutions within 
the optimization flow [2]; using a local escaping operator (LEO) 
to improve MPA’s searchability [20]; applying adaptive weights 
and OBL to enhance the performance of MPA [30]; combining 
chaotic sequence parameter and adaptive mechanism for 
velocity update to better MPA's exploitation and exploration 
search [39]; the use of CL approach to improve the search and 
transitioning within exploration and exploitation in MPA [34]; 
using linearly increased worst solutions (LIS) improvement 
strategy to address computational cost and accuracy issues 
associated with existing segmentation techniques, MPALS 
(MPA + LIS) and RUS are combined into a version called 
HMPA to serve as a solution to ISP [33]; incorporating logistic 
opposition-based learning (LOBL) into MPA to enhance the 
generation of various precise solutions with multiple population 
[32].; integrating MPA with CL approach and memory aspect of 
fractional calculus [42]; LA is used to enhance the artificial 
Jellyfish search algorithm (JS) and MPA, reducing 

computational complexity while preserving their strengths [41]; 
MPA is integrated with spiral complex path search strategy 
based on Archimedes’ spiral curve for perturbation, expanding 
the global exploration range and strengthening the algorithm's 
overall search capabilities [43]; it was also incorporated with 
pulse width modulation control boost converter to accurately 
track the MPP of a solar PV panel [65]; RL was integrated in 
MPA to improve its global searchability [44]; MPA was 
enhanced by incorporating a linear flight strategy in the middle 
stage to enhance predator interaction [56]; ranking-based 
mutation operator was used to identify the best search agent, to 
accelerate exploitation capabilities and preventing premature 
convergence in MPA [51]; DFS was used to tackle sudden 
transition between the Levy Flight and Brownian Motion [46]; 
teaching mechanism was also incorporated into MPA's first 
phase to promote its global search ability [47]; group-ranking of 
the predator populations, thorough learning approach 
implemented at stage 2 of MPA, and variable step-sizes control 
approach was applied [48]; etc. 

TABLE IV. PROPOSED MPA MODIFICATIONS 

Ref. 
J. 

Quart. 

Scopus 

CiteScore 

(2022) 

Scopus 

IF 

WOS 

IF 
Algorithm Article Type 

Strategies for 

optimal search 
Major Contributions 

Research 

Domain 

[64] Q1 19.1 11.057 10.4 EMPA Experiment/Result 

Differential 

Evolution (DE) 

operator 

DE operator is integrated into the 

exploration face of the standard 

MPA to escape local solution 

PV 

Modelling 

[2] Q1 9.0 4.342 3.367 

MMPA 

Experiment/Result 

multi-objective, 

dominance strategy 

based on 

exploration-

exploitation 

(DSEE), Gaussian-

based approach, 

and Nelder Mead 

simplex 

MMPA adopts classical MPA's 

search for MOPs, multi-objective 

modified MPA (M-MMPA) is a 

modification of the classical MPA 

to use DSEE strategy search phase 

for exploration and exploitation, 

Gaussian-based mutation (GM) was 

integrated into M-MMPA to have a 

new model M-MMPA-GM, and 

Nelder-Mead simple method 

(NMM) was integrated to M-

MMPA-GM to create a front for it 

to get to a better solution while 

maintaining the minimum possible 

time (NMM-M-MMPA-GM). 

Engineering 

design 

M-MMPA 

M-MMPA-GM 

M-MMPA-GM-

NMM 

[20] Q1 12.3 8.664 8.038 LEO-MPA Experiment/Result 
Local Escaping 

Operator (LEO) 

LEO is incorporated into classical 

MPA to tackle poor exploitation 

and exploration 

Engineering 

design 

[30] Q1 14.3 9.028 8.7 BMPA Experiment/Result 
adaptive weights 

and OBL 

optimization capabilities of the 

MPA were enhanced with adaptive 

weights and OBL, resulting in a 

Pareto front. 

Image 

segmentation 

[39] Q2 6.8 4.352 3.9 AMPA Experiment/Result 

chaotic sequence 

parameter and 

adaptive 

mechanism for 

velocity update 

AMPA combines chaotic sequence 

parameters and adaptive 

mechanisms for velocity update to 

better MPA's exploitation and 

exploration search 

Antenna 

Signals 

[34] Q1 11.9 7.811 5.431 MMPA Experiment/Result 

Comprehensive 

Learning (CL) 

approach 

CL approach that improves search 

and transitioning within exploration 

and exploitation is used on MPA 

Economic 

emission 

dispatch. 

[33 Q1 23.0 11.674 8.139 

MPALS 

Experiment/Result 

MPALS = MPA + 

LIS (linearly 

increased worst 

solutions 

improvement 

strategy.) 

HMPA = MPALS 

+ ranking-based 

updating strategy 

(RUS) 

LIS is used to address 

computational cost and accuracy 

issues associated with existing 

segmentation techniques. 

MPALS and RUS are integrated 

into a version called HMPA to 

serve as a solution to ISP. 

Image 

Segmentation 

HMPA 

[32] Q1 13.4 8.364 8.7 MMPA Experiment/Result 

Incorporates 

logistic opposition-

based learning 

(LOBL) 

LOBL technique is incorporated to 

enhance the generation of various 

precise solutions with multiple 

populations. 

Engineering 

design 
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[42] Q1 12.3 8.664 8.8 FOCLMPA Experiment/Result 

comprehensive 

learning (CL) 

approach 

integrates MPA with the CL 

approach and memory aspect of 

fractional calculus. 

Knowledge-

based 

systems 

[41] Q1 12.3 8.664 8.8 LA-JS-MPA Experiment/Result 
Learning-

Automata (LA) 

LA is used to enhance the artificial 

Jellyfish search algorithm (JS) and 

MPA, reducing computational 

complexity while preserving their 

strengths. 

Data 

clustering 

[403 Q2 4.5 3.143 2.7 FMMPA Experiment/Result 
Fusion multi-

strategy 

MPA is incorporated with a spiral 

complex path search strategy based 

on Archimedes’ spiral curve for 

perturbation, expanding the global 

exploration range and strengthening 

the algorithm's overall search 

capabilities 

Robot path 

planning 

[65] Q3 5.5 3.542 3.2 MPA Experiment/Result 

Pulse width 

modulation control 

boost converter 

MPA is incorporated with a pulse 

width modulation control boost 

converter to accurately track the 

MPP of a solar PV panel. 

Solar PV 

systems 

[44] Q1 12.3 8.635 8.0 Deep-MPA Experiment/Result 
reinforcement 

learning (RL) 

RL is integrated with MPA to 

improve its global searchability. 

Renewable 

energy 

system 

design 

[56] Q3 3.5 2.071 2.4 MSMPA Experiment/Result 
linear flight 

strategy 

MPA is enhanced by incorporating 

a linear flight strategy in the middle 

stage to enhance predator 

interaction 

Engineering 

design 

[51] Q2 4.7 3.308 3.5 EMPA Experiment/Result 
ranking-based 

mutation operator 

the ranking-based mutation 

operator is used to identify the best 

search agent, enhancing 

exploitation capabilities and 

preventing premature convergence. 

ANN 

classification 

[46] Q1 12.3 8.635 8.0 DFSMPA Experiment/Result 
Dynamic Foraging 

Strategy (DFS) 

DFS is used to tackle sudden 

transitions between the Levy Flight 

and Brownian Motion 

Real-world 

engineering 

[47] Q3 3.9 2.393 2.6 MTLMPA Experiment/Result 

Mechanism for 

Teaching & 

Learning 

teaching mechanism is incorporated 

into MPA's first phase to promote 

its global search ability 

Engineering 

Design 

[48] Q2 4.7 2.941 2.524 DAMPA Experiment/Result 

group-ranking of 

the predator 

populations 

group-ranking of the predator 

populations, thorough learning 

approach implemented at stage 2 of 

MPA, and variable step-sizes 

control approach 

Task 

scheduling in 

Cloud 

Computing 

E. Recent Proposed Improvements in MPA 

Recently, more articles have been published with many 
improvements still underway. Some of these proposals include 
a hybrid MPA and Particle Swarm Optimization (MPA-PSO), 
combining the global and local search abilities of PSO with the 
MPA [66], Multi-Population-based MPA (MultiPopMPA) 
which uses global, balanced, and local search strategies 
simultaneously throughout the search process [67], and a multi-

strategy MPA, Regularized ELM, and CFA, integrating multiple 
algorithms [68]. Furthermore, an improved MPA (IMPA) with 
Deep Gated Recurrent Unit (DGRU), a hybrid model combining 
IMPA and DGRU for better accuracy and generalization in 
profit prediction [69], and an improved MPA (IMPA), using 
adaptive weight adjustment and dynamic social learning 
mechanisms [70] have been proposed. A summary of the recent 
literature is presented in Table V. 

TABLE V. RECENT PROPOSED MPA IMPROVEMENTS 

Ref. 
J. 

Quart. 

Scopus 

CiteScore 

(2023) 

Scop

us IF 

Proposed 

Algorithm 
Article Type Main Goal 

Strategies of 

Optimal Search 
Major Contribution 

Research 

Domain 

[66] Q3 4.1 1.3 

Hybrid MPA and 

Particle Swarm 

Optimization 

(MPA-PSO) 

Experiment 

To develop an 

optimal resource 

allocation strategy 

for vehicular edge 

computing 

networks 

Combining the 

global and local 

search abilities of 

PSO with the MPA 

Improved performance in 

resource allocation by 

leveraging the strengths 

of both MPA and PSO 

Vehicular Edge 

Computing (VEC) 

[67] Q2 8.1 3.1 

Multi-Population-

based MPA 

(MultiPopMPA) 

Experiment 

To improve the 

search capabilities 

of the MPA by 

using a multi-

population and 

multi-search 

strategy. 

The algorithm uses 

global, balanced, and 

local search 

strategies 

simultaneously 

throughout the search 

process. 

The proposed 

MultiPopMPA 

outperforms other 

metaheuristic algorithms 

in terms of precision, 

sensitivity, and F1-score 

metrics 

AI, specifically in 

training ANN for 

classification 

tasks. 

[68] Q3 2.3 
0.27

8 

Multi-Strategy 

MPA, Regularized 

ELM, and CFA 

Experiment 

Accurate 

prediction of 

passenger flow to 

Combining multiple 

algorithms to handle 

complexity and 

High prediction accuracy 

and strong convergence 

performance with only 30 

Passenger Flow 

Prediction. 
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help local 

authorities with 

resource 

regulation. 

uncertainty in 

passenger flow 

prediction. 

iterations needed to reach 

the optimal solution 

[71] Q2 6.2 3.5 

Quantum Theory-

based MPA 

(QTbMPA) 

Original 

Research 

To develop an 

automated deep 

learning model for 

classifying brain 

tumors from MRI 

images 

Bayesian 

optimization for 

hyperparameters and 

QTbMPA for feature 

selection. 

Improved accuracy and 

sensitivity in brain tumor 

classification using a 

hybrid deep learning 

framework. 

Medical image 

analysis 

[72] Q1 9.7 3.6 
Chaotic-based 

MPA (CMPA) 
Experiment 

Improve the search 

performance of the 

MPA for feature 

selection in 

schizophrenia 

classification 

using EEG signals. 

Combining MPA 

with chaotic maps 

(logistic, tent, henon, 

sine, and tinkerbell 

maps). 

The proposed SCMPA 

significantly outperforms 

other MPA variants in 

feature selection and 

classification accuracy. 

Schizophrenia 

classification 

using EEG signals 

and metaheuristic 

algorithms. 

[73] Q1 7.5 3.8 

Enhanced Gorilla 

Troops Optimizer 

(EGTO), with 

MPA  

Experiment 

To enhance the 

performance of the 

Gorilla Troops 

Optimizer (GTO) 

by integrating high 

and low-velocity 

ratios inspired by 

the MPA. 

Balancing 

exploration and 

exploitation phases 

using high and low-

velocity ratios 

EGTO achieves superior 

performance in global 

optimization and 

engineering design 

problems compared to 

other algorithms. 

Optimization and 

Engineering 

Design. 

[74] Q1 9.6 
3.66

2 

Modified MPA - 

convolutional 

neural networks 

(DCNNs). 

Original 

Research 

To develop an 

optimal structured 

DCNN for 

automatic 

COVID-19 

diagnosis using 

chest CT scans. 

Utilizes a novel 

encoding scheme 

based on IP 

addresses, an 

Enfeebled layer for 

variable-length 

DCNN, and divides 

large datasets into 

smaller chunks for 

random evaluation. 

The proposed DCNN-

IPMPA model 

outperforms other 

benchmarks with high 

accuracy and competitive 

processing time. 

Deep Learning 

and Medical 

Imaging. 

[69] Q1 9.6 5.0 

Improved MPA 

(IMPA) with Deep 

Gated Recurrent 

Unit (DGRU). 

Experiment 

Improve profit 

prediction in 

financial 

accounting 

information 

systems 

Dynamic flight 

behavior between 

Levy and Gaussian to 

enhance MPA’s 

performance 

Hybrid model combining 

IMPA and DGRU for 

better accuracy and 

generalization in profit 

prediction. 

Financial 

accounting 

information 

systems and profit 

prediction. 

[75] Q2 11.4 4.5 

Recursive Spider 

Wasp Optimizer 

MPA (RSWO-

MPA)  

Experiment 

To improve gene 

selection methods 

for cancer 

classification 

using microarray 

data. 

Combines ReliefF 

filter method with 

RSWO-MPA for 

efficient gene 

selection. 

Achieves higher 

accuracy, selects fewer 

features, and exhibits 

more stability compared 

to other algorithms. 

AI and 

Bioinformatics 

[70] Q1 7.5 3.8 
Improved MPA 

(IMPA). 
Experiment 

To enhance the 

MPA by 

addressing its 

limitations such as 

local optima traps, 

insufficient 

diversity, and 

premature 

convergence. 

Adaptive weight 

adjustment and 

dynamic social 

learning 

mechanisms. 

IMPA significantly 

improves optimization 

performance in 

engineering design 

problems by balancing 

exploration and 

exploitation. 

Optimization 

algorithms in 

engineering 

design 

[76] Q1 9.6 5.0 
Adaptive MPA 

(AMPA). 
Experiment 

Optimize the 

steam gasification 

process for 

converting palm 

oil waste into 

environmentally 

friendly energy 

Incorporation of 

AMPA into the SVM 

framework to 

enhance prediction 

precision and 

efficiency 

Development of an 

intelligent optimization 

framework surpassing 

conventional machine 

learning techniques. 

Renewable energy 

and intelligent 

systems. 

[77] Q2 5.3 2.5 

MPA combined 

with a BP Neural 

Network. 

Experiment 

Inversion of the 

permeability 

coefficient of a 

high core wall 

dam 

Lévy and Brownian 

movements. 

Comparison of three 

methods for seepage 

parameters inversion and 

demonstrating the 

advantage of the MPA. 

Hydrology and 

Hydraulic 

Engineering. 

[78] Q2 3.5 3.4 

MPA for optimized 

tuning of PI 

controllers 

Experiment 

Enhance the low-

voltage ride-

through (LVRT) 

capability of grid-

connected 

photovoltaic (PV) 

systems 

MPA, Grey Wolf 

Optimization 

(GWO), and Particle 

Swarm Optimization 

(PSO). 

MPA provides better 

results with higher 

convergence rates and 

improved system 

performance. 

Electrical 

Engineering and 

Renewable 

Energy. 

[79] Q3 2.2 1.5 Improved MPA Experiment 

To optimize 

process parameters 

in multi-process 

manufacturing to 

Utilizes reverse 

learning strategies 

and mixed control 

parameters to 

Proposes a multi-process 

parameter optimization 

method using an 

improved MPA, 

Mechanical 

Engineering and 

Manufacturing. 
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improve product 

quality 

enhance optimization 

capability 

addressing the severe 

coupling of multiple 

processes. 

[80] Q3 4.1  
MPA Aquila 

Optimizer (MAO) 
Experiment 

To present a 

hybrid method 

combining MPA 

and AO for droop 

control in DC 

microgrids 

Combining the 

strengths of MPA 

and AO to enhance 

exploration and 

exploitation. 

Superior convergence 

ability and promising 

performance in droop 

control. 

Electrical 

Engineering 

[81] Q3 2.4 1.2 
MPA for robot path 

planning 
Experiment 

To design an 

optimal path for a 

robot to navigate 

from its starting 

point to its goal 

while avoiding 

obstacles 

Heuristic search-

based methods, 

potential field-based 

methods, sampling-

based methods, 

hybrid methods, and 

evolutionary methods 

The proposed method 

uses the Marine Predator 

Algorithm, which shows 

good performance in 

different situations. 

Robot path 

planning and 

autonomous 

driving. 

[82] Q2 3.6 1.6 
MPA- P-P-FOPID 

controller. 
Experiment 

To design a 

cascade P-P-

FOPID controller 

optimized by the 

MPA for 

improving load 

frequency control 

in electric power 

systems. 

The MPA is 

employed for its 

parameter-less, 

derivative-free, user-

friendly, flexible, and 

simple nature. 

The proposed controller 

demonstrated superior 

performance in reducing 

integral time absolute 

error (ITAE), settling 

time, and frequency and 

tie-line power deviations 

compared to other recent 

approaches. It also 

showed robustness 

against parametric 

uncertainties. 

Electric power 

systems 

[83] Q1 19.9 6.2 
improved binary 

MPA  
Experiment 

To develop an 

efficient 

offloading method 

that reduces 

energy 

consumption and 

meets time 

constraints in edge 

computing 

environments 

The binary MPA is 

used for its 

effectiveness in 

solving optimization 

problems under 

constraints 

The proposed method 

effectively meets 

deadlines while reducing 

energy consumption, 

even with an increasing 

number of users. 

Edge computing. 

[84] Q2 4.3 2.7 
Enhanced MPA 

(EMPA) - SVM 
Experiment 

To improve the 

accuracy and 

efficiency of IGBT 

switching power 

loss estimation 

using an optimized 

SVM model. 

The EMPA is 

employed for its 

effectiveness in 

parameter 

optimization, 

leveraging its ability 

to handle complex, 

multi-dimensional 

search spaces. 

The integration of EMPA 

with SVM results in a 

model that significantly 

enhances the accuracy 

and efficiency of power 

loss estimation in IGBT, 

outperforming traditional 

methods. 

power electronics 

[85] Q1 11.2 6.2 MPA Analytical 

To identify and 

analyze the 

structural biases in 

the MPA using the 

BIAS Toolbox and 

Generalized 

Signature Test 

(GST). 

The study employs 

the BIAS Toolbox 

and GST to detect 

and evaluate the 

structural biases 

within the MPA, 

revealing how these 

biases affect the 

algorithm’s 

performance. 

The article highlights 

significant structural 

biases in the MPA, which 

cause the population to 

revisit specific regions of 

the search space, leading 

to increased 

computational costs and 

slower convergence. 

optimization 

algorithms 

[86] Q1 11.5 7.5 

Improved 

Weighted MPA 

(WMPA) 

Experiment 

To enhance the 

accuracy and 

efficiency of SOM 

estimation by 

selecting the most 

relevant 

hyperspectral 

features using the 

improved WMPA. 

The WMPA is 

optimized to improve 

feature selection by 

leveraging its ability 

to handle complex, 

multi-dimensional 

search spaces 

effectively. 

The improved WMPA 

demonstrates higher 

accuracy and stability in 

predicting SOM content 

compared to traditional 

methods, providing a 

robust and efficient 

approach for SOM 

estimation. 

agricultural and 

environmental 

monitoring 

[87] Q1 7.7 4.8 

Enhanced Hybrid 

Aquila Optimizer 

with MPA 

(EHAOMPA) 

Experiment 

To enhance the 

performance of the 

Aquila Optimizer 

in solving 

combinatorial 

optimization 

problems by 

integrating it with 

the MPA. 

The hybrid algorithm 

leverages the 

exploration 

capabilities of MPA 

and the exploitation 

strengths of AO to 

effectively navigate 

the search space and 

find optimal 

solutions. 

The EHAOMPA 

demonstrates superior 

performance in various 

benchmark problems 

compared to traditional 

AO and other 

optimization algorithms, 

showing promise in 

solving industrial-

constrained design 

problems and optimizing 

hyperparameters for 

combinatorial 

optimization. 
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COVID-19 CT-image 

detection. 

[88] Q1 14.8 7.2 

improved MPA 

combined with 

Extreme Gradient 

Boosting 

(XGBoost)  

Experiment 

To enhance the 

accuracy and 

efficiency of 

shipment status 

time predictions 

using a hybrid 

approach that 

combines MPA 

and XGBoost. 

The improved MPA 

incorporates 

opposition-based 

learning, chaos maps, 

and self-adaptive 

population strategies 

to optimize the 

parameters of the 

XGBoost model. 

The hybrid model 

demonstrates superior 

performance in predicting 

shipment status times 

compared to traditional 

methods, providing a 

robust and efficient 

solution for logistics and 

supply chain 

management. 

logistics and 

supply chain 

management 

[89] Q2 4.3 2.4 

improved MPA 

(multi-objective 

optimization). 

Experiment 

To enhance the 

resilience of power 

grid infrastructure 

by optimizing core 

backbone grid 

planning using a 

multi-objective 0–

1 planning 

problem. 

The improved MPA 

incorporates file 

management and an 

enhanced top 

predator selection 

mechanism to 

effectively explore 

the Pareto frontier for 

optimal solutions. 

The algorithm 

successfully forms core 

backbone grids for the 

IEEE 39-node and IEEE 

300-node systems, 

ensuring economic 

feasibility and optimal 

network connectivity 

while balancing active 

and reactive power 

demands. 

power systems 

[90] Q2 4.3 2.7 

MPA optimized 

random forest (RF) 

algorithm with 

laser-induced 

fluorescence (LIF) 

technology 

Experiment 

To develop a more 

efficient and 

accurate method 

for diagnosing 

transformer faults, 

overcoming the 

limitations of 

traditional 

methods. 

The study employs 

principal component 

analysis (PCA) and 

kernel principal 

component analysis 

(KPCA) for 

dimensionality 

reduction, followed 

by the MPA-RF 

model for optimal 

fault diagnosis. 

The research 

demonstrates that the 

MSC-KPCA-MPA-RF 

model achieves the best 

results, with a fitting 

coefficient of 0.9963 and 

a mean square error of 

0.0047 

power systems 

and electrical 

engineering  

[91] Q1 9.5 2.6 

MPA optimized 

pavement 

maintenance and 

rehabilitation 

(M&R) scheduling 

Experiment 

To develop a 

sustainable M&R 

scheduling 

optimization 

model that 

considers highway 

agency costs, 

environmental 

impacts, and social 

effects. 

The MPA is used to 

handle the 

computational 

complexities of 

optimizing M&R 

scheduling for large-

scale networks 

The sustainable model 

reduces CO2 emissions 

by 6.5% and improves 

equity and safety indices 

by 40.7% and 2.5%, 

respectively, compared to 

conventional methods 

pavement 

management 

systems and 

sustainable 

infrastructure 

engineering. 

[92] Q1 12.6 7.2 

Clustering Wavelet 

Opposition-based 

MPA (CWOMPA) 

enhanced-MPA 

Experiment 

To improve 

optimization 

performance and 

feature selection in 

high-dimensional 

datasets, 

particularly in 

medical diagnosis. 

CWOMPA 

incorporates fuzzy 

clustering, wavelet 

basis function, and 

adaptive opposition-

based learning to 

enhance population 

diversity and prevent 

premature 

convergence 

Demonstrates 

CWOMPA’s superior 

performance in 

optimization and feature 

selection across various 

benchmark functions and 

medical datasets 

Meta-heuristic 

optimization 

algorithms and 

feature selection 

in medical 

datasets. 

[93] Q1 5.7 2.6 

Hybrid MPA-PSO 

to tackle the Energy 

Scheduling 

Problem (ESP). 

Experiment 

To optimize 

electricity bills, 

energy 

consumption, and 

user comfort by 

finding the best 

schedule for smart 

appliances 

The proposed 

method enhances the 

searching capabilities 

of MPA using PSO 

components to 

improve schedules 

with poor fitness 

values 

The research 

demonstrates the 

efficiency and high 

performance of the hybrid 

method in optimizing 

ESP objectives compared 

to other methods 

Internet of Things 

(IoT) and smart 

grid technology 

[94] Q4 1.3 1.74 

Modified MPA 

(MMPA) for 

automated atrial 

fibrillation 

detection using 

ECG signals. 

Experiment 

To develop a 

method for 

automatically 

detecting atrial 

fibrillation using 

transient single 

lead ECG readings 

The algorithm 

utilizes Heart Rate 

Variability (HRV) 

and frequency 

analysis for feature 

extraction, followed 

by classification 

using SVM 

The study’s innovative 

contribution is the 

application of the MMPA 

for identifying atrial 

fibrillation in brief ECG 

data, achieving a 

maximum accuracy of 

99.8%. 

Biomedical 

Engineering and 

AI. 

[95] Q1 6.5 4.1 

bidirectional gated 

recurrent unit 

(BiGRU) optimized 

MPA  

Experiment 

To analyze the 

influence of 

scraper geometry 

and roughness on 

the coating process 

using advanced 

predictive and 

simulation models. 

The MPA-BiGRU 

pseudo-lattice 

Boltzmann (pseudo-

LB) method is 

employed to simulate 

the coating flow 

without specific 

rheological 

equations. 

The study finds that 

rectangle geometry is 

suitable for high coating 

speeds, while trapezium 

geometry is better for low 

speeds. Scraper 

roughness significantly 

affects the process with 

rectangle geometry. 

materials science 

and engineering 
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[96] Q2 4.6 2.7 
Improved MPA 

(IMPA) 
Experiment 

To optimize water 

resource allocation 

in Huaying City 

by balancing 

social, economic, 

and ecological 

benefits 

The IMPA employs 

chaotic initialization 

for population 

diversity, golden sine 

algorithm for 

balanced exploration 

and exploitation, and 

quadratic 

interpolation for 

enhanced search 

accuracy. 

The study demonstrates 

that IMPA outperforms 

other algorithms in terms 

of stability and accuracy 

for water resource 

optimization, providing a 

new approach for 

sustainable water 

management. 

water resource 

management and 

optimization 

algorithms. 

[97] Q2 10.2 4.7 MPA  Comparative 

To minimize the 

deficit of 

agricultural water 

supply by 

optimizing 

reservoir 

operations under 

baseline and 

climate change 

conditions. 

The MPA uses 

random walk 

strategies (Brownian 

and Levy motions) 

and elite matrices to 

enhance exploration 

and exploitation 

phases. 

Demonstrates that MPA 

outperforms GA in terms 

of reliability, resiliency, 

and vulnerability in 

reservoir operations. 

Water Resource 

Management and 

Optimization 

Algorithms. 

[98] Q2 3.4 1.7 

PRMPA-Spectral-

SMOTE with 

improved MPA 

(IMPA). 

Experiment 

To enhance the 

classification 

performance of 

biomedical data, 

which is often 

high-dimensional 

and imbalanced 

The algorithm uses 

minimal-redundancy 

maximal-relevance 

(mRMR) for feature 

selection, Spectral-

SMOTE for data 

resampling, and an 

improved MPA for 

optimizing key 

parameters. 

The method significantly 

improves the 

classification accuracy of 

biomedical data, 

outperforming other data 

resampling methods 

biomedical data 

[99] Q1 9.8 3.4 

Uniform MPA 

(UMPA), combines 

uniform design 

with the MPA  

Experiment 

To accurately and 

efficiently detect 

neural unit 

modules in brain 

networks, which 

can aid in disease 

detection and 

targeted therapy 

UMPA leverages 

uniform design to 

ensure evenly 

distributed solutions 

and MPA for 

optimization, 

incorporating Lévy 

flight and Brownian 

movement strategies. 

Integration of uniform 

design with MPA, 

resulting in improved 

performance in 

identifying neural unit 

modules compared to 

other methods. 

brain network 

analysis 

[100] Q1 9.7 3.6 

Reinforcement 

Learning MPA 

(RLMPA) to 

enhance global 

optimization. 

Experiment 

Improve 

Optimization- 

Address weak 

convergence, 

limited balance 

capacity, and 

optimization 

limitations in 

MPA by 

introducing 

RLMPA. 

Three Location 

Update Strategies: 

Ranking paired 

mutually beneficial 

learning; Gaussian 

random walk 

learning; and 

Modified somersault 

foraging. 

Enhanced Performance: 

RLMPA shows superior 

performance in global 

optimization, search 

efficiency, and 

convergence speed 

compared to 10 

competitive algorithms. 

engineering 

design 

V. APPLICATIONS OF MPA IN VARIOUS DOMAINS 

The MPA has found wide acceptance across many research 
domains. Focusing on areas with the widest coverage and most 
recent development, Engineering (28.2%), Computer Science 
(26.0%), Mathematics (10.9%), and Energy (7.1%) of the 
applications, the following summaries are presented. 

A. Engineering 

The highest of MPA’s applications based on Table V are in 
real-world engineering designs [1]. In this domain, MPA has 
been used to solve real-world problems such as pressure vessel 
design, tension/compression spring design, and welded beam 
design [1], estimating the parameter of frequency-modulated 
sound wave (FM), speed spectrum radar Polly phase code design 
(SSRPP), and Lennard-Jones (LJ) potential problem [45]. These 
problems are constrained engineering benchmarks and were 
made with associated practical engineering examples. With the 
help of the death penalty approach, the constrained problems 
were converted to unconstrained ones. Another real-world 

problem solved includes demand-controlled ventilation of the 
operating fan schedule, where a 2-zone (entry and exit) retail 
store stocked with a supply and exhaust fan for ventilation was 
examined. The main objective was to "reduce the fan's energy 
consumption using demand-controlled ventilation subject to 
airflow and the amount of carbon dioxide (CO2)". 

B. Computer Science 

In this area, MPA has been used to develop an efficient 
offloading method that reduces energy consumption and meets 
time constraints in edge computing environments [83] and to 
develop an optimal resource allocation strategy for vehicular 
edge computing networks [66]. It has also been used to design 
an optimal structured deep convolutional neural network 
(DCNN) [74], in training ANN for classification tasks [67], 
incorporation into the SVM framework to enhance prediction 
precision and efficiency [76] and was combined with a BP 
Neural Network [77] for improved performance. Furthermore, 
on the Internet of Things (IoT) and smart grid technology, MPA 
was used to optimize electricity bills, energy consumption, and 
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user comfort by finding the best schedule for smart appliances 
[93]. 

C. Mathematics 

The proposed variant of MPA such as DFSMPA was also 
applied to three sets of standard mathematical test functions and 
one set of real-world engineering optimization problems 
including (i) Classical functions such as unimodal, multimodal, 
and fixed multimodal functions. (ii) Contemporary numerical 
optimizations CEC-BC-2017 comprises 30 composition and 
hybrid functions. (iii) CEC06-2019 (100-Digits challenge). and 
(iv) Ten CEC-2020 problems applicable to real engineering 
optimization [46]. 

D. Energy 

MPA has been applied in power systems and electrical 
engineering to develop a more efficient and accurate method for 
diagnosing transformer faults, overcoming the limitations of 
traditional methods [90], and enhancing the resilience of power 
grid infrastructure by optimizing core backbone grid planning 
using a multi-objective 0–1 planning problem [89]. In addition, 
a cascade P-P-FOPID controller optimized by MPA for 
improving load frequency control in electric power systems was 
also designed [82]. Furthermore, MPA and AO have been 
combined for drop control in DC microgrids [80]. In electrical 
engineering and renewable energy, MPA has been applied to 
enhance the low-voltage ride-through (LVRT) capability of 
grid-connected photovoltaic (PV) systems [78] and to optimize 
the steam gasification process for converting palm oil waste into 
environmentally friendly energy [76]. MPA has been used in 
power electronics to improve the accuracy and efficiency of 
IGBT switching power loss estimation [84]. 

Comprehensively, the research application domain and tasks 
include real-world and engineering design [2, 20, 32, 45–47, 55, 
58, 70, 73, 77, 79, 85, 91, 95, 100–108], microgrid feature 
selection [7], antenna signals [39], selective harmonic 
elimination [62], power modulation [38], ligament deficiency 
detection [35], transistor’s design [36], breast cancer diagnosis 
[37], task scheduling in cloud computing [48], time series 
prediction [49], medical image fusion and analysis [26, 71, 72, 
74, 92], economic emission dispatch [34], wind renewable 
energy [60], mathematical computation [61, 87], image 
segmentation [30, 33, 109, 110], PV System and modelling [27, 
64, 65, 111], Optimal power flow [28], Biological Processes 
[50], Microgrid system [29], optimal reactive power dispatch 
[24], ANN training and classification [51, 67], pipeline leakage 
detection [52], arrhythmia classification [31], load frequency 
controller design [53], knowledge-based systems [42], data 
clustering [41], robot path planning [43, 81], battery aging 
mechanism [54], li-ion batteries [63], transformer oil breakdown 
[59], renewable energy system design [44], dynamic clustering 
simulation [112], marine stabilized platforms [113], joint 
regularization semi-supervised ELM [114], oil layer prediction 
[115], EEG/ERP signal [116], urban green space type [117], 
SVM optimization [118], solar-powered BLDC motor design 
[119], network reconfiguration and distributed generator 
allocation [121], wind and solar energy [122], DNA storage 
[123], white blood cell classification [124], wireless sensor 
network coverage [125], hybrid heartbeats [126], distribution 
system [127], task scheduling in cloud computing [128], shrimp 

freshness detection and classification [129], evolutionary 
computations [130], energy management system [131], hybrid 
active power filter [132], gene selection in cancer microarray 
classification [133], supercapacitor modelling [134], COVID-19 
detection modelling [135], wind power forecasting [136], 
thermal error modelling of electrical spindle [137], electrical 
power system & renewable energy [76, 78, 80, 82, 84, 89, 90, 
138], DC motors [139], feature selection in metabolomics [140], 
optimal power flow [141], fuel cell steady-state modelling 
[142], structural damage detection [143], production planning 
[144], wind energy systems [145], AI and Bioinformatics [75, 
94, 98, 99], Vehicular Edge Computing (VEC)[66, 83], 
passenger flow prediction [68], Internet of Things (IoT) and 
smart grid technology [93, 120], financial accounting 
information systems [69], agricultural and environmental 
monitoring [86], logistics and supply chain management [88], 
and water resource management and optimization algorithms 
[96, 97].  

VI. DISCUSSION 

Although the classic MPA proposed by study [1] was for a 
single objective and possessed some shortcomings, multi-
objective variants were later proposed and other subsequent 
improvements were made [133], [146–148]. It is worth noting 
that most of the improvements in the literature were based on 
enhancing MPA’s initial population, exploitation, exploration, 
and convergence. 

Firstly, opposition-based learning (OBL), a novel technique 
introduced by Tizhoosh, has been widely adopted by numerous 
researchers to improve the initial population quality of 
metaheuristic algorithms. The OBL has been used to produce a 
more widely distributed initial population for MPA. 

Furthermore, many scholars applied varying OBL 
approaches to tackle MPA’s limitations. These include 
integrating the OBL strategy with GWO into MPA [27], OBL 
and TL were also used to improve MPA and IMPA-ResNet50 
using a modified MPA algorithm for CNN hyperparameter 
selection to improve output performance for classification [31], 
enhancing the optimization capabilities of MPA with adaptive 
weights and OBL [30], and logistic OBL (LOBL) technique was 
incorporated in study [32] to enhance the generation of various 
precise solutions with multiple populations. In study [106], 
quasi-learning (Q-learning) was introduced to help MPA fully 
utilize the information generated by previous iterations and 
subsequent ones, QOBL was introduced to support an increase 
in population diversity, reducing the risk of convergence to 
inferior local optima. In addition, the quasi-opposition learning 
and spiral search strategies were incorporated into QRSS-MPA 
to improve it [123]. 

Additional strategies adopted in the literature to control 
MPA's exploration-exploitation search include chaotic maps' 
exploitation capabilities alone. Several chaotic maps can be 
implemented to improve the exploration-exploitation process 
[108]. The chaotic map can be applied to balance the trade-off 
between the exploration and exploitation phases. The self-
adaptive population method automatically adjusts the 
population size for each iteration. It helps to increase the 
convergence speed [101, 108]. In study [107], chaotic maps, 
opposition-based learning strategy (OBLS), and teaching-
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learning-based optimization (TLBO) with strong exploitation 
operators were combined. MPA was first modified to have 
MMPA that leverages chaotic maps and OBLS in the 
initialization stage to generate high-quality individuals. 
Parameter-free teaching-learning-based optimization method 
with a strong exploitation operator was incorporated into MPA 
(MMPA-TLBO), which effectively trades off between the 
exploitation and exploration process. Furthermore, [114] 
applied a multi-strategy approach involving three strategies to 
improve the performance of MPA. It included a chaotic 
opposition learning strategy to generate a high-quality initial 
population, adaptive inertia weights, adaptive step control 
factors to improve exploration, utilization, and convergence 
speed, and a neighborhood-dimensional learning strategy to 
maintain population diversity. 

The literature also used comprehensive learning (CL) to 
improve the performance of MPA. For instance, in study [34], 
the CL approach was used to improve search and transition 
within the exploration and exploitation of MPA. In study [42], 
MPA was integrated with the CL approach and the memory 
aspect of fractional calculus. 

Other approaches that were implemented to improve the 
performance of MPA include the use of Dynamic Foraging 
Strategy (DFS) to tackle sudden transition between the Levy 
Flight and Brownian Motion by study [46], Differential 
Evolution (DE) operator was integrated into the exploration face 
of the standard MPA by study [64] to escape local solution, and 
the use of teaching and learning mechanism was incorporated 
into MPA in study [47] where the teaching mechanism was 
integrated into the first phase of the MPA to promote its global 
search ability. In study [39], chaotic sequence parameters and an 
adaptive mechanism for velocity update were implemented to 
improve MPA's search exploitation and exploration. Also, group 
ranking of predator populations was proposed by study [48], 
incorporating a thorough learning approach implemented at 
stage 2 of MPA, and a variable step-size control approach. 

Furthermore, time-delay polynomials were applied to 
improve the model prediction performance [49]. A local 
escaping operator (LEO) was incorporated into classical MPA 
[20] to tackle poor exploitation and exploration. In study [24], 
exploration was improved by replacing the Brownian motion's 
random walk of search agents with a high-tailed Weibull 
distribution. The exploitation stage in phase 3 was also modified 
to use PSO or MPA based on probability. The study in [51] used 
a ranking-based mutation operator to identify the most 
performing search agent, enhancing exploitation capabilities and 
preventing premature convergence. 

In addition, [52] applied a strategy known as a “good point 
set” in the initial population stage for improvement by 
initializing a good point set and enhancing the convergence 
factor (CF) and Cauchy distribution. Learning automata (LA) 
was used in [41] to improve the artificial jellyfish search 
algorithm (JS) and MPA, reducing computational complexity 
while preserving their strengths. MPA is incorporated with a 
spiral complex path search strategy based on Archimedes’ spiral 
curve for perturbations in study [43], expanding the global 
exploration range and strengthening the algorithm's overall 
search capabilities. In study [55], HOGO was implemented 

which modifies the search transition in MPA to gradually shift 
from exploration to exploitation as iterations progress, utilizing 
the global best solution at each iteration. In study [56], MPA was 
enhanced by incorporating a linear flight strategy in the middle 
stage to enhance predator interaction. Reinforcement learning 
(RL) was also integrated into MPA [44] to improve global 
searchability. 

VII. FUTURE RESEARCH DIRECTION 

The application of the MPA is predominant in engineering 
and real-world design. However, researchers need to extend it to 
other disciplines and optimization problems. Additional variants 
of MPA, such as Constrained MPA (CMPA), Mixed-Integer 
MPA (MIMPA), and Parameter Less MPA (PMPA), warrant 
exploration, alongside dynamic applications like Mobile or 
dynamic MPA in robotics. Moreover, MPA shows potential in 
diverse areas like knowledge discovery, power systems, signal 
processing, DNA assembly, and medical diagnostics. However, 
variants like MpNMRA still face challenges such as potential 
entrapment in local optima and inefficient optimization of all 
test functions, necessitating improvements in control parameter 
selection and solution retention. In addition, the expansion of 
MPA into multi-objective problems, alongside enhanced 
stability and convergence analysis remains an area for future 
research. Other proposed methods, such as DAMPA and 
MTLMPA, also require comprehensive testing in various 
domains to assess their efficacy. Additionally, the scalability of 
dataset testing for algorithms like IMPA-ResNet50 and 
exploration of their performance in regression tasks, 
computational efficiency enhancements, and generalization to 
different CNN configurations are suggested. Further research 
efforts should aim to integrate MPA with deep learning and 
machine learning techniques, explore its potential in renewable 
energy systems – with emphasis on solar radiation forecasting, 
refine its application in real-world scenarios, and investigate its 
hybridization with other metaheuristic methods for improved 
optimization outcomes. 

VIII. CONCLUSION 

This systematic review of MPA presents a wide panorama 
concerning its theoretical formulation, practical 
implementations, and novel improvements. Current research 
synthesizes studies undertaken during the last five years that 
underline, among others, the flexibility and efficiency of the 
MPA approach as a metaheuristic optimization method but with 
peculiar efficacy in handling complex, high-dimensional, and 
multimodal optimization problems. From its principle of 
inspiration to its adaptive nature, MPA has always shown robust 
performance in diverse fields, ranging from real-world 
engineering design, image segmentation, and PV system 
modeling, indicating its wide acceptance and high applications. 
It also identifies the critical design parameters and their 
influence on the convergence and performance of the algorithm, 
thus contributing to the deeper theoretical understanding of the 
method. 

This research significantly contributes to the optimization 
literature by systematically categorizing MPA variants based on 
their core improvements, including parameter tuning, 
hybridization, and other modification mechanisms. The review 
delineates the strengths and limitations of each approach by 
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comparing these variants across benchmark problems, thus 
providing a roadmap for future research. We also find gaps in 
the current literature, such as a need for more rigorous 
theoretical analysis regarding convergence properties and 
scalability in dynamic environments. These insights pave the 
way for developing more efficient, adaptive, and robust MPA 
variants that can address emerging challenges in optimization. 

MPA provides several practical benefits over other 
optimization algorithms, including ease of implementation and 
minimal parameter-tuning requirements to escape local optima 
using a form of collective intelligence. Computationally 
efficient with adaptability toward real-time application, such as 
resource allocation and feature selection control system 
optimization is another added area of MPA. Besides, the ease 
with which the algorithm can be combined with other 
optimization techniques has favored its use in hybrid systems 
and further extended the usefulness of the MPA in solving 
complex, real-world problems. This review, therefore, 
highlights that the simplicity and flexibility of MPA make it a 
useful tool for practitioners from all walks of life in addressing 
optimization problems, both at the academic and applied levels. 

This systematic review, therefore, underlines the continuous 
relevance and transformational potential of MPA as an 
optimization technique. By connecting the dots between 
theoretical developments and practical applications, it provides 
a comprehensive overview of the algorithm's capabilities and 
limitations, thus laying the ground for future innovations in the 
field. We expect this work to be a reference point for researchers 
and practitioners alike, encouraging new contributions that tap 
into MPA's unique strengths to solve ever more complex 
optimization problems.  
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