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Abstract—The necessary and/or sufficient conditions for a Takagi-

Sugeno-Kang Fuzzy Inference System (TSK-FIS) to be monotone 

has been a key research direction in the last two decades.  In this 

paper, we firstly define fuzzy membership functions (FMFs) with 

single and continuous support; and consider TSK-FIS with a “grid 

partition” strategy for computing its firing strengths with product 

T-norm (here after denoted as TSK-FIS-product).  We also define 

a more general joint necessary condition, whereby each constituent 

itself is a necessary condition for the TSK-FIS-product model.  The 

first necessary condition indicates that the normalized firing 

strength must not be indeterminate (i.e., 0/0), i.e. susceptible to the 

“tomato classification problem”.  The second necessary condition 

indicates that all restricted consequents of fuzzy if-then rules must 

be defined.  Based on the principle of the ordered weighted 

averaging (OWA) operator as well as the concept of increasing 

orness in OWA and hyperboxes, a general joint sufficient condition 

for a TSK-FIS-product model to be monotone is derived.  Three 

case studies of the developed methods for undertaking Failure 

Mode and Effect Analysis (FMEA) and image processing tasks are 

presented. The results are compared, analyzed, and discussed, 

demonstrating the usefulness of our developed methods. 

Index Terms—Takagi-Sugeno-Kang Fuzzy Inference System, 

monotone, necessary condition, sufficient condition, ordered 

weighted averaging operator, increasing orness, hyperboxes, 

FMEA, edge detection. 

I.  INTRODUCTION 

A. Background  

A Fuzzy Inference System (FIS), denoted as 𝑓, is known as 

a monotone non-decreasing FIS, if it is a mapping 𝑓: 𝑋 → 𝑌, 

that satisfies 𝑓 (𝒙(1) = (𝑥1,(1), … , 𝑥𝑖,(1), … , 𝑥𝑛,(1))) ≤ 𝑓 (𝒙(2) =

(𝑥1,(2), … , 𝑥𝑖,(2), … , 𝑥𝑛,(2))) for all 𝑥𝑖,(1) ≤ 𝑥𝑖,(2) ∈ 𝑋𝑖 , 𝑖 ∈ {1, … , 𝑛}, 

in an 𝑛-dimensional input space 𝑋 ∈ ℝ𝑛  and an output space 

𝑌 ∈ ℝ.  The importance of the monotone property as a prior 

condition for FIS modelling has been highlighted [1]-[16]. In 

general, research on monotone-preserving FIS (hereafter 

denoted as monotone FIS) models encompasses three key 

aspects: (i) mathematical conditions for various FIS variants to 

satisfy the monotone  property [1]-[16], e.g. in  Takagi-Sugeno-

Kang FIS (TSK-FIS) [4] and interval-type-2 FIS [11] models; 

(ii) methods to construct monotone FIS models, either via 

expert knowledge (knowledge-driven) or data samples (data-

driven) [8][14]-[16]; and (iii) application of monotone FIS 

models to different domains [5][7][17]-[21], including the use 

of TSK-FIS as n-ary aggregation functions [5].  The popularity 

of monotone FIS models has also been inspired by monotone 

radial basis function networks [22].  

In the current literature, however, most studies on the 

mathematic conditions of TSK-FIS are focused on the sufficient 

condition.  In addition, studies on the sufficient condition are 

generally confined to classical fuzzy membership functions 

(FMFs) such as triangular, trapezoid, and Gaussian.  The 

sufficient condition usually considers consequents with real 

numbers or monotone functions.  As indicated in [2][3], the 

relationship between the sufficient condition and the necessary 

condition (if it exists) is seldom discussed, which remains as a 

research gap [4]. 

On the other hand, the Ordered Weighted Averaging (OWA) 

operator [23][24] offers a powerful and flexible information 

fusion technique.  While a monotone FIS model is related to the 

OWA principle, their relationship is rarely studied from the FIS 

perspective [25].  An 𝑚 -ary OWA is a mapping of an m-

dimensional weight vector 𝒘 = (𝑤1, … , 𝑤𝑚)𝑇  with the 

properties of 𝑤𝑗 ∈ [0,1]  and ∑ 𝑤𝑗
𝑚
𝑗=1 = 1 , such that 

𝑂𝑊𝐴(𝑎1, … , 𝑎𝑚) = ∑ 𝑤𝑗𝑏𝑗
𝑚
𝑗=1 , where 𝑏𝑗  is the 𝑗th largest 𝑎𝑗 .  

Both (𝑎1, … , 𝑎𝑚)  and (𝑏1, … , 𝑏𝑚)  are vectors with 𝑚  real 

numbers, which can be either positive, zero, or negative real 

values. Vector (𝑏1, … , 𝑏𝑚) is also an ordered vector.  OWA 

operators have wide applicability owing to their flexibility in 

modelling a family of parameterized averaging aggregation 

functions, in conjunction with the orness concept [26][27] and 

orness measure of OWA [24].  The orness measure of 𝒘 =

(𝑤1, … , 𝑤𝑚)𝑇  increases, i.e., 𝑂𝑟(𝒘(1)) > 𝑂𝑟(𝒘(2)) , if two 𝑚 -

dimensional weight vectors, i.e., 𝒘(1) and 𝒘(2), satisfy 𝒘(1) =

(𝑤1,(1), … , 𝑤𝑚,(1))𝑇  and 𝒘(2) = (𝑤1,(1), … , 𝑤𝜉 − 𝜖, … , 𝑤𝜌 +

𝜖, … , 𝑤𝑚,(1))𝑇 , where 𝜖 > 0 and 𝜉 < 𝜌 [26].  The use of orness 

for partition design in data pre-processing tasks has been 

highlighted in [28].  In addition, many research studies on 

hyperboxes in fuzzy systems and neural networks are available 

in the literature [29].  Both concepts of orness and hyperboxes 

are exploited in this study. 

B. Research Aim 

The aim of this research is three-fold.  Firstly, we embed a 

“grid partition” strategy [30] into TSK-FIS to compute the 

firing strengths with product T-norm (here after denoted as 

TSK-FIS-product).  We show that a normalized firing strength 

for a TSK-FIS-product model can be indeterminate (i.e., 0/0), 

if the model is sparse [31][32] i.e., the so-called tomato 

classification problem [33].  This issue forms the fundamental 

challenge in fuzzy rule interpolation [16][34][35][36]. 

To facilitate our analysis, a number of settings are clarified: 

(i) FMFs with single and continuous support are defined and 
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used; (ii) a hyperbox is formed by the antecedent of a fuzzy if-

then rule, which adopts FMFs with single and continuous 

support; (iii) a new restriction for the functional consequents of 

the TSK-FIS-product model is defined, whereby the restriction 

of each functional consequent is a subspace of ℝ𝑛.  In addition, 

we expand a multi-input TSK-FIS-product model as a series of 

single-input TSK-FIS-product-like models to facilitate our 

analysis. 

The second research aim is to establish several new 

theorems associated with the design and construction of a 

monotone TSK-FIS-product model.  Specifically, we define a 

new and more general joint necessary condition, whereby each 

constituent itself is a necessary condition, to ensure a TSK-FIS-

product model always produces valid outputs for all 𝒙.  We 

provide counter examples to illustrate that some conditions, 

which constitute part of a joint sufficient condition, are not the 

necessary condition, although they have been practically used 

to design monotone TSK-FIS-product models. 

We further consider an additional condition whereby the 

maximal of two FMFs overlap each other.  In short, instead of 

focusing on FMF designs, we scrutinize the normalized firing 

strength of an FMF (see Property 3) in our analysis.  Inspired 

by the OWA principle, i.e., the concepts of increasing orness 

[26], as well as the hyperbox structure [29], a more general joint 

sufficient condition, which comprise of two joint necessary 

conditions, for establishing monotone TSK-FIS-product 

models are formulated.  It allows monotone TSK-FIS-product 

models to be designed with varying FMFs comprising single 

and continuous support, either convex or non-convex, normal 

or sub-normal, or with jump discontinuity.  Our developed 

method also considers fuzzy rule consequents with non-

monotone functions.   

 Three case studies pertaining to Failure Mode and Effect 

Analysis (FMEA) [37] and image processing are conducted.  

The results illustrate the usefulness of our sufficient condition 

for formulating a set of feasible solutions.  From the image 

processing case study, our results are useful for developing 

monotone TSK-FIS-product models to serve as a blending 

function in image edge detection [38]. 

C. Contributions  

This research makes the following major contributions: 

1. A joint necessary condition for establishing monotone TSK-

FIS-product models is formulated.  The first condition 

indicates that the normalized firing strength of a TSK-FIS-

product model must not be indeterminate (i.e., 0/0).  The 

second condition imposes that all restricted functional 

consequents of fuzzy if-then rules must be defined.  Note 

that each constituent of the joint necessary condition is itself 

a necessary condition.   

2. Inspired by increasing orness in the OWA principle and the 

hyperbox structure, a new proposition, along with its proof, 

to serve as a new joint sufficient condition for constructing 

monotone TSK-FIS-product models is formulated.  It 

covers the following two overlapped FMF cases (i.e., FMFs 

with single and continuous support), which are yet to be 

analyzed in the existing sufficient conditions pertaining to 

monotone TSK-FIS-product models.  Specifically, by 

imposing a restriction that the maximal of two FMFs 

overlap each other, we allow 

a. convex, non-convex, discontinuous and/or sub-normal 

fuzzy sets, and their mixture, as options to construct a 

monotone TSK-FIS-product model.   

b. non-monotone functional consequents, which are 

monotone within the associated restriction, as options 

to construct a monotone TSK-FIS-product model. 

3. To better explain our analysis, we define a number of new 

and useful notions for analyzing TSK-FIS models in 

general, as listed in the second paragraph of Section I (B). 

 

Our derived joint sufficient condition provides a method to 

systematically design monotone TSK-FIS-product models, 

either manually or automatically based on data-driven 

techniques). 

The rest of this paper is organized as follows.  In Section II, 

a TSK-FIS-product model is defined.  We analyze the 

normalized firing strength of the TSK-FIS-product model to be 

indeterminate.  In Section III, FMFs with single and continuous 

support are defined and analyzed.  This leads to the definition 

of hyperboxes formed by the antecedents of fuzzy if-then rules.  

In Section IV, an analysis of a TSK-FIS-product model 

adopting FMFs with single and continuous support is presented.  

In Section V, a new expansion pertaining to the TSK-FIS-

product model is described.  The major results of this study are 

explained in Section VI.  Three case studies of our developed 

methods are presented in Section VII.  Concluding remarks and 

suggestions for further research are given in Section VIII. 

II.  TAKAGE-SUGENO-KANG FUZZY INFERENCE SYSTEM 

Consider a TSK-FIS-product model with an input domain 

𝑋𝑖 ∈ 𝑋 ∈ ℝ𝑛, 𝑖 ∈ {1, … , 𝑛}, the input variable 𝑥𝑖 is partitioned 

into 𝑝𝑖 ≥ 1 FMFs.  Each partition is tagged with a linguistic 

term, 𝐴𝑖
𝑟𝑖 , with its corresponding FMF 𝜇𝑖

𝑟𝑖(𝑥𝑖) , where 𝑟𝑖 ∈

{1, … , 𝑝𝑖} , and 𝑟1, … , 𝑟𝑛  is an integer.  To simplify the 

explanation, a numeral 𝑣 is used to label each fuzzy if-then rule, 

such that 𝑣(𝑟1, 𝑟2, … , 𝑟𝑛) = [∑ ((𝑟𝑖 − 1)𝑛
𝑖=2 × (∏ 𝑝𝑔

𝑖−1
𝑔=1 ))] + 𝑟1 

and 𝑣 ∈ {1, … , 𝑃}, where 𝑃 = ∏ 𝑝𝑖
𝑛
𝑖=1 . If 𝑛 = 1, a single-input 

TSK-FIS-product model is expected, and 𝑣 = 𝑟1. If  𝑛 > 1, a 

multi-input TSK-FIS-product model is expected.  The 𝑣th fuzzy 

if-then rule of a TSK-FIS-product model is as follows: 

𝑅𝑣: IF 𝑥1 is 𝐴1
𝑣 AND …  AND 𝑥𝑛 is 𝐴𝑛

𝑣  THEN 𝑦 is 𝑦𝑣(𝒙). 

The firing strength of a fuzzy rule, i.e., 𝑅𝑣: 𝐴𝑣 →  𝑦𝑣(𝒙) , is 

defined as follows. 

Definition 1. Given a real-valued input vector 𝒙 and the fuzzy 

membership value of 𝐴𝑖
𝑟𝑖  is represented by 𝜇𝑖

𝑟𝑖(𝑥𝑖), the firing 

strength and normalized firing strength of the 𝑣th fuzzy rule can 

be obtained using (1) and (2), respectively. 

𝐴𝑣(𝒙) = ∏ 𝐴𝑖
𝑟𝑖(𝑥𝑖)

𝑛
𝑖=1  (1) 

𝐴𝑣(𝒙) =
𝐴𝑣(𝒙)

∑ 𝐴𝑣(𝒙)𝑃
𝑣=1

  (2) 
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A TSK-FIS-product model is defined as follows.  

Definition 2. A TSK-FIS-product model is a mapping of 𝑓: 𝑋 →
𝑌, with 𝑃 fuzzy if-then rules, i.e., 𝑅𝑣: 𝐴𝑣 →  𝑦𝑣(𝒙) , which can 

be obtained using Eq. (3).  

𝑓(𝒙) =
∑ 𝐴𝑣(𝒙)×𝑦𝑣(𝒙)𝑃

𝑣=1

∑ 𝐴𝑣(𝒙)𝑃
𝑣=1

= ∑ 𝐴𝑣(𝒙)𝑃
𝑣=1 𝑦𝑣(𝒙)  (3) 

The characteristics of 𝐴𝑣(𝒙) and 𝐴𝑣(𝒙) from Eqs. (1) and 

(2), respectively, are explained, as follows. 

Property 1. Characteristics of 𝐴𝑣(𝒙) and 𝐴𝑣(𝒙).  

P1.1. 𝐴𝑣(𝒙) = 0 if there exists an i-th element such that 

𝐴𝑖
𝑟𝑖(𝑥𝑖) = 0.  

P1.2. If ∑ 𝐴𝑣(𝒙)𝑃
𝑣=1 =0, then 𝐴𝑣(𝒙) is indeterminate as 0/0 is 

undefined.   

P1.3. If ∑ 𝐴𝑣(𝒙)𝑃
𝑣=1 >0 is true for all 𝒙, then ∑ 𝐴𝑣(𝒙)𝑃

𝑣=1 =1, 

and 0 ≤ 𝐴𝑣(𝒙) ≤ 1 are always true. 

III.  FUZZY MEMBERSHIP FUNCTIONS WITH SINGLE AND 

CONTINUOUS SUPPORT 

A. Support of Fuzzy Membership Functions 

A strong -cut [30] of 𝜇𝑖
𝑟𝑖(𝑥𝑖)  is defined as 

𝜇𝑖,𝛼
𝑟𝑖′

(𝑥𝑖) ={𝑥𝑖|𝜇𝑖
𝑟𝑖(𝑥𝑖) > 𝛼}, where 𝛼 ∈ [0,1].  With a strong -

cut, the support of 𝜇𝑖
𝑟𝑖(𝑥𝑖)  and an interval representing the 

support are presented in Property 2. 

Property 2. The support of convex and non-convex 𝜇𝑖
𝑟𝑖(𝑥𝑖) 

P2.1. The support of  𝜇𝑖
𝑟𝑖(𝑥𝑖)  is defined as 

𝜇𝑖,0
𝑟𝑖′

(𝑥𝑖) ={𝑥𝑖|𝜇𝑖
𝑟𝑖(𝑥𝑖) > 0}. (see pp. 18 in [30]) 

P2.2. The support of convex 𝜇𝑖
𝑟𝑖(𝑥𝑖) is denoted as a single and 

continuous interval, i.e., [𝑥𝑖
𝑟𝑖 , 𝑥𝑖

𝑟𝑖], such that [𝑥𝑖
𝑟𝑖 , 𝑥𝑖

𝑟𝑖] ∈ 𝑋𝑖 

(see Fig. 1(a)). 

P2.3. An uncommon 𝜇𝑖
𝑟𝑖(𝑥𝑖) exists such that 𝜇𝑖

𝑟𝑖(𝑥𝑖) = 0 for all 

𝑥𝑖 (which still satisfies Property A.1 in Appendix).  In this 

uncommon situation, the support does not exist. 

P2.4. The support of non-convex 𝜇𝑖
𝑟𝑖(𝑥𝑖) is usually a single and 

continuous interval too, i.e., [𝑥𝑖
𝑟𝑖 , 𝑥𝑖

𝑟𝑖], such that [𝑥𝑖
𝑟𝑖 , 𝑥𝑖

𝑟𝑖] 

∈ 𝑋𝑖 (see Fig. 1(b)). 

P2.5. The support of uncommon non-convex 𝜇𝑖
𝑟𝑖(𝑥𝑖) could be 

discontinuous (see Fig. 1(c)).  

Note that Property A in Appendix clarifies the possible 

FMFs in this study, i.e., convex/non-convex, normal/sub-

normal, jump discontinuous, or complete FMFs.  

B.  A class of FMFs with Single and Continuous Support  

In this study, we focus on a class of FMFs with single and 

continuous support, which is defined as follows.  An example 

is given in Fig. 1. 

Definition 3. An FMF 𝜇𝑖
𝑟𝑖(𝑥𝑖)  has single and continuous 

support, iff for any 𝑑1, 𝑑2 ∈ 𝑋𝑖 , such that 𝜇𝑖
𝑟𝑖(𝑑1) > 0 , 

𝜇𝑖
𝑟𝑖(𝑑2) >0, and any 𝜆 ∈ [0,1], 𝜇𝑖

𝑟𝑖(𝜆𝑑1 + (1 − 𝜆)𝑑2) > 0, is 

always true. 

For any two points, 𝑑1, 𝑑2 ∈ 𝑋𝑖, such that 𝜇𝑖
𝑟𝑖(𝑑1) > 0 and 

𝜇𝑖
𝑟𝑖(𝑑2) > 0, all their convex combinations can be obtained as 

𝜆𝑑1 + (1 − 𝜆)𝑑2, where 𝜆 ∈ [0,1].  In addition, an FMF with 

more than single support can practically be considered as 

comprising a few FMFs.  Referring to the example in Fig. 1(c), 

the FMF can be treated as two FMFs, each with a single and 

continuous support.  Remark 1 indicates the importance in 

defining the class of FMFs as in Definition 3.   

Remark 1.  

R1.1. All convex FMFs have either single and continuous 

support or no support. 

Proof. Given an FMF with Property A.1, Property P2.2, or P2.3 

exists. 

R1.2. Not all non-convex FMFs have single and continuous 

support. 

Proof. See Properties P2.4, P2.5, and Figs. 1(b) and 1(c). 

R1.3. Triangular and trapezoidal FMFs have single and 

continuous support. 

Proof. Since triangular and trapezoidal FMFs are convex, and 

𝜇𝑖
𝑟𝑖(𝑥𝑖) ≠0 for all 𝑥𝑖, following Remark R1.1, these FMFs have 

single and continuous support. 

R1.4. All non-zero FMFs, either convex FMFs (e.g., Gaussian 

FMFs) or non-convex FMFs, have single and continuous 

support. 

Proof. See Properties P2.2, P2.4, and P2.5 

R1.5. FMFs with single and continuous support may not always 

be normal; they can be sub-normal. 

Proof. Straightforward by following Property A.2. 

R1.6. FMFs with single and continuous support may have jump 

discontinuous (in the sense of Property A.3). 

Proof. Straightforward by following Property A.3. 

Remark 1 indicates that many FMFs fall under the umbrella 

of Definition 3.  As such, the analysis of our study has a wide 

coverage of FMFs options. 

  
(a) (b) 

 
(c)  
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Fig. 1. Examples of (a) a convex FMF with single and continuous support; (b) 

a non-convex FMF with single and continuous support; (c) an uncommon 

FMF with discontinuous supports (i.e., two supports), for any 𝑑1, 𝑑2 ∈ 𝑋𝑖. 

C.  An n-dimensional hyperbox formed by FMFs with Single 

and Continuous Support 

In Definition 4, the support of 𝐴𝑣  is defined as an n-

dimensional hyperbox [29][39], denoted as 𝐻𝐴𝑣 .  This 

definition is important for establishing Theorem 1 in Section 

IV-C.  An example of a 2-dimensional hyperbox formed by two 

FMFs from Figs. 1(a) and 1(b) is shown in Fig. 2. 

Definition 4. The support of 𝐴𝑣 (denoted as 𝐴0
𝑣′ ) is defined as 

an 𝑛-dimensional hyperbox that is confined by its vertices, i.e., 

the minimum point 𝐻𝐴𝑣  and maximum point 𝐻𝐴𝑣 .  Both 

𝐻𝐴𝑣  and 𝐻𝐴𝑣 are represented as two 𝑛-dimensional vectors, as 

follows. 

𝐻𝐴𝑣 = (𝑥1
𝑟1 , 𝑥2

𝑟2 , … , 𝑥𝑛
𝑟𝑛)  

𝐻𝐴𝑣 = (𝑥1
𝑟1 , 𝑥2

𝑟2 , … , 𝑥𝑛
𝑟𝑛) 

such that 𝐻𝐴𝑣 ≥ 𝐻𝐴𝑣 and 𝐴0
𝑣′ ∈ 𝑋.  

 
Fig. 2. An example of a 2-dimensional hyperbox 𝐴0

𝑣′ = (𝐻𝐴𝑣, 𝐻𝐴𝑣) 

IV.  ANALYSIS ON A TSK-FIS-PRODUCT MODEL WITH FMFS 

OF SINGLE AND CONTINUOUS SUPPORT 

A.  Analysis of the Antecedents of Fuzzy If-Then rules 

The normalized firing strength, i.e., 𝐴𝑣(𝒙) obtained from 

the antecedents of a set of fuzzy if-then rules, is analyzed. 

Property 1 leads to a specific mapping as in Definition 5 and 

Property 3, as follows. 

Definition 5.  A mapping, 𝑇: 𝑋 → 𝒫(𝒙), where 𝒙 ∈ 𝑋 ∈ ℝ𝑛 is 

considered, whereby 𝒫(𝒙)  = (𝐴1(𝒙), 𝐴2(𝒙), … , 𝐴𝑃(𝒙))  is a 

vector with 𝑃 values,  𝐴𝑣(𝒙) ∈ {
0

0
, [0,1]} and 𝑣 ∈ {1,2, … , 𝑃}. 

Property 3.  Mapping 𝑇 has the following characteristics. 

P3.1. Given a mapping 𝑇, 𝒫(𝒙(1)) = 𝒫(𝒙(2)) , where 𝒙(1) ≠

𝒙(2) can occur. 

P3.2. Given a mapping 𝑇 (denoted as 𝑇(1) ), it always exists 

another 𝑇 (denoted as 𝑇(2)), such that identical vectors of 

𝒫(𝒙)  for all 𝒙 ∈ 𝑋 , can be obtained.  This indicates 

𝒫(1)(𝒙) = 𝒫(2)(𝒙), for all 𝒙 ∈ 𝑋 , pertaining to 𝑇(1)  and 

𝑇(2) always occurs, respectively.   

Property P3.2 is the reason for us to focus on the normalized 

firing strength, instead of FMFs design, in deriving the new 

joint sufficient condition.  The importance of Property P3.2 can 

be observed in the example in Section VII-C.  In addition, 

subject to the restriction that all FMFs must have single and 

continuous support (see Definition 3), Definition 6 is presented, 

as follows.   

Definition 6. Given two antecedents, 𝐴𝑣,(1) and 𝐴𝑣,(2) , the 

intersection of supports of 𝐴𝑣,(1) and 𝐴𝑣,(2) with an overlap is 

denoted as 𝐴0
(𝑣,(1)∩𝑣,(2))′

= 𝐴0
𝑣′,(1)

∩ 𝐴0
𝑣′,(2)

, where 

(𝑟1,(1), 𝑟2,(1), … , 𝑟𝑛,(1)) ≤ (𝑟1,(2), 𝑟2,(2), … , 𝑟𝑛,(2)) .  In other 

words, 𝐴0
(𝑣,(1)∩𝑣,(2))′

 is defined as an 𝑛-dimensional hyperbox 

with its minimum point 𝐻𝐴𝑣,(1)∩𝑣,(2)  and maximum point 

𝐻𝐴𝑣,(1)∩𝑣,(2) .  Both 𝐻𝐴𝑣,(1)∩𝑣,(2) and 𝐻𝐴𝑣,(1)∩𝑣,(2)  are 

represented by two 𝑛-dimensional vectors, as follows. 

 𝐻𝐴𝑣,(1)∩𝑣,(2) = (𝑥1

𝑟1,(2)
, 𝑥2

𝑟2,(2)
, … , 𝑥𝑛

𝑟𝑛,(2)
) 

𝐻𝐴𝑣,(1)∩𝑣,(2) = (𝑥1

𝑟1,(1)
, 𝑥2

𝑟2,(1)
, … , 𝑥𝑛

𝑟𝑛,(1)
) 

such that 𝐻𝐴𝑣,(1)∩𝑣,(2) ≥ 𝐻𝐴𝑣,(1)∩𝑣,(2)   and 𝐴0
(𝑣,(1)∩𝑣,(2))′

∈

𝐴0
𝑣′,(1)

 , 𝐴0
𝑣′ ,(2)

∈ 𝑋.  

Note that 𝐴0
(𝑣,(1)∩𝑣,(2))′

is a null hyperbox, iff 𝐴𝑣,(1) and 

𝐴𝑣,(2) are not overlapped. 

B. Characteristics of the Consequents of Fuzzy If-Then Rules 

The characteristics of the consequent part of a fuzzy rule are 

explained, as follows.  

Property 4. Characteristics of 𝑦𝑣(𝒙). 

P4.1. A fuzzy rule base is complete, if 𝑦𝑣(𝒙), for all 𝑣 and 𝒙, is 

defined.  Otherwise, the fuzzy rule base is incomplete. 

P4.2. A fuzzy rule base is monotone, if 

𝑦𝑣(𝑟1,(1),𝑟2,(1),…,𝑟𝑛,(1))(𝒙) ≤ 𝑦𝑣(𝑟1,(2),𝑟2,(2),…,𝑟𝑛,(2))(𝒙)  is true 

such that (𝑟1,(1), 𝑟2,(1), … , 𝑟𝑛,(1)) ≤ (𝑟1,(2), 𝑟2,(2), … , 𝑟𝑛,(2)), 

for all 𝒙.  Otherwise, the fuzzy rule base is non-monotone. 

P4.3. 𝑦𝑣(𝒙)  is monotone, if 𝑦𝑣 (𝒙(1) =

(𝑥1,(1), … , 𝑥𝑖,(1), … , 𝑥𝑛,(1))) ≤ 𝑦𝑣 (𝒙(2) =

(𝑥1,(2), … , 𝑥𝑖,(2), … , 𝑥𝑛,(2)))  for all 𝑥𝑖,(1) ≤ 𝑥𝑖,(2) ∈ 𝑋𝑖 , 𝑖 ∈

{1, … , 𝑛}.  Otherwise, 𝑦𝑣(𝒙) is non-monotone. 

For clarity, a monotone fuzzy rule base (Property P4.2) and 

monotone 𝑦𝑣(𝒙) (Property P4.3) are listed as two properties.  

We define a restriction on each 𝑦𝑣(𝒙), subject to the support of 

𝐴𝑣 as in Definition 7.  Property 5 is further presented. 

C. Analysis of the TSK-FIS-product model 

A restriction of 𝑦𝑣(𝒙) to 𝐴0
𝑣′  is presented in Definition 7, 

and its characteristics are in Property 5.  With Definition 7, 

Theorem 1 is proposed.  

Definition 7. The restriction of 𝑦𝑣(𝒙) to 𝐴0
𝑣′ is denoted as 𝑦𝑣(x 

|𝐴0
𝑣′). 

Property 5.  Characteristics of 𝑦𝑣(x|𝐴0
𝑣′). 

P5.1. It there exist more than one 𝑦𝑣(𝒙), identical 𝑦𝑣(x|𝐴0
𝑣′) can 

be produced. 
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Proof.  Two non-identical 𝑦𝑣,(1)(𝒙) and 𝑦𝑣,(2)(𝒙) can produce 

an identical 𝑦𝑣(x|𝐴0
𝑣′). 

P5.2. Non-monotone 𝑦𝑣(𝒙)  (Property P4.3) can produce 

monotone 𝑦𝑣(x|𝐴0
𝑣′). 

Proof. Even when 𝑦𝑣(𝒙)  for all 𝒙  is not monotone, its 

𝑦𝑣 (x|𝐴0
𝑣′ ) can be monotone, as its 𝑛 -dimensional hyperbox 

(Definition 4) is a subset of 𝑋. 

Theorem 1.  A TSK-FIS-product model can be reduced to: 

𝑦 = 𝑓(𝒙) = ∑ 𝐴𝑣(𝒙)𝑃
𝑣=1 𝑦𝑣(𝒙) = ∑ 𝐴𝑣(𝒙)𝑃

𝑣=1 𝑦𝑣(𝒙|𝐴0
𝑣′)    

Proof.  𝑦𝑣(𝒙), which does not fall within 𝐴0
𝑣′, is not significant 

to 𝑦 = 𝑓(𝒙), since 𝐴𝑣(𝒙) is zero. 

Theorem 1 indicates that the design of 𝑦𝑣(𝒙) for a TSK-FIS-

product model can be reduced to the design of 𝑦𝑣(𝒙|𝐴0
𝑣′).  This 

is an important result for designing the parametric conditions of 

higher-order TSK-FIS-product models with functional 

consequents.  Theorem 1, together with Properties 1, 3, 4, and 

5, are important for analyzing the equivalence property (in the 

sense of [40]) associated with TSK-FIS-product models.  In 

addition, 𝑦𝑣(x |𝐴0
𝑣′) of adjacent fuzzy if then rules can be used 

to obtain interpolated intermediate fuzzy if-then rules [41]. 

V. EXPRESSION OF A MULTI-INPUT TSK-FIS-PRODUCT MODEL 

AS A SERIES OF SINGLE-INPUT TSK-FIS-PRODUCT-LIKE 

MODELS 

A. Analysis 

A TSK-FIS-product model, i.e., Eq. (3), is analyzed. Lemma 

1 is presented.  

Lemma 1.  Given 𝑠 ∈ {1, . . , 𝑛}\{𝑖},  𝒙𝑠 is a vector with 𝑛 − 1 

values, with 𝑥𝑖  excluded; and 𝒓𝑠  is a vector with 𝑛 − 1 

integers, with 𝑟𝑖  excluded.  A multi-input TSK-FIS-product 

model, i.e., 𝑓(𝒙), can be expressed as follows. 

 𝑓(𝒙) = 𝑓(𝑥𝑖; 𝒙𝑠) = ∑ [𝜑(𝒓𝑠)(𝒙𝑠) × 𝑦𝑖,(𝒓𝑠)(𝒙)]∀𝒓𝑠
   (4) 

where 𝜑(𝒓𝑠)(𝒙𝑠) =
𝜑(𝒓𝑠)(𝒙𝑠)

∑ 𝜑(𝒓𝑠)(𝒙𝑠)∀𝒓𝑠

, 𝜑(𝒓𝑠)(𝒙𝑠) = ∏ 𝐴𝑠
𝑟𝑠(𝑥𝑠)∀𝑠,𝑠≠𝑖 , 

and 𝑦𝑖,(𝒓𝑠)(𝒙) =
∑ 𝐴𝑖

𝑟𝑖(𝑥𝑖)×𝑦𝑣(𝑟1,𝑟2,…,𝑟𝑛)(𝒙)
𝑝𝑖
𝑟𝑖=1

∑ 𝐴
𝑖

𝑟𝑖(𝑥𝑖)
𝑝𝑖
𝑟𝑖=1

.  There are ∏ 𝑝𝑠∀𝑠,𝑠≠𝑖  

potential combinations of 𝜑(𝒓𝑠)(𝒙𝑠) , such that 𝜑(𝒓𝑠)(𝒙𝑠) ∈

{
0

0
, [0,1]}. 

Proof. A multi-input TSK-FIS-product model (𝑛 > 1), i.e., Eq. 

(3), can be expressed as follows; 

𝑓(𝒙) = 𝑓(𝑥𝑖; 𝒙𝑠) =
∑ … ∑ ∑ 𝐴1

𝑟1(𝑥1)×𝐴2
𝑟2(𝑥2)×…×𝐴𝑛

𝑟𝑛(𝑥𝑛)×𝑦𝑣(𝑟1,𝑟2,…,𝑟𝑛)(𝒙)
𝑝1
𝑟1=1

𝑝2
𝑟2=1

𝑝𝑛
𝑟𝑛=1

∑ … ∑ ∑ 𝐴1
𝑟1(𝑥1)×𝐴2

𝑟2(𝑥2)×…×𝐴𝑛
𝑟𝑛𝑝1

𝑟1=1
𝑝2
𝑟2=1

𝑝𝑛
𝑟𝑛=1

           (5) 

𝑓(𝑥𝑖; 𝒙𝑠) =
∑ … ∑ ∑ 𝜑(𝒓𝑠)(𝒙𝑠)×𝐴

𝑖

𝑟𝑖(𝑥𝑖)×𝑦𝑣(𝑟1,𝑟2,…,𝑟𝑛)(𝒙)
𝑝1
𝑟1=1

𝑝2
𝑟2=1

𝑝𝑛
𝑟𝑛=1

∑ … ∑ ∑ 𝜑(𝒓𝑠)(𝒙𝑠)×𝐴
𝑖

𝑟𝑖(𝑥𝑖)
𝑝1
𝑟1=1

𝑝2
𝑟2=1

𝑝𝑛
𝑟𝑛=1

    (6) 

where  0 ≤ 𝜑(𝒓𝒔)(𝒙𝑠) ≤ 1. From the denominator of Eq. (6), 

∑ … ∑ ∑ 𝜑(𝒓𝑠)(𝒙𝑠) × 𝐴𝑖
𝑟𝑖(𝑥𝑖)𝑝1

𝑟1=1
𝑝2
𝑟2=1

𝑝𝑛
𝑟𝑛=1 =

∑ … ∑ ∑ 𝜑(𝒓𝑠)
𝑝1
𝑟1≠𝑖=1

𝑝2
𝑟2≠𝑖=1 (𝒙𝑠)𝑝𝑛

𝑟𝑛≠𝑖=1 ∑ 𝐴𝑖
𝑟𝑖(𝑥𝑖)

𝑝𝑖
𝑟𝑖=1    

From the numerator of Eq. (6), 

∑ … ∑ ∑ 𝜑(𝒓𝑠)(𝒙𝑠) × 𝐴𝑖
𝑟𝑖(𝑥𝑖)𝑝1

𝑟1=1
𝑝2
𝑟2=1

𝑝𝑛
𝑟𝑛=1 × 𝑦𝑣(𝑟1,𝑟2,…,𝑟𝑛)(𝒙) = 

∑ … ∑ ∑ 𝜑(𝒓𝑠)
𝑝1
𝑟1≠𝑖=1 (𝒙𝑠)𝑝2

𝑟2≠𝑖=1
𝑝𝑛
𝑟𝑛≠𝑖=1 ∑ 𝐴𝑖

𝑟𝑖(𝑥𝑖)𝑝𝑖
𝑟𝑖=1 𝑦𝑣(𝑟1,𝑟2,…,𝑟𝑛)(𝒙)  

Note that 𝑓(𝒙) can be written as follows. 

𝑓(𝒙)

=
∑ … ∑ ∑ 𝜑(𝒓𝑠)

𝑝1
𝑟1≠𝑖=1

𝑝2
𝑟2≠𝑖=1

𝑝𝑛
𝑟𝑛≠𝑖=1 (𝒙𝑠) ∑ 𝐴𝑖

𝑟𝑖(𝑥𝑖)𝑝𝑖
𝑟𝑖=1 𝑦𝑣(𝑟1,𝑟2,…,𝑟𝑛)(𝒙)

∑ 𝜑(𝒓𝑠)(𝒙𝑠)∀𝒓𝑠
∑ 𝐴𝑖

𝑟𝑖(𝑥𝑖)𝑝𝑖
𝑟𝑖=1

= [
∑ … ∑ ∑ 𝜑(𝒓𝑠)(𝒙𝑠)𝑝1

𝑟1≠𝑖=1
𝑝2
𝑟2≠𝑖=1

𝑝𝑛
𝑟𝑛≠𝑖=1

∑ 𝜑(𝒓𝑠)∀𝒓𝑠
(𝒙𝑠)

∑ 𝐴𝑖
𝑟𝑖(𝑥𝑖)𝑦𝑣(𝑟1,𝑟2,…,𝑟𝑛)(𝒙)𝑝𝑖

𝑟𝑖=1

∑ 𝐴𝑖
𝑟𝑖(𝑥𝑖)𝑝𝑖

𝑟𝑖=1

] 

Equation (4) is a normalized weighted addition of 𝜑(𝒓𝑠)(𝒙𝑠) 

and 𝑦𝑖,(𝒓𝑠)(𝒙) .  The characteristics of 𝑦𝑖,(𝒓𝑠)(𝒙)  are further 

outlined in Property 6.  

Property 6. Characteristics of 𝑦𝑖,(𝒓𝑠)(𝒙) 

6.1.  𝑦𝑖,(𝒓𝑠)(𝒙)  can be viewed as a single-input TSK-FIS-

product-like model with fuzzy if-then rules in the form of 

𝑅𝑖,(𝒓𝑠)
𝑟𝑖 : IF 𝑥𝑖  is 𝐴𝑖

𝑟𝑖(𝑥𝑖) THEN 𝑦 is 𝑦𝑣(𝑟1,𝑟2,…,𝑟𝑛)(𝒙). 

6.2.  The antecedent depends only on 𝑥𝑖. 

6.3.  The consequent depends on 𝒙, whereby 𝑥𝑖 is part of 𝒙. 

6.4.  For each 𝒓𝑠, 𝑝𝑖  fuzzy if-then rules are expected. 

6.5.  𝑦𝑖,(𝒓𝑠)(𝒙) = ∑ 𝐴𝑖

𝑟𝑖(𝑥𝑖)
𝑝𝑖
𝑟𝑖=1 𝑦𝑣(𝒙|𝐴0

𝑣′
), such that 𝐴𝑖

𝑟𝑖(𝑥𝑖) =

𝐴
𝑖

𝑟𝑖(𝑥𝑖)

∑ 𝐴
𝑖

𝑟𝑖(𝑥𝑖)
𝑝𝑖
𝑟𝑖=1

∈ {
0

0
, [0,1]}. See the following proof.  

Proof. From Lemma 1, 𝑦𝑖,(𝒓𝑠)(𝒙) =
∑ 𝐴𝑖

𝑟𝑖(𝑥𝑖)×𝑦𝑣(𝑟1,𝑟2,…,𝑟𝑛)(𝒙)
𝑝𝑖
𝑟𝑖=1

∑ 𝐴
𝑖

𝑟𝑖(𝑥𝑖)
𝑝𝑖
𝑟𝑖=1

, 

𝑦𝑖,(𝒓𝑠)(𝒙) = ∑ 𝐴𝑖

𝑟𝑖(𝑥𝑖)
𝑝𝑖
𝑟𝑖=1 𝑦𝑣(𝑟1,𝑟2,…,𝑟𝑛)(𝒙).  From Theorem 1. 

𝑦𝑣(𝒙)  is restricted to 𝐴0
𝑣′ . Thus, 𝑦𝑖,(𝒓𝑠)(𝒙) =

∑ 𝐴𝑖

𝑟𝑖(𝑥𝑖)
𝑝𝑖
𝑟𝑖=1 𝑦𝑣(𝒙|𝐴0

𝑣′
). 

B. An Example 

Consider a two-input zero-order TSK-FIS-product model 

(i.e., 𝑛 = 2) with triangular and normal FMFs, as shown in 

Fig.3.  Let 𝑖 = 1,2  and 𝑟𝑖 = 1,2,3 .  The three FMFs are 

designed such that for all 𝒙 ∈ 𝑋 ∈ ℝ2, ∑ 𝐴𝑣(𝒙)𝑃
𝑣=1 =0 does not 

occur, and ℝ2 = [0,1]2  is a bounded space.  In addition, all 

𝑦𝑣(𝑟1,𝑟2)(𝒙) are known. 
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𝑓(𝒙) = 𝜑(1)(𝑥2) × 𝑦1,(𝒓𝑠=(1))(𝒙) + 𝜑(2)(𝑥2) × 𝑦1,(𝒓𝑠=(2))(𝒙) + 𝜑(3)(𝑥2) × 𝑦1,(𝒓𝑠=(3))(𝒙) =0.368 

Fig.3. A two-input TSK-FIS-product model where 𝑥𝑖 = 𝑥1, 𝒙𝒔 = (𝑥2).  Green, 

purple, and turquoise rectangles are used to represent the single-input TSK-FIS-

product-like models for 𝒓2 = (1), 𝒓2 = (2), and 𝒓2 = (3), respectively 

Given 𝒙 = (𝑥1, 𝑥2), we consider the explanation of 𝑥𝑖 = 𝑥1 

and 𝒙𝑠 = (𝑥2).  Consider 𝑥𝑖 = 𝑥1, thus, 𝑠 ∈ {2}, 𝒙𝑠 = (𝑥2) is a 

vector with single value, with 𝑥1 excluded; 𝒓𝑠= (𝑟2) is also a 

vector with single value.  Three 𝜑(𝑟2)(𝑥2) are expected, and 

𝜑(𝑟2)(𝑥2) = 𝐴2
𝑟2(𝑥2).  It is also possible to consider 𝑥𝑖 = 𝑥2 and 

𝒙𝑠 = (𝑥1), of course, with another expansion expected. 

Let 𝒙 = (𝑥1, 𝑥2) = (0.2,0.38) .  Following Eq. (6), the 

denominator of 𝑓(0.2;  0.38)  can be re-arranged to  

∑ 𝜑(𝑟2)(𝑥2) ∑ 𝐴1
𝑟1(𝑥1)𝑝1

𝑟1=1
𝑝2=3
𝑟2=1 = (0.24 + 0.76 + 0)(0.6 +

0.4 + 0).  The numerator of 𝑓(0.2;  0.38) can be re-arranged to 

∑ ∑ 𝜑(𝒓𝑠)(𝒙𝑠) ∑ 𝐴𝑖
𝑟𝑖(𝑥𝑖)

𝑝𝑖

𝑟𝑖=1
𝑦𝑣(𝑟1,𝑟2)𝑝1=3

𝑟1=1
𝑝2=3
𝑟2=1 = 0.24(0.6 × 0.1 +

0.4 × 0.2 + 0 × 0.3) + 0.76(0.6 × 0.4 + 0.4 × 0.5 + 0 × 0.7) +

0(0.6 × 0.5 + 0.4 × 0.8 + 0 × 1). 

From Lemma 1, 𝜑(1) =
0.24

0.24+0.76+0
, 𝜑(2) =

0.76

0.24+0.76+0
, 

𝜑(3) =
0

0.24+0.76+0
 .  As such, three single-input TSK-FIS-

product-like models can be obtained, as follows.  

𝑦1,(𝒓𝑠=(1))(0.2,0.38) =
(0.6×𝑦𝑣(1,1)(0.2,0.38)+0.4×𝑦𝑣(1,2)(0.2,0.38)+0×𝑦𝑣(1,3)(0.2,0.38))

(0.6+0.4+0)
; 

𝑦1,(𝒓𝑠=(2)) (0.2,0.38) =
(0.6×𝑦𝑣(2,1) (0.2,0.38)+0.4×𝑦𝑣(2,2)(0.2,0.38) +0×𝑦𝑣(2,3) (0.2,0.38))

(0.6+0.4+0)
; 

𝑦1,(𝒓𝑠=(3)) (0.2,0.38)=
(0.6×𝑦𝑣(3,1) (0.2,0.38)+0.4×𝑦𝑣(3,2) (0.2,0.38)+0×𝑦𝑣(3,3) (0.2,0.38))

(0.6+0.4+0)
. 

There are 𝑝𝑖 =3 fuzzy if-then rules in the form of 

IF 𝑥1 is 𝐴1
𝑟1(𝑥1) THEN 𝑦 is 𝑦𝑣(𝑟1,𝑟2)(𝒙) , for each 𝑟𝑠 .  The 

antecedent depends only on 𝑥1 .  The consequent, i.e., 

𝑦𝑣(𝑟1,𝑟2)(𝒙), depends on two variables, i.e., 𝑥1 and 𝑥2 .  Note 

that 𝜑(𝒓𝒔)(𝑥2) only depends on 𝑥2.  The expansion of the entire 

TSK-FIS-product model depends on both 𝑥1  and 𝑥2  (see Fig. 

3). 

In Fig. 3, each 𝑦1,(𝒓𝑠)(𝒙) is represented as a rectangle for 

𝒓𝑠 = (1), 𝒓𝑠 = (2),  and 𝒓𝑠 = (3), each with a different color, 

respectively.  Each rectangle represents a group of three single-

input fuzzy if-then rules, where 𝑟1 = {1,2,3}.  From Eq. (4), 

𝑓(𝒙) = 𝜑(1)(𝑥2) × 𝑦1,(𝒓𝑠=(1))(𝒙) + 𝜑(2)(𝑥2) ×

𝑦1,(𝒓𝑠=(2))(𝒙) + 𝜑(3)(𝑥2) × 𝑦1,(𝒓𝑠=(3))(𝒙) = 0.368.  Notice that 

when all FMFs are normal with a strong partition [17], 

𝜑(𝒓𝑠)(𝒙𝑠) = 𝜑(𝒓𝑠)(𝒙𝑠) ∈ [0,1] and 𝐴1
𝑟1(𝑥1) = 𝐴1

𝑟1(𝑥1).  

C. Remarks 

In [42], a discussion on the use of fuzzy rules pertaining to 

single-input FIS models for constructing a multi-input FIS 

model.  In this study, such expression is exploited to analyze 

the monotone property of a TSK-FIS-product model.  Note that 

it is not the aim of this study to validate the argument that multi-

input fuzzy if-then rules from human experts can be gathered 

through single-input fuzzy if-then rules with weights imposed.   

In the current literature, there are a number of fuzzy basis 

function or expansion for TSK-FIS models (see [43] [44]). In 

this study, we consider an additional possibility for 𝐴𝑣(𝒙) and 

𝐴𝑣(𝒙) , whereby 𝐴𝑣(𝒙)  could be 
0

0
 in our expansion.  This 

expansion is new and important for designing sparse and 

monotone TSK-FIS-product models (see [5][16]). 

VI. MONOTONE TSK-FIS-PRODUCT MODELS 

A definition for a TSK-FIS-product model to be of 

monotone and non-decreasing is presented in Definition 8.  In 

this section, several theorems and remarks pertaining to the 

necessary conditions and sufficient conditions for the TSK-FIS-

product model to be monotone are elaborated. 

Definition 8. A TSK-FIS-product model (denoted as 𝑓) is a 

monotone (non-decreasing) FIS iff it is a mapping 𝑓: 𝑋 → 𝑌 

that satisfies 𝑓 (𝒙(1) = (𝑥1,(1), … , 𝑥𝑖,(1), … , 𝑥𝑛,(1))) ≤ 𝑓 (𝒙(2) =

(𝑥1,(2), … , 𝑥𝑖,(2), … , 𝑥𝑛,(2))) for all 𝑥𝑖,(1) ≤ 𝑥𝑖,(2) ∈ 𝑋𝑖 , 𝑖 ∈ {1, … , 𝑛}, 

with an 𝑛-dimensional input space 𝑋 ∈ ℝ𝑛 and an output space 

𝑌 ∈ ℝ. 

A. The necessary condition for a monotone TSK-FIS-product 

model 

Based on the necessary condition and sufficient condition in 

[45], the following assumptions are made.  A mathematical 

condition for a TSK-FIS-product model to be monotone is 

denoted as necessary when it is impossible for the TSK-FIS-

product model to be monotone without the mathematical 

condition.  If a counter example for the TSK-FIS-product model 

to be monotone without the mathematical condition exists, then 

the said mathematical condition is not necessary.  On the other 

hand, a mathematical condition for a TSK-FIS-product model 

to be monotone is denoted as sufficient when the mathematical 

condition guarantees the TSK-FIS-product model to be 

monotone.  Note that a TSK-FIS-product model can be 

monotone without the sufficient condition. 

Theorem 2. ∑ 𝐴𝑣(𝒙)𝑃
𝑣=1 > 0, for all 𝒙, is a necessary condition 

for a TSK-FIS-product model to be monotone. 

Proof. Property P1.2. If ∑ 𝐴𝑣(𝒙)𝑃
𝑣=1 = 0 , 𝑓(𝒙)  is 

undetermined. 
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Theorem 3. All 𝑃  𝑦𝑣(𝒙|𝐴0
𝑣′)  entities are known, which 

constitute a necessary condition.  However, 𝑦𝑣(𝒙) may not be 

known for the entire 𝒙. 

Proof.  The computation of a TSK-FIS-product model for all 𝒙, 

is impossible if any of 𝑦𝑣(𝒙|𝐴0
𝑣′) is unknown.  From Theorem 

1, it is not necessary to define 𝑦𝑣(𝒙) for the entire 𝒙, in order to 

perform computation of the TSK-FIS-product model. 

Theorems 2 and 3 are a joint necessary condition for the 

TSK-FIS-product model (Eq. (3)).  Remarks 2-4 are presented, 

whereby the restriction of ∑ 𝐴𝑣(𝒙)𝑃
𝑣=1 > 0, for all 𝒙 (Theorem 

2) is satisfied; and 𝑦𝑣(𝒙|𝐴0
𝑣′) are known for all 𝒙 (Theorem 3). 

Remark 2.  The specification of 𝐴𝑣(𝒙) alone is not a necessary 

condition for designing a monotone TSK-FIS-product model. 

Proof.  If all 𝑦𝑣(𝒙) are identical for all 𝑣, 𝑦 = 𝑓(𝒙) = 𝑦𝑣(𝒙), 

is always true.  If there exists a counter example that the TSK-

FIS-product model is monotone regardless of the specification 

of 𝐴𝑣(𝒙) , then the specification of 𝐴𝑣(𝒙)  alone is not a 

necessary condition. 

Remark 3. Monotone 𝑦𝑣 (𝒙 ) (Property P4.3) alone is not a 

necessary condition for designing a monotone TSK-FIS-

product model. 

Proof.  Deduced from Theorem 1. 

Remark 4.  A monotone fuzzy rule base (Property P4.2) alone 

is not a necessary condition for designing a monotone TSK-

FIS-product model. 

Proof.  Consider 𝒫(𝒙) = (𝐴1(𝒙), 𝐴2(𝒙), … , 𝐴𝑃(𝒙)) remains 

identical for all 𝒙 , i.e., orness of 𝒫(𝒙)  is static when  𝒙 

increases.  Given a zero-order TSK-FIS-product model, 𝑦𝑣(𝒙) 

is a numeral, both 𝐴𝑣(𝒙) and 𝑦𝑣(𝒙), for 𝑣 = 1,2, … , 𝑃, are no 

longer a function of 𝒙.  From Eq. (3), the TSK-FIS-product 

model can be reduced to 𝑓(𝒙) = ∑ 𝐴𝑣𝑃
𝑣=1 𝑦𝑣 .  In this case, 𝑓(𝒙) 

always produces a constant numeral satisfying Definition 8, 

even when Property P4.2 does not stand.  If there exists a 

counter example that the TSK-FIS-product model can be 

monotone with a non-monotone fuzzy rule base, then a 

monotone fuzzy rule base, alone, is not a necessary condition. 

Theorem 2 indicates that ∑ 𝐴𝑣(𝒙)𝑃
𝑣=1 > 0  is a necessary 

condition for constructing a monotone TSK-FIS-product 

model.  Theorem 3 specifies that the fuzzy rules should be 

complete, in the sense that all 𝑦𝑣(𝒙|𝐴0
𝑣′) are defined.  This is 

more general and less restrictive than all 𝑦𝑣(𝒙)  need to be 

known for the monotone TSK-FIS-product model.  Both 

Theorems 2 and 3 signify the importance of (monotone) fuzzy 

rule interpolation [16][31][32] and interval methods (e.g., 

Monotone interval FIS models [15]) for constructing a 

monotone TSK-FIS-product model.  From Theorems 2 and 3, 

we can deduce Remark 5. 

Remark 5. 

R5.1. Given a monotone TSK-FIS-product model, 

∑ 𝐴𝑣(𝒙)𝑃
𝑣=1 > 0 is always true. 

R5.2. Given a monotone TSK-FIS-product model, all 

𝑦𝑣(𝒙|𝐴0
𝑣′) are known. 

In addition, Remarks 2 to 4 indicate that based on each 

specification of 𝐴𝑣(𝒙), a monotone 𝑦𝑣(𝒙) or monotone fuzzy 

rule base by itself alone is not a necessary condition for 

designing a monotone TSK-FIS-product model. 

B. The sufficient condition for a monotone TSK-FIS-product 

model 

Inspired by increasing orness in OWA and the hyperboxe 

structure, a joint sufficient condition of a TSK-FIS-product 

model to be monotone is derived, as in Proposition 1.  It 

considers FMFs with single and continuous support, as well as 

an additional condition for two overlapped FMFs for all 𝑋𝑖.  

Proposition 1. A set of sufficient conditions for a TSK-FIS-

product model to be monotone (Definition 8), subject to a 

restriction on the maximal of two FMFs overlap each other for 

all 𝑋𝑖, is presented, as follows. 

1.1. From Theorem 2, ∑ 𝐴𝑣(𝒙)𝑃
𝑣=1 > 0, for all 𝒙, is satisfied. 

1.2. From Theorem 3, at the consequent part, all 𝑦𝑣(𝒙|𝐴0
𝑣′) are 

known, but 𝑦𝑣(𝒙) may not be known for the entire 𝒙. 

1.3. At the antecedent part, all 𝐴𝑖
𝑟𝑖(𝑥𝑖) are designed such that 

(0,0, . . , 𝐴𝑖

𝑟𝑖(𝑥𝑖,(2)), 𝐴𝑖

𝑟𝑖+1
(𝑥𝑖,(2)), … ,0,0) = (0,0, . . , 𝐴𝑖

𝑟𝑖(𝑥𝑖,(1)) −

𝜖, 𝐴𝑖

𝑟𝑖+1
(𝑥𝑖,(1)) + 𝜖, … ,0,0), where 𝜖 ≥ 0; is always true, ∀𝑥𝑖,(2) >

𝑥𝑖,(1), ∀i, ∀𝑥𝑖, and 𝑟𝑖 ∈ {1,2,3, …, 𝑝𝑖 − 1}. 

1.4. All 𝑦𝑣(𝒙|𝐴0
𝑣′)  are monotone, i.e., 𝑦𝑣(𝒙(1) =

(𝑥1,(1), … , 𝑥𝑖,(1), … , 𝑥𝑛,(1))|𝐴0
𝑣′) ≤ 𝑦𝑣(𝒙(2) =

(𝑥1,(2), … , 𝑥𝑖,(2), … , 𝑥𝑛,(2))|𝐴0
𝑣′) for all 𝑥𝑖,(1) ≤ 𝑥𝑖,(2) ∈ 𝑋𝑖, and all 𝑣, 

𝑖 ∈ {1, … , 𝑛}, but 𝑦𝑣(𝒙) may not be monotone entirely (see 

Property P5.2). 

1.5. 𝑦𝑣(𝑟1,(1),𝑟2,(1),…,𝑟𝑛,(1))(𝒙) ≤ 𝑦𝑣(𝑟1,(2),𝑟2,(2),…,𝑟𝑛,(2))(𝒙)  , for all 𝒙 ∈

𝐴0
(𝑣,(1)∩𝑣,(2))′, and (𝑟1,(1), 𝑟2,(1), … , 𝑟𝑛,(1)) ≤ (𝑟1,(2), 𝑟2,(2), … , 𝑟𝑛,(2)).  

Proof.  From Definition 2, a TSK-FIS-product model can be 

expressed as P-ary normalized weighted average of 𝐴𝑣(𝒙) and 

𝑦𝑣(𝒙).  In line with Proposition 1.1, ∑ 𝐴𝑣(𝒙)𝑃
𝑣=1 = 1 is always 

true. In line with Proposition 1.2, 𝑦𝑣(𝒙|𝐴0
𝑣′)  can always be 

determined and known.  Both are the necessary conditions to be 

satisfied (see Theorems 2 and 3), ensuring a valid output from 

a monotone TSK-FIS-product model. 

Propositions 1.4 and 1.5 ensure  that 

𝑦𝑣(𝑟1,(1),𝑟2,(1),…,𝑟𝑛,(1))(𝒙) ≤ 𝑦𝑣(𝑟1,(2),𝑟2,(2),…,𝑟𝑛,(2))(𝒙)  is always 

true, for each  𝒙(1) ≤ 𝒙(2)  and (𝑟1,(1), 𝑟2,(1), … , 𝑟𝑛,(1))  ≤

(𝑟1,(2), 𝑟2,(2), … , 𝑟𝑛,(2)).  Deduced from the OWA principle [23], 

along with Proposition 1.2, the TSK-FIS-product model is 

always monotone. 

C. Discussion 

Proposition 1 also leads to Remark 6, as follows.  Remark 6 

denotes that the specification of 𝑝𝑖  is not a necessary condition. 

Remarks 7 further explains why Proposition 1 is more general.  

Remark 6. 
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R6.1. A monotone single-input/multi-input TSK-FIS-product 

model can be obtained with FMFs having 𝑝𝑖 = 1, for all i. 

Proof.  If 𝑝𝑖 = 1, for all i, (𝐴𝑖
1(𝑥𝑖)) = (1) for all 𝑥𝑖 is always true.  

Orness of (𝐴𝑖
1(𝑥𝑖)) remains static when 𝑥𝑖 increases. Proposition 

1 is satisfied.  

R6.2. A monotone TSK-FIS-product model can be obtained 

with an arbitrary number of FMFs.  Propositions 1.1 and 

1.3 can be achieved with an arbitrary number of FMFs.  

R6.3. A monotone TSK-FIS-product model can be obtained 

with an arbitrary number of fuzzy if-then rules. 

Remark 7 Proposition 1.3 indicates more general conditions for 

designing two overlapped FMFs. 

Proof. We consider FMFs with single and continuous support, 

which is more general (see Remark 1), i.e., relaxing the 

requirements of convexity, having no jump discontinuity, and 

normality in designing FMFs. See Section VII (C) for 

illustrative examples. 

Remark 8 Proposition 1.4 is more general. 

Proof. We allow 𝑦𝑣(𝒙) to be non-monotone.  See Section VII 

(A) for an illustrative example. 

Our analysis also indicates that research on the necessary 

conditions for designing a monotone TSK-FIS-product model 

[2] should focus on specific cases with meaningful restrictions, 

e.g., for the TSK-FIS-product model to be explainable [46][47], 

or for the TSK-FIS-product model to have all non-identical 

consequents.  

VII.  CASE STUDIES 

A. A monotone TSK-FIS-product Occurrence Model in FMEA 

[37] 

In FMEA, obtaining the ratings of severity, occurrence and 

detection scores is a tedious and time-consuming task.  Here, 

we design a monotone TSK-FIS-product occurrence model [37] 

to automate the occurrence score ratings, i.e., 𝑦 = 𝑓(𝑥1) .  

Based on the information from an extended occurrence scale 

table from a real semiconductor manufacturing facility [21], as 

presented in Table I, the developed occurrence model is useful 

for dynamic risk evaluation, as indicated in [48].  
TABLE I 

SCALE TABLE FOR OCCURRENCE SCORE [37] 

Occurrence 

score  

Linguistic 

terms used to 

describe 𝑦𝑣  

Linguistic terms 

used to describe 𝑥1, 

i.e., (𝐴1
𝑟1) 

Average number of 

failure occurred in 52 

weeks (𝑥1) 

Lower 

limit 

Upper 

limit 

10~9 Very high 

(𝑦6) 

Many/shift, 

many/day (𝐴1
6) 

301 1000 

8~7 High (𝑦5) Many/week, 

few/week  (𝐴1
5) 

53 300 

6~4 Moderate 

(𝑦4) 

Once/week, 

several/month  (𝐴1
4) 

13 52 

3 Low (𝑦3) Once/month (𝐴1
3) 5 12 

2 Very low 

(𝑦2) 

Once/quarter (𝐴1
2) 3 4 

1 Remote (𝑦1) Once ever (𝐴1
1) 1 2 

Consider a monitoring period of 52 weeks, as determined by 

FMEA users.  An input 𝑥1 ∈ [1,1000], which can be in the 

form of a logarithmic scale of 𝑥1,𝑙𝑜𝑔 ∈ [0,3] , represents the 

average number of failures occurred within a monitoring 

period.  The output occurrence score is  𝑦 ∈ [1,10].  Note that 

the logarithmic scale is often used when the input domain is 

large [37].  It is difficult to design a monotone TSK-FIS-product 

model for the input domain.  As an example, referring to Table 

I, the first FMF covers interval [1, 2] while the last FMF covers 

[301, 1000], both are of 𝑥1. 

Note that FMEA users expect that if 𝑥1 increases, 𝑦 should 

increase too, i.e., a monotone relationship needs to be obeyed.  

As such, it is vital for the occurrence score to preserve such a 

monotone relationship in order to accurately deduce the risk 

priority number in FMEA.  This further ensures valid and 

meaningful comparisons among different potential failure 

modes in FMEA. 

Table I can be viewed as a mapping from “average number 

of failures occurred/52 weeks” to “occurrence score”.  The 

information can be explained using six monotone fuzzy if-then 

rules, as presented in Fig. 4.  As an example, the highlighted 

row in Fig. 4 corresponds to “IF 𝑥1 (or 𝑥1,𝑙𝑜𝑔 ) is Many/day 

THEN 𝑦 is Remote”.  For performance comparison, fuzzy if-

then rules with different functional consequents, i.e., zero-

order, first-order, and second-order consequents, are presented 

in Fig. 4.  Note that the linguistic term “Remote” for 𝑦  is 

represented by a numeral value of 𝑦1 =1. 

Figures 5 and 6 depict the FMFs, subject to the restriction 

that the maximal of two FMFs overlap each other, for linguistic 

terms 𝑥1 and 𝑥1,𝑙𝑜𝑔, respectively.  Notice that Propositions 1.1 

and 1.3 are satisfied.  The consequents of all fuzzy rules are 

designed such that Propositions 1.2, 1.4, and 1.5 are satisfied.  

As an example, for the zero-order case, the linguistic terms of 

Remote, Very low, Low, Moderate, High, and Very high, are 

represented by the numerical output 𝑦𝑣(𝒙) ∈ {1,2,3,5,7.5,10}, 

respectively.  All consequents are known, and 𝑦1 < 𝑦2 < 𝑦3 <

𝑦4 < 𝑦5 < 𝑦6 , therefore Propositions 1.2, 1.4, and 1.5 are 

satisfied.  Following Proposition 1, a monotone 𝑓 is expected.  

This example shows the possibility of obtaining a monotone 

TSK-FIS-product model with non-monotone functions, i.e., 

quadratic functions, as functional consequents.  Notice that the 

obtained second-order TSK-FIS-product occurrence model can 

be constructed with the monotone restricted quadratic 

functions. 
 Fuzzy if-then rules Zero-order 

consequent 

First-order 

consequent 

Second-order  

consequent 

𝑅1 if 

𝑥1 

is 

Many/day then 

𝑦 is 

Remote  𝑦1 =1.000 𝑦1 =1.000 𝑦1 =1.000 

𝑅2 Many/week Very 

Low 

𝑦2 =2.000 𝑦2 =2.000 𝑦2 =2.000 

𝑅3 Once/week Low 𝑦3 =3.000 𝑦3 =3.000 𝑦3 =3.000 

𝑅4 Once/month Moderate 𝑦4 =5.000 𝑦4 =0.011𝑥1

+6.48 

𝑦4 =1.74e-

5(𝑥1)2+5.85 

𝑅5 Once/quarter High 𝑦5 =7.500 𝑦5 =0.002𝑥1

+7.94 

𝑦5 =3.32e-

6(𝑥1)2+7.31 

𝑅6 Once ever Very 

High 

𝑦6 =10.000 𝑦6 =0.001𝑥1

+8.67 

𝑦6 =2.00e-

6(𝑥1)2+8 
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Fig. 4. Fuzzy if-then rules of the zero-order [37], first-order and second-

order TSK-FIS-product occurrence models (all numerals are rounded to 

three decimal places) 

 

 
Fig. 5. Design of FMFs for the TSK-FIS-product occurrence model 

Fig. 6. Design of FMFs for the TSK-FIS-product occurrence model on a 

logarithmic scale [37] 

Figs 7(a), 7(b) and 7(c) depict the plot of 𝑦 = 𝑓(𝑥1) for the 

TSK-FIS-product occurrence model with zero-order, first-order 

and second-order consequents, respectively.  All models are 

monotone, and all meet the boundary conditions.  With zero-

order consequents, it can be observed that the line remains 

static, i.e., 𝑦 = 10, after 𝑥1>500.  However, a gradual increase 

can be obtained in the case of the first-order and second-order 

consequents.  This indicates the ability to represent the 

increasing risk of the occurrence score with respect to average 

number of failures occurred/52 weeks.  A plot of 𝑦 = 𝑓(𝑥1,𝑙𝑜𝑔), 

based on the zero-order TSK-FIS-product occurrence model, is 

depicted in Fig. 8.  It can be clearly observed that the zero-order 

TSK-FIS-product occurrence model is monotone, and it 

satisfies the boundary conditions. 

In summary, with our formulated propositions, a monotone 

TSK-FIS-product occurrence model can be designed, with both 

real and logarithm inputs. 

 
(a) 

 
(b)  

 
(c) 

Fig. 7. Surface plot of the TSK-FIS-product occurrence model with (a) 

zero-order [37], (b) first-order and, (c) second-order consequents 

 
Fig. 8. Surface plot of the zero-order TSK-FIS-product occurrence model 

with a logarithmic scale 

B.  A monotone TSK-FIS-product Risk Priority Number Model 

[49][50] 

A set of benchmark fuzzy rules related to a Risk Priority 

Number (RPN) model in FMEA for a sewage treatment plant 

[49][50] is considered.  The RPN model considers severity 

(𝑥1), occurrence (𝑥2), and detection (𝑥3) scores, as the input 

risk factors, i.e., 𝒙 = (𝑥1, 𝑥2, 𝑥3) ∈ [1,10] .  They produce a 

fuzzy RPN score (𝑓𝑅𝑃𝑁), as the output.  The importance of the 

monotone property of an RPN model has been highlighted in 

[14][16][21].  In this section, we design a monotone TSK-FIS-

product RPN model with FMFs and fuzzy rule base provided in 

[49][50].  The provided FMFs design are presented in Fig. 9, 

which satisfy Propositions 1.1 and 1.3.  The fuzzy RPN score is 

associated with linguistic terms of Low, Fairly low, Moderate, 

Fairly high, and High, which are represented by the numerical 

output 𝑦𝑣(𝒙) ∈ {1,2.5,3.7,6.1,10}.  In short, 𝑖 = 1,2,3 and 𝑟𝑖 =

1,2,3,4,5.  All 𝑦𝑣(𝑟1,𝑟2,𝑟3)(𝒙) are numerals and known, which 

satisfy Propositions 1.2 and 1.5. 

 
(a) 

  
(b) 
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(c) 

Fig. 9. Design of FMFs for inputs (a) Severity (𝑥1), (b) occurrence (𝑥2), and 

(c) Detection (𝑥3 ) [49] [50] 

However, from [49][50], the provided fuzzy rules are non-

monotone (also see [14]), i.e., Proposition 1.4 is violated.  As 

an example, this violation can be observed from the provided 

fuzzy rules 𝑅𝑣(1,4,2) and 𝑅𝑣(1,5,2) with severity, occurrence and 

detection of Remote, High, and High, as well as Remote, Very 

High, and High, respectively.  𝑅𝑣(1,4,2)  and 𝑅𝑣(1,5,2)  are 

associated with the consequents of Fairly High and Fairly Low, 

respectively.  While the consequent 𝑦𝑣(1,5,2) is expected to be 

higher than or equal to 𝑦𝑣(1,4,2), this is not the case.  As an 

example, (𝑓𝑅𝑃𝑁
(1, 8, 3) = 5.5) > (𝑓𝑅𝑃𝑁

(3, 8, 3) = 2.7)  is obtained 

using Eq. (3).  This drawback can be rectified using the 

approach in [15], which considers 𝑓𝑅𝑃𝑁  as an interval, i.e., 

𝑓𝑅𝑃𝑁(𝒙) = [𝑓𝑅𝑃𝑁(𝒙), 𝑓𝑅𝑃𝑁(𝒙)].  All 𝑦𝑣(𝑟1,𝑟2,𝑟3)(𝒙) are intervals too, i.e., 

[𝑦𝑣(𝑟1,𝑟2,𝑟3)(𝒙), 𝑦𝑣(𝑟1,𝑟2,𝑟3)(𝒙)] , such that 𝑦𝑣(𝑟1,𝑟2,𝑟3)(𝒙) =

min ( min
∀𝐴𝑣(𝑡1≥𝑟1,𝑡2≥𝑟2,𝑡3≥𝑟3)

[𝑦𝑣(𝒙), 10], max
∀𝐴𝑣(𝑡1≤𝑟1,𝑡2≤𝑟2,𝑡3≤𝑟3)

[𝑦𝑣(𝒙), 1]) , 

𝑦𝑣(𝑟1,𝑟2,𝑟3)(𝒙) =

max ( min
∀𝐴𝑣(𝑡1≥𝑟1,𝑡2≥𝑟2,𝑡3≥𝑟3)

[𝑦𝑣(𝒙), 10], max
∀𝐴𝑣(𝑡1≤𝑟1,𝑡2≤𝑟2,𝑡3≤𝑟3)

[𝑦𝑣(𝒙), 1]) , where 

𝑡1 ∈ {1, … , 𝑝1}, 𝑡2 ∈ {1, … , 𝑝2}, 𝑡3 ∈ {1, … , 𝑝3} is an integer. 

Proposition 1.4 is satisfied for 𝑦𝑣(𝑟1,𝑟2,𝑟3)(𝒙), 𝑦𝑣(𝑟1,𝑟2,𝑟3)(𝒙).  With 

a monotone TSK-FIS-product model, 𝑦𝑣(𝑟1,𝑟2,𝑟3)(𝒙) and 

𝑦𝑣(𝑟1,𝑟2,𝑟3)(𝒙) are used to yield 𝑓𝑅𝑃𝑁(𝒙) and 𝑓𝑅𝑃𝑁(𝒙), respectively.  

The mean value, 𝑓𝑅𝑃𝑁,𝑚𝑒𝑎𝑛(𝒙) = 0.5 × (𝑓𝑅𝑃𝑁(𝒙) + 𝑓𝑅𝑃𝑁(𝒙)) , is 

considered  With the same example, (𝑓𝑅𝑃𝑁(1, 8, 3) = [2, 6]) <

(𝑓𝑅𝑃𝑁(3, 8, 3) = [3, 6])  and (𝑓𝑅𝑃𝑁,𝑚𝑒𝑎𝑛(1,8,3) = 4) = (𝑓𝑅𝑃𝑁,𝑚𝑒𝑎𝑛(3,8,3) =

4)  can be obtained, satisfying the monotone property.  The 

surface plot of 𝑓𝑅𝑃𝑁 versus 𝑥1 and 𝑥2, with 𝑥3=3, using Eq. (3), 

is depicted in Fig 10(a).  A non-monotone surface plot is 

obtained with the original fuzzy rule base from [49] [50], 

𝑓𝑅𝑃𝑁(𝒙).  The surface plots of 𝑓𝑅𝑃𝑁(𝒙), 𝑓𝑅𝑃𝑁(𝒙) and 𝑓𝑅𝑃𝑁,𝑚𝑒𝑎𝑛, versus 

𝑥1 and 𝑥2, are depicted in Figs. 10 (b), (c), and (d).  Monotone 

surface plots are obtained. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 10. Surface plots of the RPN score versus severity and occurrence, with 

detection=3, using (a) 𝑓𝑅𝑃𝑁(𝒙), (b). 𝑓𝑅𝑃𝑁(𝒙), (c) 𝑓𝑅𝑃𝑁(𝒙) and, (d) 

𝑓𝑅𝑃𝑁,𝑚𝑒𝑎𝑛(𝒙) 

C. A monotone TSK-FIS-product model for image edge 

detection [38]  

In [38], a four-phase geometric methodology was proposed 

for edge detection in image processing, namely (1) 

conditioning, (2) feature extraction, (3) blending, and (4) 

scaling.  According to [38], a blending function that is nearly 

concave in the neighborhood of the feature space origin is 

denoted as a waterfall function.  One fundamental property of 

the waterfall function is its monotone nature (see Fig. 8 in [38]). 

This section examines the use of Proposition 1 to design a 

monotone TSK-FIS-product model as a blending function for 

image edge detection.  Based on [38], two inputs, i.e., 𝒙 =
(𝑥1, 𝑥2) ∈ [0,4] , constitute the horizontal and vertical Sobel 

components in the feature extraction phase.  The FMFs for 𝑥1 

and 𝑥2 are presented in Fig. 11, which satisfy Propositions 1.1 

and 1.3.  The output of the blending function, i.e., 𝑢, is obtained 

using Eq. (3).  Four fuzzy rules with four parameters, i.e., 𝜏, 𝜒, 

𝛾, and 𝜔, are formed, as follows [38]. 

Rule 1: If 𝑥1 = 𝐿 and 𝑥2 = 𝐿 𝑇ℎ𝑒𝑛 𝑢1(𝒙) = 𝑥1
𝜏 + 𝑥2

𝜏   (7.a) 
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Rule 2: If 𝑥1 = 𝐿 and 𝑥2 = 𝐻 𝑇ℎ𝑒𝑛 𝑢2(𝒙) = 𝜒   (7.b) 

Rule 3: If 𝑥1 = 𝐻 and 𝑥2 = 𝐿 𝑇ℎ𝑒𝑛 𝑢3(𝒙) = 𝛾   (7.c) 

Rule 4: If 𝑥1 = 𝐻 and 𝑥2 = 𝐻 𝑇ℎ𝑒𝑛 𝑢4(𝒙) = 𝜔   (7.d) 

 
Fig. 11. Design of FMFs for inputs 𝑥1 and 𝑥2 [38] 

 

To satisfy Propositions 1.2, 1.4 and 1.5, a constraint with 

respect to 𝜏, 𝜒, 𝛾, and 𝜔 is introduced, i.e.,  

constraint: subject to  2 × 4𝜏 ≤ 𝜒, 𝛾 ≤ 𝜔      (8) 

Then, a feasible solution for the constraint in Eq. (8) can be 

obtained.  Considering the constraint in Eq. (8), two waterfall 

functions based on monotone TSK-FIS-product models are 

established: (a) 𝜏 = 0.2, 𝜒 = 3, 𝛾 = 3, 𝜔 = 4, and (b) 𝜏 = 0.1, 

𝜒 = 2, 𝛾 = 3, 𝜔 = 4.  As depicted in Fig. 12, both surface plots 

are roughly concave near the feature space origin, with a 

monotone response far from the origin.   

Three popular images of size 512 × 512 are employed for 

evaluation, i.e., cameraman, peppers, and mandrill, as shown in 

Fig 13(a).  A non-monotone waterfall function based on the 

description in [38] is first derived, and the resulting images are 

depicted in Fig 13 (b).  Comparatively, Figs. 13(c) and 13(d) 

depict the generated images based on the two formulated 

blending functions in Figs. 12(a) and 12(b), respectively.  It can 

be clearly visualized that both waterfall functions constructed 

with monotone TSK-FIS-product models can produce 

geometrical characteristics and detailed structures within the 

images.  These results indicate the usefulness of Proposition 1 

in constructing monotone TSK-FIS-product models as effective 

waterfall functions for image edge detection. 

 
(a) 

 
(b) 

Fig. 12. Surface plot of monotone TSK-FIS-product models as waterfall 

functions with different parameters: (a) 𝜏 = 0.2, 𝜒 = 3, 𝛾 = 3, 𝜔 = 4; (b) 𝜏 =
0.1, 𝜒 = 2, 𝛾 = 3, 𝜔 = 4 

 

 
             (a)                          (b)                             (c)                         (d)  

Fig. 13 (a) original images (b) images from a non-monotone waterfall 

function; (c) images from the monotone waterfall function shown in Fig. 
12(a); (d) images from the monotone waterfall function shown in Fig. 12(b)  

D.  Discussion 

In general, two challenges in constructing monotone TSK-

FIS-product models are the design of FMFs and fuzzy if-then 

rules.  Figures 14 consists of three FMF designs for a monotone 

TSK-FIS-product occurrence model, each adopts a different 

FMF design with single and continuous support (see Definition 

3).  Each FMF design covers a mixture of FMFs comprising 

convex and non-convex, normal and sub-normal, and with jump 

discontinuous characteristics.  In accordance with Property 

P3.2, different FMF designs can yield the same 𝒫(𝑥1), for all 

𝑥1, based on the same monotone TSK-FIS-product model.  As 

an example, instead of the FMF design in Fig. 6, identical 

𝒫(𝑥1), for all 𝑥1, can be obtained using the FMF designs shown 

in Figs. 14(a), 14(b), and 14(c) too. 

When 𝑥1 = 0.1, all FMF designs in Figs. 6 and 14 produce 

the same 𝒫(0.1) , i.e., 𝒫(0.1) = (1,0,0,0,0,0)𝑇 .  As such, an 

identical 𝑓(𝑥1) can be obtained with different FMF designs and 
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with the same set of fuzzy rules.  This implies that convex and 

normal FMFs are not the only option for developing a 

monotone TSK-FIS-product model. 

 
(a) 

 
(b) 

 
(c) 

Fig. 14. Three FMF designs of a TSK-FIS-product occurrence model yield the 

same 𝒫(𝑥1), for all 𝑥1, with a logarithmic scale [37] 

VIII. CONCLUSIONS 

In this study, we have investigated the properties of TSK-

FIS with a “grid partition” strategy to compute the firing 

strengths with product T-norm, i.e., a TSK-FIS-product model.  

FMF designs with single and continuous support have been 

defined.  We have formulated a joint necessary condition, 

whereby each constituent is a necessary condition, for 

designing a monotone TSK-FIS-product model.  Conversely, 

we have established with counter examples that some 

conditions, which serve as a joint sufficient condition used to 

design a monotone TSK-FIS-product model, is not individually 

required.  As such, a joint sufficient condition of a monotone 

TSK-FIS-product model has been derived.  In addition, we have 

expanded the TSK-FIS-product model, whereby a multi-input 

TSK-FIS-product model can be treated as a series of single-

input TSK-FIS-product-like models.  Three case studies 

pertaining to FMEA and image processing have been presented.  

The results have been compared, analyzed, and discussed, 

ascertaining the usefulness of our proposed methods. 

For further research, the design of FMFs with semantic 

constraints [51] is suggested.  The sufficient condition to 

construct a monotone TSK-FIS-product model with multiple 

overlapped FMFs and with unimodal weighting vectors [52] 

can be conducted.  We will also examine monotone type-2 

TSK-FIS models [11][53] and multi-output TSK-FIS models in 

the next phase of research.  In addition, designing monotone 

TSK-FIS models with “ don’t care” conditions, where the firing 

strengths are computed with min T-norm, will be studied. 

Investigations on monotone TSK-FIS models utilizing recent 

advances on fuzzy rule interpolation [16][25][34][35][36][41] 

are useful. Studies on the relationship between functional OWA 

[54] and monotone TSK-FIS models will also be carried out.  

In addition, inspired by the work in [55], the consideration 

of the monotone requirement as a design prior, and the practice 

to relax the monotone requirement with the aim of reducing 

design conservatism will be formulated as a dilemma for 

analysis.  On the other hand, inspired by the work in [56], the 

use of the proposed necessary and sufficient conditions for 

developing monotone generalized fuzzy systems, and/or 

artificial neural networks (see [22] [57]) will be investigated.  

Developing monotone TSK-FIS-Product models from data with 

various learning paradigms [58][59] will also be studied. 

ACKNOWLEDGEMENT 

The authors would like to acknowledge the support provided by 

the Ministry of Higher Education Malaysia under the 

Fundamental Research Grant Scheme (Ref: 

FRGS/1/2021/ICT02/UKM/03/1) and the Research University 

Grant (GUP) scheme, grant number GUP-2022-060 by 

Universiti Kebangsaan Malaysia.  

REFERENCES 

[1] E. Van Broekhoven and B. De Baets, “Only smooth rule bases can generate 

monotone Mamdani-Assilian models under center-of-gravity defuzzification,” 
IEEE Trans. Fuzzy Syst., vol. 17, no. 5, pp. 1157-1174, Oct. 2009.  

[2] J. M. Won and F. Karray, “Toward necessity of parametric conditions for 

monotonic fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 22, no. 2, pp. 465-
468, Apr. 2014.  

[3] J. M. Won, S. Y. Park, and J. S. Lee, “Parameter conditions for monotonic 

Takagi-Sugeno-Kang fuzzy system,” Fuzzy Sets Syst., vol. 132, pp. 135-146, 
2002.  

[4] K. M. Tay and C. P. Lim, "On monotonic sufficient conditions of fuzzy 

inference systems and their applications", Int. J. Uncertainty Fuzziness, vol. 19, 
no. 5, pp. 731-757, Oct. 2011. 

[5] Y. W. Kerk, C. Y. Teh, K. M. Tay, and C. P. Lim, “Parametric conditions 

for a monotone TSK fuzzy inference system to be an n-ary aggregation 
function,” IEEE Trans. Fuzzy Syst., vol. 29, no. 7, pp. 1864-1873, Jul. 2021. 

[6] P. Hušek, “Monotonic smooth Takagi-sugeno fuzzy systems with fuzzy sets 

with compact support,” IEEE Trans. Fuzzy Syst., vol. 27, no. 3, Mar. 2019. 
[7] E. Van Broekhoven, Monotonicity Aspects of Linguistic Fuzzy Models, 

Ph.D. dissertation, Ghent Univ., Ghent, Belgium, 2007. 

[8] C. Y. Teh, Y. W. Kerk, K. M. Tay, and C.P. Lim, “On modelling of data-
driven monotone zero-order TSK fuzzy inference systems using a system 

identification framework,” IEEE Trans. Fuzzy Syst., pp. 3860-3874, Jun. 2018. 
[9] H. Seki, H. Ishii, and M. Mizumoto, “On the monotonicity of fuzzy-

inference methods related to T-S inference method,” IEEE Trans. Fuzzy Syst., 

vol. 18, no. 3, pp. 629-634, Jun. 2010.  
[10] V. S. Kouikoglou and Y. A. Phillis, “On the monotonicity of hierarchical 

sum-product fuzzy systems,” Fuzzy Sets Syst., vol. 160, no. 24, pp. 3530-3538, 

Dec. 2009.  
[11] C. Li, J. Yi, and G. Zhang, “On the monotonicity of type-2 fuzzy logic 

systems,” IEEE Trans. Fuzzy Syst., vol. 22, no. 5, pp. 1197-1212, Oct. 2014.  

[12] P. Hušek, “System identification using monotonic fuzzy models,” In 
Recent Developments and the New Direction in Soft-Computing Foundations 

and Applications, pp. 229-242, 2021. 

[13] P. Hušek, “On monotonicity of Takagi-Sugeno fuzzy systems with 
ellipsoidal regions,” IEEE Trans. Fuzzy Syst., vol. 24, no. 6, pp. 1673–1678, 

Dec. 2016. 



13 

IEEE Transactions on Cybernetics, 2025, accepted 

10.1109/TCYB.2025.3531013 

On Ordered Weighted Averaging Operator and Monotone Takagi-Sugeno-Kang Fuzzy Inference Systems 

[14] L. M. Pang, K. M. Tay, and C. P. Lim, “Monotone fuzzy rule relabeling 

for the zero-order TSK fuzzy inference system,” IEEE Trans. Fuzzy Syst., vol. 

24, no. 6, pp. 1455–1463, Dec. 2016. 

[15] Y. W. Kerk, K. M. Tay, and C. P. Lim, “Monotone interval fuzzy inference 
systems,” IEEE Trans. Fuzzy Syst., vol. 27, no. 11, Nov. 2019.  

[16] Y. W. Kerk, K. M. Tay, and C. P. Lim, “Monotone fuzzy rule interpolation 

for practical modeling of the zero-order TSK fuzzy inference system,” IEEE 
Trans. Fuzzy Syst., vol. 30, no. 5, May. 2022. 

[17] P. Lindskog and L. Ljung, “Ensuring monotonic gain characteristics in 

estimated models by fuzzy model structures,” Automatica, vol. 36, no. 2, pp. 
311–317, 2000. 

[18] J. Alcalá-Fdez, R. Alcalá, S. González, Y. Nojima, and S. García, 

“Evolutionary fuzzy rule-based methods for monotonic classification,” IEEE 
Trans. Fuzzy Syst., vol. 25, no. 6, pp. 1376–1390, Dec. 2017. 

[19] V. D. Kouloumpis, V. S. Kouikoglou, and Y. A. Phillis, “Sustainability 

assessment of nations and related decision making using fuzzy logic,” IEEE 
Syst. J., vol. 2, no. 2, pp. 224–236, Jun. 2008. 

[20] C. Li, J. Yi, M. Wang, and G. Zhang, “Monotonic type-2 fuzzy neural 

network and its application to thermal comfort prediction,” Neural Comput. 

Appl., vol. 23, no. 7, pp. 1987–1998, 2013. 

[21] Y. W. Kerk, K. M. Tay, and C. P. Lim, “An analytical interval fuzzy 

inference system for risk evaluation and prioritization in failure mode and effect 
analysis,” IEEE Systems. J., vol. 11, no. 3, Sept. 2017.  

[22] Hušek, P., On monotonic radial basis function networks. IEEE Trans. 

Cybern., vol. 54, no.2, pp.717-727, Feb. 2024. 
[23] R. R. Yager, “OWA aggregation over a continuous interval argument with 

applications to decision making, ” IEEE Trans. Syst. Man, Cybern. B, vol. 34, 
no. 5, pp. 1952-1963, Oct. 2004. 

[24] R. R. Yager, “Families of OWA operators,” Fuzzy Sets and Systems, pp. 

125-148, vol. 59, no. 2, Oct 1993.  
[25] Y. W. Kerk, K. M. Tay, and C. P. Lim, “Some notes on monotone TSK 

fuzzy inference systems,” in The 20TH World Congress of the International 

Fuzzy Systems Association (IFSA 2023), Aug 20-23, 2023. 
[26] A. Krishor, A. K. Singh, and N. R. Pal, “Orness measure of OWA 

operators: a new approach,” IEEE Trans. Fuzzy Syst., vol. 22, no. 4, pp. 1039-

1045, Aug. 2014.  
[27] G. Beliakov, H. B. Sola, and T. C. Sánchez, A practical guide to averaging 

functions. Switzerland: Springer International Publishing, 2016.  

[28] L. De Miguel, D. Paternain, I. Lazasoain, G. Ochoa, and H. Bustince, 
“Orness for real m-dimensional interval-valued OWA operators and its 

application to determine a good partition,” International Journal of General 

Systems, vol. 48, no. 8, pp. 843-860, 2019. 
[29] O. N. Sayaydeh, M. F. Mohammed, and C. P. Lim, “Survey of fuzzy min–

max neural network for pattern classification variants and applications,” IEEE 

Trans. Fuzzy Syst., vol. 27, no. 4, pp. 635–645, Apr. 2019. 
[30] J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-fuzzy and soft computing-

a computational approach to learning and machine intelligence. Upper Saddle 

River, NJ: Prentice-Hall, 1997. 
[31] L. T. Kóczy and K. Hirota, “Size reduction by interpolation in fuzzy rule 

bases,” IEEE Trans. Syst. Man, Cybern. B, vol. 27, no. 1, pp. 14-25, Feb. 1997. 

[32] P. Zhang, C. Shang, and Q. Shen, “Fuzzy rule interpolation with K-
neighbors for TSK models,” IEEE Trans. Fuzzy Syst., vol. 30, no. 10, pp. 4031-

4043, Oct. 2022.   

[33] M. Mizumoto and H.-J. Zimmermann, “Comparison of fuzzy reasoning 
methods”, Fuzzy Sets and Systems, vol. 8, pp. 253-283, Sept. 1982.  

[34] S. M. Chen and W. C. Hsin, “Weighted fuzzy interpolative reasoning based 

on the slopes of fuzzy sets and particle swarm optimization techniques,” IEEE 
Trans. Cybern., vol. 45, no. 7, pp. 1250-1261, Jul. 2015. 

[35] F. Li, Y. Li, C. Shang, and Q. Shen, “Fuzzy knowledge-based prediction 

through weighted rule interpolation,” IEEE Trans. Cybern., vol. 50, no. 10, pp. 
4508-4517, Oct. 2020.  

[36] J. Yang, C. Shang. Y. Li, and Q. Shen, “ANFIS construction with sparse 

data via group rule interpolation”, IEEE Trans. Cybern., vol. 51, no. 5, pp. 
2773-2786, May. 2021. 

[37] K. M. Tay and C. P. Lim, “On the use of fuzzy inference techniques in 

assessment models: part II: industrial applications,” Fuzzy Optim. Decis. Mak., 
vol. 7, no. 3, pp. 283-302, 2008. 

[38] J. C. Bezdek, R. Chandrasekhar, and Y. Attikouzel, “A geometric approach 

to edge detection,” IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 52-75, Feb. 1998. 
[39] V. Petridis and V.G. Kaburlasos, “Learning in the framework of fuzzy 

lattices,” IEEE Trans. Fuzzy Syst., vol. 7, no. 4., pp. 422-440, Aug. 1999.  

[40] H. Seki and M. Mizumoto, “On the equivalence conditions of fuzzy 

inference methods-part 1: basic concept and definition,” IEEE Trans. Fuzzy 

Syst., vol. 19, no. 6, pp. 1097-1106, Dec. 2011. 

[41] C. H. Jong, K.M. Tay, Y.W. Kerk, and C.P. Lim, “Monotone Fuzzy Rule 
Interpolation for TSK-FIS-Like n-ary Aggregation Functions,” in 2023 IEEE 

International Conference on Fuzzy Systems (IEEE-FUZZ 2023), Aug 13-17, 

2023. 
[42] J. M. Mendel, Q. Liang, and W. E. Combs, “Comments on “combinatorial 

rule explosion eliminated by a fuzzy rule configuration”[with reply],” IEEE 

Trans. Fuzzy Syst., vol. 7, no. 3, pp. 369-373, Jun. 1999.  
[43] L. X. Wang and J.M. Mendel, “Fuzzy basis functions, universal 

approximation, and orthogonal least-squares learning,” IEEE Trans. Neural 

Netw., vol 3, no. 5, pp. 807-814, Sept. 1992. 
[44] J. M. Mendel, “Fuzzy logic systems for engineering: a tutorial,” Proc. 

IEEE, vol. 83, no. 3, pp. 345-377, Mar. 1995.  

[45] S. S. Epp, Discrete Mathematics with Applications. Cengage learning, 
2010.  

[46] A. B. Arrieta et al., “Explainable artificial intelligence (XAI): Concepts, 

taxonomies, opportunities and challenges toward responsible AI,” Inf. Fusion, 

vol. 58, pp. 82-115, Jun. 2020. 

[47] J. M. Mendel and P.P. Bonissone, “Critical thinking about explainable AI 

(XAI) for rule-based fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 29, no. 12, 
pp. 3579-3593, Dec. 2021.  

[48] Z. Hua, X. Jing, and L. Martínez, “An ELICIT information-based ORESTE 

method for failure mode and effect analysis considering risk correlation with 
GRA-DEMATEL,” Inf. Fusion, vol. 93, pp. 396-411, May 2023.  

[49] R. H. Yeh and M. H. Hsieh, “Fuzzy assessment on FMEA for a sewage 
plant,” J. Chin. Inst. Ind. Eng., vol. 24, no. 6, pp. 505-512, 2007. 

[50] M. H. Hsieh, “Application of failure mode and effect analysis based on 

fuzzy theory-the case of sewage treatment plant,” M.S. thesis, Dept. Ind. 
Manage., Nat. Taiwan Univ. Sci. Technol., Taipei, Taiwan, 2006. 

[51] J. V. de Oliveira, “Semantic constraints for membership function 

optimization,” IEEE Trans. Systems Man Cybern., vol. 29, pp. 128-138, Jan. 
1999. 

[52] B. Llamazares, “Generalizations of weighted means and OWA operators 

by using unimodal weighting vectors,” IEEE Trans. on Fuzzy Syst., vol. 28, no. 
9, Sept. 2020.  

[53] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction 

and New Directions. Upper Saddle River, NJ: Prentice-Hall, 2001. 
[54] J. Medina, “OWA operators with functional weights,” Fuzzy Sets and 

Systems, pp. 38-56, vol. 414, pp. 38-56, Jul. 2021. 

[55] Wen, J., Shi, P., Li, R. and Luan, X., Distributed filtering for semi-Markov-
type sensor networks with hybrid sojourn-time distributions-A nonmonotonic 

approach. IEEE Trans. Cybern., vol. 53, no. 5, pp.3075-3088, May 2023. 

[56] Sun, C. and Hu, G., Distributed generalized Nash equilibrium seeking for 
monotone generalized noncooperative games by a regularized penalized 

dynamical system. IEEE Trans. Cybern., vol. 51, no. 11, pp.5532-5545, Nov. 

2021. 
[57] Zhang, F. and Zeng, Z., Multiple Mittag-Leffler stability of delayed 

fractional-order Cohen–Grossberg neural networks via mixed monotone 

operator pair. IEEE Trans. Cybern., vol. 51, no. 12, pp.6333-6344, Dec. 2021. 
[58] Zare, M., Kebria, P.M., Khosravi, A. and Nahavandi, S., 2024. A survey 

of imitation learning: Algorithms, recent developments, and challenges. IEEE 

Trans. Cybern. doi: 10.1109/TCYB.2024.3395626 
[59] Nguyen, T.T., Nguyen, N.D. and Nahavandi, S., 2020. Deep reinforcement 

learning for multiagent systems: A review of challenges, solutions, and 

applications. IEEE Trans. Cybern., vol. 50, no. 9, pp. 3826-3839, Sept. 2020. 
 

Yi Wen Kerk received her bachelor’s and Master’s 

degrees in Engineering from Universiti Malaysia 

Sarawak, Malaysia, in 2014 and 2016, respectively, 

and PhD degree from Deakin University, Australia in 

2020.  She is currently a senior lecturer at Faculty of 

Information Science & Technology, National 

University of Malaysia, Malaysia.  Her research interests include fuzzy 

systems, risk management, machine learning, and data mining. 



14 

IEEE Transactions on Cybernetics, 2025, accepted 

10.1109/TCYB.2025.3531013 

On Ordered Weighted Averaging Operator and Monotone Takagi-Sugeno-Kang Fuzzy Inference Systems 

Kai Meng Tay received his Bachelor of Engineering 

in Electrical and Electronic Engineering from 

University of Hertfordshire, UK in 2002, both MSc in 

Electrical and Electronic Engineering and Ph.D. 

degrees from Universiti Sains Malaysia, Malaysia in 

2006, and 2011, respectively.  He is currently an 

Associate Professor at Faculty of Engineering, 

Universiti Malaysia Sarawak. His research interests include fuzzy 

systems and failure analysis. 

Jong Chian Haur received his Bachelor of Electronic 

Engineering and MSc in Electrical and Electronic 

Engineering from Universiti Malaysia Sarawak, 

Malaysia, in 2011 and 2015. He is currently a lecturer 

at University College Technology of Sarawak.  His 

research interests include fuzzy systems and failure 

analysis. 

Chee Peng Lim received his Bachelor of Electrical 

Engineering (1st Class) degree from University of 

Technology, Malaysia in 1992, and MSc in 

Engineering (Control Systems) (Distinction) and PhD 

degrees from University of Sheffield, UK, in 1993 and 

1997, respectively.  He is currently a professor at 

Institute for Intelligent Systems Research and Innovation, Deakin 

University.  His research interests include computational intelligence, 

pattern classification, optimization, decision support systems, medical 

prognosis and diagnosis, as well as fault detection and diagnosis. 

APPENDIX 

Several relevant properties of FMFs are explained.   

Property A. Characteristics of an FMF 𝜇𝑖
𝑟𝑖(𝑥𝑖) 

A.1. 𝜇𝑖
𝑟𝑖(𝑥𝑖) is convex [30] iff for any 𝑑1, 𝑑2 ∈ 𝑋𝑖 and any 𝜆 ∈ [0,1], 

𝜇𝑖
𝑟𝑖(𝜆𝑑1 + (1 − 𝜆)𝑑2) ≥ min(𝜇𝑖

𝑟𝑖 (𝑑1), 𝜇𝑖
𝑟𝑖(𝑑2)) is always true.  

Otherwise, it is non-convex [30]. 

A.2. 𝜇𝑖
𝑟𝑖(𝑥𝑖) is normal [53] iff ∃𝑥𝑖 such that 𝜇𝑖

𝑟𝑖(𝑥𝑖) = 1.  Otherwise, 

it is sub-normal [53]. 

A.3. 𝜇𝑖
𝑟𝑖(𝑥𝑖)  is jump discontinuous [53] at 𝑐 ∈ 𝑋𝑖  if lim

𝑥𝑖→𝑐+
𝜇𝑖

𝑟𝑖(𝑐) ≠

lim
𝑥𝑖→𝑐−

𝜇𝑖
𝑟𝑖(𝑐) where both lim

𝑥→𝑐+
𝜇𝐴 (𝑐) and lim

𝑥→𝑐−
𝜇𝐴 (𝑐) exist. 

A.4. 𝜇𝑖
𝑟𝑖(𝑥𝑖) is complete if for all 𝑥𝑖, 𝜇𝑖

𝑟𝑖 (𝑥𝑖) is defined. 
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