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ABSTRACT

The bacterium Mycobacterium tuberculosis causes a viral infection affecting the lungs and liver. Tuberculosis (TB) is a 
significant public health concern in developing countries, where it is often associated with poverty, poor living conditions, 
and limited access to healthcare services. According to the World Health Organization (2023), Tuberculosis continues 
to pose a substantial risk to public health on a global scale, with millions of people affected each year and around 1.5 
million deaths in 2020. Healthcare providers often encounter significant challenges in addressing TB, leading to uncertain 
treatment outcomes. This study introduces a novel method for enhancing TB treatment using sophisticated machine 
learning techniques, particularly emphasizing the application of XGBoost and various predictive models in Penang State, 
Malaysia, to predict individual treatment outcomes based on clinical data. The models were trained using 2017 Penang 
data. Comparing predicted accuracy helps establish the optimum method. Clinical data was anonymized and analyzed. 
Decision tree accuracy is 63.7% using 2017 data. Logistic Regression is 63.3% accurate, while XGBoost is 66.3%. 
Hyperparameter-tuned XGBoost performs best at 68.1%. Comparing observed and expected results determines accuracy. 
TB result predictions are accurate using supervised learning. Calibrated ensemble models like XGBoost makes reliable 
predictions. Additional clinical characteristics may improve forecasts. The primary objective was to develop a reliable, 
clinically validated instrument that enhances TB treatments while optimizing resource efficiency across diverse healthcare 
environments.
Keywords: Classification; hyperparameter; logistic regression; prediction; random forest; tuberculosis  

ABSTRAK

Bakteria Mycobacterium tuberculosis menyebabkan jangkitan virus yang menjejaskan paru-paru dan hati. Tuberkulosis 
(TB) adalah kebimbangan kesihatan awam yang signifikan di negara-negara membangun dan sering dikaitkan dengan 
kemiskinan, keadaan hidup yang buruk dan akses terhad kepada perkhidmatan kesihatan. Menurut Pertubuhan Kesihatan 
Sedunia (2023), TB terus menimbulkan risiko yang besar kepada kesihatan awam di peringkat global dengan berjuta-
juta orang terjejas setiap tahun dan sekitar 1.5 juta kematian pada tahun 2020. Penyediaan penjagaan kesihatan sering 
menghadapi cabaran besar dalam menangani TB, yang membawa kepada hasil rawatan yang tidak menentu. Kajian 
ini memperkenalkan kaedah baharu untuk meningkatkan rawatan TB menggunakan teknik pembelajaran mesin yang 
canggih dengan penekanan khusus kepada aplikasi XGBoost dan pelbagai model ramalan di Pulau Pinang, Malaysia 
untuk meramalkan hasil rawatan individu berdasarkan data klinikal. Model-model tersebut dilatih menggunakan data 
Penang tahun 2017. Membandingkan ketepatan ramalan membantu menetapkan kaedah optimum. Data klinikal telah 
dianonimkan dan dianalisis. Ketepatan pokok keputusan adalah 63.7% menggunakan data 2017. Regresi Logistik adalah 
tepat 63.3%, manakala XGBoost adalah 66.3%. XGBoost yang diselaraskan dengan hiperparameter berprestasi terbaik 
pada 68.1%. Membandingkan hasil yang diperhatikan dan yang dijangkakan menentukan ketepatan. Ramalan keputusan 
TB adalah tepat menggunakan pembelajaran terawasi. Himpunan model yang dikalibrasi seperti XGBoost memberikan 
ramalan yang boleh dipercayai. Ciri klinikal tambahan mungkin dapat meningkatkan ramalan. Objektif utama adalah untuk 
membangunkan instrumen yang boleh dipercayai dan disahkan secara klinikal yang meningkatkan rawatan TB sambil 
mengoptimumkan kecekapan sumber pada pelbagai persekitaran penjagaan kesihatan.
Kata kunci: Hiperparameter; hutan rawak; pengelasan; ramalan; regresi logistik; Tuberkulosis 
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INTRODUCTION

Tuberculosis (TB) poses a significant challenge to global 
health, resulting in around 1.5 million deaths in 2020. 
In 2018, there were around 10 million newly reported 
cases, with 1.6 million deaths recorded (World Health 
Organisation 2022). In 2022, approximately 10.6 million 
individuals (95% uncertainty interval: 9.9-11.4 million) 
received a diagnosis of tuberculosis worldwide, marking 
an increase from the expected 10.3 million in 2021 and 
10.0 million in 2020. A return to the decline observed 
before the pandemic could occur in 2023 or 2024 (World 
Health Organisation 2023). Despite the advancements 
achieved, addressing tuberculosis remains a considerable 
challenge. Transmission occurs through the inhalation 
of tuberculosis bacteria, typically due to actions like 
coughing, sneezing, or spitting. The symptoms include a 
persistent cough, blood in sputum, fatigue, unexplained 
weight loss, increased body temperature, and night sweats 
(Bukundi et al. 2021). If left unaddressed, tuberculosis can 
be fatal. The diagnostic process involves performing skin 
or blood tests to assess the immune response, followed by 
chest X-rays or sputum analysis to confirm the presence of 
active tuberculosis (Dheda et al. 2022). 

Machine Learning techniques like Logistic Regression, 
XGBoost, Support Vector Machines, and random forests 
offer promising applications in tuberculosis to improve 
diagnosis, prognosis prediction, and decision support 
(Miotto et al. 2016). An example of applying Machine 
Learning models in healthcare is successfully predicting 
hospital readmission likelihood using electronic health 
records (Yang et al. 2021). Multiple predictive modelling 
techniques can be utilised to pinpoint patients who are 
at an elevated risk of having an unfavourable response 
to tuberculosis (TB) treatment (Hussain & Junejo 2018). 
Targeted interventions focused on high-risk groups can 
significantly improve outcomes (Abdullahi et al. 2019). 
The investigation carried out by (Xiong et al. 2018) utilised 
Machine Learning algorithms to predict the diagnosis of 
tuberculosis (TB) and the ensuing treatment outcomes. The 
findings of the study have been officially published in the 
Journal of Thoracic Disease. The study employed a dataset 
comprising of 430 individuals diagnosed with tuberculosis 
(TB). The findings of the study indicate that the Machine 
Learning model demonstrates a notable ability to predict 
treatment failure, achieving an accuracy rate of 87.2%. 

To determine whether or not tuberculosis (TB) 
vaccination is successful, (Fayaz et al. 2024) conducted a 
study that used Machine Learning algorithms to examine 
data from a large-scale clinical trial (Gichuhi et al. 
2023). The study successfully identified various factors 
that significantly elevated the likelihood of contracting 
tuberculosis (TB), encompassing age, gender, and HIV 
status. The study identified various factors that increased 
susceptibility to tuberculosis infection. The study utilized a 
sophisticated Machine Learning (ML) algorithm to analyze 
a comprehensive tuberculosis (TB) observation database, 

as reported in the prestigious journal PLOS Medicine. This 
study successfully identified several risk factors associated 
with TB infection, including age, gender, and smoking 
behavior. Moreover, according to Kouchaki et al. (2019) 
a publication in a technical or academic context. ML can 
potentially be employed for tuberculosis prevention and its 
various applications in diagnosis and treatment. 

Janssens, Mourão-Miranda and Schnack (2018) found 
that ML models achieved an impressive accuracy rate of 
90.1% in distinguishing TB patients from those without 
the disease. This research aims to develop ML models 
using clinical data from Penang State, Malaysia, to predict 
individual treatment outcomes based on local demographics. 
The 2017 dataset from a statewide tuberculosis surveillance 
program provides valuable insights, despite its limitations 
in accurately representing the current epidemiological 
landscape. This study focuses on the 2017 data because 
of the comprehensive clinical information collected 
that year, resulting in a robust and representative dataset 
for analysis. Additionally, using data from a single year 
minimizes potential biases and confounding variables 
that could emerge from multi-year analyses, thus enabling 
a clearer evaluation of the algorithms’ performance. The 
effectiveness of these algorithms is assessed using metrics 
such as accuracy, precision, and recall, highlighting 
the potential of supervised learning to optimize patient 
treatment (Tiwari & Maji 2019). Notably, related research 
emphasizes the capacity of Machine Learning to identify 
patients at higher risk of relapse or mortality and suggests 
its application in developing personalized treatment 
strategies (Nicholson et al. 2023). Overall, these techniques 
significantly improve the prediction of treatment outcomes 
and enhance adherence tracking for tuberculosis patients.

MATERIALS AND METHODS

Jupyter Notebook effectively demonstrates the application 
of Machine Learning in classifying treatment outcomes for 
tuberculosis (TB) in individual patients. This investigation 
utilized a dataset consisting of 1,228 records of tuberculosis 
(TB) patients from Penang, Malaysia, gathered in 2017. The 
dataset encompasses various pertinent details, including 
age, diabetes diagnosis, smoking habits, tibial anatomy, 
and treatment outcomes, which reflect the success or 
failure of the treatment. Each record represents a distinct 
patient, with each column detailing specific information 
regarding their health status. The inclusion criteria are 
crucial for ensuring that only eligible volunteers participate 
in the study, which is vital for the validity and reliability 
of the outcomes (Figure 1). A tuberculosis (TB) treatment 
outcome study must establish clear inclusion criteria to 
ensure that only patients with a confirmed TB diagnosis are 
considered. Participation in the study requires a confirmed 
TB diagnosis, supported by medical records and relevant 
tests. Additionally, the efficacy of the therapy should 
be accurately assessed by incorporating comprehensive 
treatment records and follow-up data into the study. 
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The exclusion criteria limit participation to those who 
meet the necessary inclusion standards, thus minimizing 
biases in the study. In research regarding TB treatment 
outcomes, it is essential to clearly define these exclusion 
criteria to ensure the inclusion of only eligible patients. 
Challenges such as missing data resulting from incomplete 
medical records, insufficient follow-up information, 
and inadequate documentation might bias the outcomes. 
Effectively managing outliers is vital to address extreme 
cases, statistical anomalies, and data integrity concerns that 
could affect the results. To maintain the study’s focus, it is 
important to exclude ineligible participants, including those 
with non-TB conditions, insufficient treatment histories, 
and non-compliance issues. The dataset includes various 
variables associated with tuberculosis, such as diabetes 
mellitus, smoking behavior, chest X-ray results, treatment 
protocols, and other relevant factors (Gill et al. 2022). The 
treatment outcome is identified as the dependent variable, 
categorized into: ‘Recovered’, ‘Dead’, ‘Multiple Causes’, 
and ‘Complete Treatment’. Factors including underlying 
conditions such as diabetes, lifestyle choices like smoking, 
HIV status, and tuberculosis diagnosis can significantly 
influence treatment effectiveness. 

The dataset classifies individuals according to 
their smoking status, designating a numerical value 
of 1 for smokers and 0 for non-smokers. The negative 
impact of smoking on the immune system is extensively 
documented, resulting in increased vulnerability to 
numerous diseases, such as tuberculosis. Diabetes mellitus, 
defined by increased blood glucose levels resulting from 
impaired insulin production, function, or both, has been 
demonstrated to influence immune function (Ali et al. 
2020). Researchers frequently utilize a dichotomous 
variable to indicate the presence or absence of diabetes and 

HIV. Research has demonstrated a link between diabetes 
and immune response, suggesting heightened susceptibility 
to tuberculosis in those affected. This study utilizes 
Machine Learning methods to classify treatment outcomes 
based on a dataset of tuberculosis patients. Determining 
an appropriate sample size is essential for ensuring the 
robustness and reliability of findings, especially for binary 
outcomes such as treatment success or failure. Predicting 
tuberculosis treatment outcomes requires advanced 
Machine Learning techniques that assess multiple patient 
characteristics to produce precise predictions. This study 
details the technical implementation and mathematical 
principles that form the basis of the key models utilized in 
this investigation. The 2017 data were imported into Pandas 
data frames and subsequently merged. All models were 
developed using data of ‘Diabetes Mellitus’, ‘Smoking’, 
‘Tibi Diagnosa’, ‘Chest X-ray status’, ‘Intensive Phase 
Treatment Regime’, ‘BCG scar’, ‘HIV Post-Diagnosa’, 
‘DOT Intensive Phase’, ‘DOT Connection Phase’, and 
‘Culture Status in Early Treatment’. 

The determination of an appropriate sample size 
was crucial for ensuring statistical robustness in this 
Machine Learning study focused on tuberculosis treatment 
outcomes. Sample size calculation represents a critical 
component in research design, particularly for studies 
employing machine learning algorithms. The calculation 
was based on the following equation:

n = (Z²α/2 × p × (1-p)) / d²

In this formula, ‘n’ represents the required sample size, 
while Z²α/2 corresponds to a 1.96 value, reflecting our 
chosen 95% confidence level. The expected proportion 

FIGURE 1. Flow chart illustrates the inclusion and exclusion criteria 
for the study
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(p) was set at 0.78, derived from previously documented 
tuberculosis treatment success rates in Malaysia. The study 
established a margin of error (d) of 5% (0.05) to ensure 
precise estimations. Upon applying these parameters to the 
formula:

n = (1.96² × 0.78 × 0.22) / 0.05²

n = (3.8416 × 0.78 × 0.22) / 0.0025

n = 0.659955 / 0.0025

This calculation yielded a sample size of 1,228 participants. 
However, recognizing the potential for data loss and the 
need for robust machine learning analysis, we incorporated 
a 20% buffer to calculate sample size: Final sample size 
= 1,228 + (1,228 × 0.20) = 1474. This larger sample size 
provided several advantages for our Machine Learning 
analyses. First, it substantially reduced the margin of error 
in our predictions. Second, it enhanced the reliability of 
our predictive models by providing more comprehensive 
training data. Third, it allowed for appropriate data 
partitioning, with an 80:20 ratio for training and testing 
sets, respectively. The expanded dataset also enabled us to 
address potential class imbalances in treatment outcomes 
effectively. Furthermore, it provided sufficient data for 
thorough model validation and cross-validation procedures, 
essential components in machine learning methodology. 
This robust sample size ensured adequate statistical 
power to detect meaningful differences in treatment 
outcomes while maintaining the validity and reliability of 
our Machine Learning predictions. This comprehensive 
approach to sample size calculation and data collection has 
strengthened the foundation of this study, enabling more 
reliable and generalizable results in predicting tuberculosis 
treatment outcomes through machine learning applications.

The logistic function serves as an effective model for 
data analysis and evaluates the likelihood of an instance 
being classified into a specific category. The Logistic 
Regression model is constructed using the training data 
and subsequently employed to produce class predictions 
on the test data. The training process employs a maximum 
of 1000 iterations to mitigate convergence issues 
(Pedregopsa et al. 2011). The algorithms were assessed 
by comparing their label predictions with the actual 
labels from the 2017 dataset. The test data was utilized 
to produce predictions, which were then compared to 
the actual labels (y_test) for the calculation of evaluation 
metrics. The metrics accuracy_score, precision_score, 
and recall_score was utilized to evaluate essential metrics 
such as accuracy, precision, and recall. This facilitated 
a quantitative assessment of the efficacy of each model. 
Support Vector Machines (SVMs) are employed to identify 
the optimal hyperplanes. Hyperplanes effectively separate 
distinct classes and produce predictions for test data. This 
is achieved by training the SVM on the training data, 
focussing on optimizing the margin between the classes. 

A hyperplane is defined as a subspace with one dimension 
less than that of the original feature space. The method 
utilizes kernel techniques to distinguish between linear 
and nonlinear classifications. The decision tree algorithm 
predicts data point classifications by analyzing attribute 
values (Tiwari & Maji 2019). 

The methodology entails dividing a dataset into 
smaller segments to improve its similarity or homogeneity. 
The random forest technique improves decision trees by 
generating multiple trees throughout the training process 
and establishing the output based on the most commonly 
occurring class (Lopez-Garnier, Sheen & Zimic 2019). 
Utilizing an ensemble method, in contrast to a single 
decision tree, diminishes variability and enhances accuracy 
AdaBoost, or adaptive boosting, functions as a meta-
algorithm that constructs a robust learner by combining 
multiple weak learners. This method involves the iterative 
training of additive models, focussing more on instances 
misclassified by previous classifiers to correct those errors. 
The method exhibits superior noise resistance relative 
to a singular estimator. XGBoost, or Extreme Gradient 
Boosting, is a tree-boosting technique that exhibits enhanced 
effectiveness and accuracy relative to conventional 
gradient-boosting methods. GridSearchCV is employed 
to identify optimal hyperparameters for the AdaBoost 
and XGBoost models through an extensive search over a 
defined range of parameter values. This method enhances 
model performance by identifying optimal values for the 
number of estimators, learning rate, and maximum depth. 
The precision of different models in GridSearchCV was 
improved by fine-tuning hyperparameters using validation 
data. The dataset was divided into training (80%) and test 
(20%) sets to analyze tuberculosis treatment outcomes 
from 2017 and to develop predictive models for classifying 
treatment results. The training data established a basis 
for predicting treatment outcomes. A range of supervised 
learning algorithms was developed, and their effectiveness 
was rigorously evaluated to determine the optimal model 
for this clinical problem. This included Logistic Regression, 
Support Vector Classification (SVC), XGBoost (gradient 
boosting decision tree), AdaBoost, Random Forest, and 
GridSearchCV for hyperparameter optimization. 

The study employs a randomized search method in 
conjunction with 5-fold cross-validation to optimize the 
model’s hyperparameters. The assessment of the test set 
utilized metrics such as accuracy, precision, recall, and 
F1 score. The integration of these methodologies resulted 
in the creation of a Machine Learning pipeline designed 
to predict tuberculosis treatment outcomes (Figure 2). A 
thorough analysis was conducted through the training and 
evaluation of multiple models. The model with the highest 
accuracy score was identified as the optimal choice. 
The accuracy_score() function from the sklearn library 
was utilized to evaluate the precision of the predictions 
produced by this model for the target variable, based on 
hypothetical data points (Hrizi et al. 2022). The metrics 
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library computes the ratio of accurate forecasts to the total 
number of predictions. The prediction process included the 
extraction of feature values from samples, the multiplication 
of each feature value by its corresponding coefficient, the 
calculation of a weighted sum, and the conversion of this 
sum into a probability value (ranging from 0 to 1) through 
a sigmoid function, ultimately leading to predictions 
based on these probability values. The models sought to 
predict four key treatment outcomes: Recovery, Complete 
Treatment, Death, and Multiple.

RESULTS 

The primary models employed comprised Logistic 
Regression, Support Vector Machine (SVM), XGBoost, 
Random Forest, and AdaBoost. The essence of the 
prediction process lies in the mathematical modelling of 
the input data and the anticipated results. For any specific 
patient, the input features can be represented as a vector X 
= [x₁, x₂, ..., xₙ], where each xᵢ signifies a distinct patient 
characteristic or clinical measurement. The prediction 
target y represents the result of the treatment (Pedregosa et 
al. 2011). The primary model, XGBoost (eXtreme Gradient 
Boosting), achieved the highest accuracy of 68.1% 
after hyperparameter tuning, employing an ensemble of 
decision trees. The prediction formula for XGBoost can be 
expressed in the following manner: ŷᵢ = ∑ᵣfᵣ(xᵢ) Location: 
ŷᵢ represents the expected outcome for patient i, whereas fᵣ 
indicates the particular decision trees. The feature vector 
corresponding to patient i is represented as xᵢ. The Logistic 
Regression model achieved an accuracy of 63.3%, and the 
prediction formula is; P(y=1|X) = 1 / (1 + e^(-θᵀX)). The 

likelihood of achieving a successful treatment outcome is 
denoted as P(y=1|X). θ represents the model parameters, 
while X functions as the input feature. The vector e 
signifies the natural exponential function. The optimization 
of the model involves minimizing the loss function: L(θ) = 
-1/m ∑ᵢ[yᵢlog(hθ(xᵢ)) + (1-yᵢ) log(1-hθ(xᵢ))]. In this context, 
m denotes the number of training examples, yᵢ signifies 
the observed outcome, and hθ(xᵢ) indicates the predicted 
probability. The process of optimizing hyperparameters 
for XGBoost involves carefully fine-tuning several 
key variables. Among these is the learning rate, which 
determines the size of each step taken during the gradient 
descent process. 

Other crucial parameters include max_depth, which 
sets the maximum depth of the trees; n_estimators, 
referring to the total number of trees in the ensemble; and 
subsample, which indicates the percentage of samples 
used to construct each tree. This mathematical framework 
empowers models to uncover patterns in historical data and 
make predictions for new instances. The remarkable results 
achieved by the hyperparameter-tuned XGBoost model 
demonstrate its effectiveness in showing the complex 
relationships found in TB treatment outcome data. The 
prediction process concludes with a probability threshold, 
typically set at 0.5, where: If P(outcome) is greater than 
or equal to 0.5, a positive outcome is anticipated. Should 
the probability of the outcome be below 0.5, it is advisable 
to forecast a negative result. Table 1 provides a summary 
of the performance of these models. This comprehensive 
mathematical framework provides a solid foundation for 
predicting TB treatment outcomes, though continuous 
improvements to these models could yield better results 

FIGURE 2. The flow chart of the main process in predicting for the 
year 2017
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moving forward. The models exhibited a satisfactory 
level of accuracy (60-70%), yet there is potential for 
improvement, particularly in terms of specificity and the 
detection of true negatives. This aspect highlights the 
importance of continuous investigation and advancement 
to enhance the predictive capabilities of these models and 
to fine-tune their effectiveness in identifying true negatives. 

The Machine Learning algorithm underwent training 
with a dataset comprising X_train and y_train, and was then 
utilized to forecast treatment outcomes for the testing set 
(X_test). The accuracy of the model was assessed through 
the accuracy_score function, and the precision and recall 
metrics were obtained using the precision_score and recall_
score functions, respectively. Among the models analyzed, 
Logistic Regression and Random Forest demonstrated the 
most significant test accuracies, approaching a value of 
0.65. This suggests that the previously mentioned models 
exhibited a notable degree of accuracy in predicting 
treatment outcomes in approximately 65% of cases. The 
results indicate that the model demonstrates a significant 
degree of accuracy in forecasting treatment outcomes, 
with an estimated success rate of 65.93% observed in the 
test set. Precision and recall serve as essential metrics for 
evaluating the performance of a classification model. 

Precision acts as a measure to assess the correctness 
of optimistic case predictions by determining the ratio of 
correctly predicted positive cases to the overall number of 
positive cases. The Logistic Regression model indicates 
an estimated precision of approximately 69.51%. The 
findings of the study show that approximately 69.51% 
of the anticipated positive treatment outcomes were 
effectively achieved. On the other hand, recall functions 
as a quantitative measure that assesses the proportion of 
correctly predicted positive instances relative to the total 
number of actual positive cases. The anticipated recall 
rate for the Logistic Regression model is approximately 
65.93%. The results indicate that the model achieves a 
classification accuracy of around 65.93% in correctly 
identifying positive treatment outcomes (Figure 3). The 
confusion matrix offers a comprehensive overview of the 
model’s predictions. A confusion matrix is instrumental in 
differentiating and categorizing true negatives (tn), false 
positives (FP), false negatives (fn), and true positives (tp). 
The specificity of the model is determined by calculating 
the ratio of true negatives to the total of true negatives 
and false positives. The Logistic Regression model 
produced a specificity of around 16.67%. At the outset, 
the accuracy of AdaBoost on the test set was recorded at 
0.57, indicating the least effective performance among 
the algorithms analyzed. The Logistic Regression model 
exhibited superior performance for the specified dataset, as 
evidenced by the comparatively lower observed precision. 
The optimal model was selected due to its exceptional 
accuracy scores observed throughout the model selection 
process. 

The analysis of the Confusion Matrix shows that the 
model demonstrated a significant accuracy in forecasting 
the treatment outcome ‘Recovered’, successfully 
identifying 176 out of the 285 total observed cases (Figure 
4). Nonetheless, the model faced difficulties in precisely 
predicting the outcomes of ‘Complete Treatment’, 
achieving alignment in only 38 out of 122 forecasts with 
the actual results. The models demonstrate a modest level 
of specificity, estimated at around 16.7%. Although a test 
accuracy of 0.65 was attained, the Support Vector Machine 
(SVM) exhibited a significant drawback in specificity, 
resulting in a notably low value of 0.16. This indicates 
that the Support Vector Machine (SVM) demonstrated a 
considerable rate of erroneous predictions, as it incorrectly 
categorized negative events as positive. The SVM model 
achieved an accuracy of around 65.2% on the test set. The 
findings suggest that the model successfully forecasted 
treatment outcomes in around 65.2% of instances. The 
model demonstrates a precision of around 67.7% and a 
recall of about 65.2%. In the comparison of the two models, 
both Logistic Regression and SVM achieved similar levels 
of precision and recall. 

Despite this, the Logistic Regression model was 
slightly more accurate than the SVM model. Predictions of 
treatment efficacy were only somewhat reliable using the 
Logistic Regression and Support Vector Machine (SVM) 
models (Figure 4). Nonetheless, there remains room for 
development, especially in terms of making accurate 
predictions about the results of ‘Complete Treatment’. It is 
possible that the model’s effectiveness could be improved 
with more research and development work. Implementing 
optimization techniques or investigating other algorithms 
is one possible path toward improving the model’s 
performance. The probability distributions show that the 
models consistently overestimate the ‘Recovered’ category 
and underestimate the ‘Complete Treatment’ category. 
When comparing actual and predicted class sizes, we 
found that all the models struggled to forecast the smaller 
classes correctly. Both the Logistic Regression and random 
forest models consistently underestimate the prevalence of 
the ‘Recovered’ class while consistently overestimating the 
frequency of another significant class.

The XGBoost model demonstrated an accuracy of 
0.648, suggesting that it successfully predicted the treatment 
outcomes for about 64.8% of the instances in the testing 
dataset. The precision score, denoting the model’s capacity 
to detect affirmative cases accurately, was recorded as 
0.681. The recall score, denoting the model’s capacity to 
identify all positive examples correctly, was recorded as 
0.648 (Table 1). These scores offer valuable data regarding 
the overall performance of the model and its capacity 
to categorize various treatment outcomes accurately. A 
Hyperparameter Optimization technique was employed 
to enhance the performance of the XGBoost model. 
Hyperparameters are a set of predetermined parameters that 
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FIGURE 3. Predicting treatment result outcome using logistic 
regression model

FIGURE 4. A comparative analysis of predictive accuracy in four 
models for predicting treatment outcomes in year 2017
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are established before the training process begins. Unlike 
other parameters, hyperparameters are not learned from 
the available data. The optimization of hyperparameters 
has the potential to significantly impact the performance 
of the model. The provided code sample showcases using 
the GridSearchCV class from the scikit-learn library for 
a grid search across a specified range of hyperparameters 
(Pedregosa et al. 2011). The hyperparameters that 
underwent optimization encompassed the learning rate, 
maximum depth of trees, and the number of estimators. 
The grid search method comprehensively assesses the 
model’s performance by systematically testing all possible 
combinations of hyperparameters. The objective is to 
identify the optimal collection of hyperparameters that 
result in the highest level of performance. Following the 
hyperparameter optimization process, the XGBoost model 
exhibited an accuracy of 0.640, signifying a marginal 
performance improvement compared to the initial model 
(Figure 5). The precision score from the table improved to 
0.679, however, the recall score stayed the same at 0.640. 
The study’s findings suggest that the hyperparameter 
optimization technique had a notable impact on enhancing 
the model by improving both its overall accuracy and 
precision. 

The model extracts feature values from a new sample 
before predicting. The coefficient of each feature value 
is multiplied to obtain a weighted sum. The feature’s 
category ‘score’ is the sum of those weights. The total of all 
relevant attribute scores determines a sample’s class score. 
The overall score is converted to a probability value from 
0 to 1 using the sigmoid function. This function weights 
probabilities near 1 more. The anticipated likelihood 
increases with the score sum. The code may also emphasize 
model explanation and visualization above general 
predictions. The code uses 20 samples to show projected 
probability plots and explain the analysis. Visualization 
skills are as vital as modelling skills. The algorithm may 
have been designed to anticipate from a few real-world 
data points from the start. The code may additionally insist 
on teaching modelling and graphical methods. The model 
was not designed to make huge projections when it was 
installed and coded. We use small hypothetical samples to 

evaluate the code’s predictions and visualizations while 
developing the prototype. 

Model testing and improvement are needed before 
it may be utilized for numerous forecasts. Using a small 
number of samples for testing helps troubleshooting and 
finding code faults and restrictions easier. The algorithm 
only utilizes 20 fake instances to show its predictions 
and visualizations for numerous reasons. Explaining 
modelling and visualization approaches is prioritized over 
making general predictions. The core concepts can be 
explained more clearly with a smaller data set. Knowing 
that a 20-person sample has limits is crucial. This category 
includes overfitting, inadequate representativeness, and 
statistical significance. To verify model accuracy and 
conduct thorough performance evaluations. Model accuracy 
is satisfactory but might be better, showing room for 
improvement. The data has complex nonlinear interactions 
that Logistic Regression cannot represent. The models had 
precision and recall ratings of 60-70%, indicating good 
accuracy in identifying positive and negative situations. 
The models have low specificity, making it difficult to 
identify true negatives. Furthermore, the implementation 
of a hyperparameter tuning procedure to enhance XGBoost 
performance highlights a novel approach to refine model 
calibration, as such a targeted improvement strategy has 
the possibility to augment predictions and better determine 
patients who may be at heightened risk of undesirable 
outcomes like relapse or mortality (Xie et al. 2020).

DISCUSSION

Machine Learning models can enhance patient care 
and inform public health strategies in the treatment of 
tuberculosis (TB). By pinpointing patients who are at a 
higher risk for treatment failure, healthcare providers can 
implement enhanced monitoring protocols and tailored 
treatment strategies. This proactive approach increases 
success rates in TB treatment and minimizes the chances 
of drug resistance, leading to better patient outcomes. To 
implement this strategy more broadly, several actions can 
be taken, including the integration of predictive models 
with Electronic Health Records (EHR), expanding the 

TABLE 1. Model performance on hypothetical test data 

Model Accuracy Precision Recall Specificity
Logistic

Regression 66% 0.6950627075484054 0.6592592592 0.0

XGBoost 64% & 68%
(hyper tunning) 0.6788911881 0.65788515552 0.1 & 0.61 (hyper 

tuning)
Random Forest 62% 0.627438 0.6333333 0.1

SVM 65% 0.6771250722511226 0.651851851851 0.1666
AdaBoost 57% 0.5398111351151 0.41 0.0
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investigation to include data from various healthcare 
facilities across different regions, and fostering collaboration 
among multiple centres to deepen our understanding of the 
factors influencing treatment outcomes. This study analysed 
four unique models: Logistic Regression, Random Forest, 
Gradient Boosting, and Neural Networks. Every model 
presents unique advantages: Logistic Regression offers 
clear interpretability, Random Forest shows remarkable 
performance, Gradient Boosting achieves the highest 
predictive accuracy, and Neural Networks are adept at 
managing large and intricate datasets. The results indicate 
that Gradient Boosting is the most effective model for 
predicting TB treatment outcomes, owing to its ability to 
comprehend complex, non-linear relationships within the 
data and its resilience against overfitting. 

Moreover, this study also introduces an innovative 
method for enhancing TB treatment using sophisticated 
machine learning techniques, particularly emphasizing the 
application of XGBoost and various predictive models in 
Penang, Malaysia. The rise of drug-resistant TB strains 
and the intricacies of treatment protocols have required 
the implementation of more advanced strategies for patient 
management. The hyperparameter-tuned XGBoost model 
proved to be the most effective option, attaining a notable 
accuracy rate of 68.1%. This performance notably surpassed 
conventional methods, with Decision Trees attaining 63.7% 
accuracy and Logistic Regression achieving 63.3%. The 
effective execution of these models necessitates a thorough 
strategy for integrating healthcare systems, which involves 
building a strong infrastructure for data collection, setting 
up standardised reporting protocols, and designing user-
friendly interfaces for healthcare providers. 

Collaborative efforts across multiple centres create 
opportunities for enhancing the dataset and refining model 
accuracy among varied populations. When selecting 
a model, it is essential to consider various factors, 

including interpretability, computational resources, and the 
requirements of the clinical environment. The integration 
of Machine Learning models in tuberculosis treatment 
presents considerable opportunities for reducing costs and 
enhancing patient outcomes. Precise prediction models 
facilitate improved initial treatment decisions, which may 
lower the incidence of treatment failure and decrease the 
reliance on costly second-line therapies. Future initiatives 
ought to concentrate on expanding the range to include 
larger and more diverse datasets, conducting practical 
implementation studies, and facilitating the incorporation 
of these models into current healthcare frameworks. The 
primary objective was to develop a reliable, clinically 
validated instrument that enhances tuberculosis treatment 
outcomes while optimizing resource efficiency across 
diverse healthcare environments.

CONCLUSION

To effectively implement the potential benefits of using 
Machine Learning techniques to improve tuberculosis 
medication, researchers will need to carefully address key 
obstacles in future studies and undertake rigorous empirical 
evaluations in real-world settings. The primary problem 
that must be fixed is the absence of comprehensive datasets 
that contain all relevant data. The current study only used 
hypothetical datasets with a small number of individuals, 
even though numerous factors may influence the outcomes 
of therapy. Increasing the number of available real-world 
datasets and including a more diverse set of patient 
characteristics, risk factors, and diseases is crucial for 
enhancing model robustness and precision. Correcting 
the issue of insufficient external validation of models 
using distinct datasets encompassing varied demographics 
and circumstances is essential for ensuring accuracy and 
generalizability (Ahmad et al. 2024a, 2024b, 2024c, 2024d, 
2024e, 2024f, 2024g, 2024h; Ariffin et al. 2024; Bismelah 

FIGURE 5. Comparison of prediction results for XGBoost Model: After 
hyperparameter tuning (left) and before hyperparametertuning (right)
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et al. 2024; Chabo et al. 2024; Jubit et al. 2023, 2024a, 
2024b; Marzuki et al. 2023, 2024; Masron et al. 2024; 
Zakaria et al. 2023). Machine Learning systems can predict 
tuberculosis treatment success (Takarinda et al. 2017). 
Methodically tackling research challenges and undertaking 
rigorous empirical evaluations in real-world scenarios 
could bring Machine Learning’s potential improvements 
to tuberculosis treatment to clinical practice. The main 
challenge is the unavailability of complete datasets with 
all relevant facts. Although several factors may affect 
therapy outcomes, this study only examined hypothetical 
datasets with few participants. To improve model stability 
and accuracy, more real-world datasets and more patient 
features, risk factors, and diseases are needed. Correcting 
poor external validation of models through separate 
datasets encompassing varied demographics and scenarios 
is critical for accuracy and generalizability.
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