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Abstract: COVID-19 has profoundly impacted all countries' lives, social habits, and economies, resulting in a swift health 
system breakdown. This immense effect has caused worldwide research to assess its impact on various healthcare, socio-
economic and demographic factors. This paper focuses on evaluating the impact of COVID-19 in Pakistan by adopting a 
mathematical model consisting of five population compartments: Susceptible (S), Vaccinated (V), Exposed (E), Infected (I), 
and Recovered (R) by utilising COVID-19 data specific to Pakistan. The primary objective is to analyse the influence of 
various parameters within the model. Numerical simulations were obtained using the higher-order Runge-Kutta method for 
dependent variables and the basic reproduction number by varying the parameters. The sensitivity analysis was then performed 
to assess the effect of the parameters. From the analysis, it is revealed the key parameters, including death rate, vaccination 
rate, and vaccine wane rate are more sensitive to the proposed SVEIR model. The simulation of basic reproduction was also 
carried out by observing the simultaneous effect of the five parameters, which includes the probability of susceptibility to 
becoming infectious per contact, isolated infectious cases, infectious period, the average number of contacts per day per case 
and death rate.  The simulations show that the death rate produces more variations in almost all classes of the population. 
Vaccination rate reveals a higher number of recovered populations and reduced infected populations, and vaccine wane rate is 
suitable for intermediate values of the selected interval. The basic reproduction number also remains significant for the 
combination of probability of susceptibility to becoming infectious per contact and death rate. These insights contribute to the 
understanding of the sensitivity of disease dynamics under the influence of various interaction parameters. 

Keywords: COVID-19; Disease modelling; SEIVR model; Sensitivity analysis; Transmission in Pakistan. 

1. INTRODUCTION 
The world health system faces a significant and impending threat from the Coronavirus (COVID-19) pandemic. More than 529 
million cases have been confirmed in more than 200 countries since COVID-19 first appeared in December 2019, and more 
than 6 million people have died as a result [1]. At the onset of 2020, the world has been unprepared to face the unprecedented 
sanitary emergency of the COVID-19 pandemic. The first cases of the SARS-CoV-2 illness were reported in the Wuhan region 
of China [2].  As a result of globalisation, the spread of infection along the earth’s surface in less than one year, profoundly 
impacting the lives, social habits, and economies of all countries, resulting in a swift breakdown of their health systems. Sixteen 
months after the first reported case of COVID-19, the global pandemic has resulted in the death of over 3.8 million individuals 
and infected more than 175 million people (not including those who have not been tested or diagnosed) [3]. The immense 
effects of the COVID-19 pandemic sparked an extensive global research effort to gain insight into its transmission and the 
effectiveness of containment measures [4, 5]. The rapid spread of COVID-19 prompted governments worldwide to implement 
strict measures such as lockdowns, restrictions on social and economic activities, hygiene standards, and masks to limit the 
transmission of the virus [6]. 

Non-pharmaceutical interventions (NPIs) are very successful in limiting the spread of the disease and are the only means 
of preventing further transmission until effective drugs and vaccines become available [7, 8]. The NPIs play an essential role 
in controlling the spread of the virus. However, these measures, particularly the restrictions on social and economic interactions, 
take a significant toll on people’s lives, causing heavy financial and psychological burdens [9-11]. NPIs must be carefully 
planned and optimised for the best possible results with the most negligible negative impact on people’s lives. Mathematical 
models designed to reflect the infection paths and predict how a specific disease will progress in risk populations can be 
beneficial in recent times. Many papers have addressed the mathematical description of COVID-19. This includes McKendrick 

mailto:sinabila@unimas.my


 K. LAGHARI ET AL., APPLICATIONS OF MODELLING AND SIMULATION, 9, 2025, 12-21.  
 

13 
 

and Kermack [12] which has extended the basic SIR structure (Susceptible, Infected, and Recovered). Multi-compartmental 
epidemic models have been developed to represent various aspects of COVID-19 mathematically. These models consider the 
presence of asymptomatic infections, the incubation-latency period, and the challenges associated with contagion tracking [13, 
14]. Additionally, quarantine and isolation compartments are included, along with the different severity levels of the disease 
[15-18]. 

Various mathematical models have been employed to understand the dynamics of COVID-19 transmission in Pakistan, 
drawing insights from multiple studies. Shah et al. [19] initiated the exploration using the SIR model, followed by Ahmad et 
al. [20], who introduced the SEIR fractional model, providing a more enhanced perspective on the epidemic. Subsequently, 
Peter et al. [21] expanded upon these foundations by developing a new mathematical model based on actual data from Pakistan, 
contributing to a deeper understanding of the local epidemiological situation. Naik et al. [22] further enhanced the modelling 
framework by integrating treatment dynamics using fractional derivatives, offering valuable insights into the impact of 
interventions. In parallel, Memon et al. [23] conducted a mathematical analysis focusing on measles epidemiology, shedding 
light on broader regional disease dynamics. Li et al. [24] contributed to the discourse with a dynamic study focusing on the 
third wave of the pandemic, enriching the understanding of temporal patterns. Bhattacharjee et al. [25] undertook a comparative 
analysis of various epidemiological models, providing valuable insights into their respective strengths and limitations. Finally, 
Gomez et al. [26] introduced the SCIR model, incorporating migration dynamics and a non-linear incidence function, 
representing a significant advancement in epidemic modelling methodologies. These diverse studies collectively contribute to 
a comprehensive understanding of COVID-19 transmission dynamics, informing effective disease control and mitigation 
strategies in Pakistan and beyond. 

In literature, many studies have been reported to analyse and predict the behaviour of different types of diseases. However, 
the SVEIR-type model for COVID-19 in Pakistan is not well established. Adopting comprehensive models presents a drawback 
in that their identification is challenging, particularly during the initial outbreak when prompt decisions must be made. That is 
the primary motivation for adopting a minimal SVEIR model to describe COVID-19 transmission. It can be unexpectedly 
diagnosed according to a brief observation interval, and besides, one can benefit from the numerical solutions that can be 
exploited when designing the control measure policy. 

In this paper, some modifications have been made to the proposed model of Gill et al. [27] by introducing the vaccination 
compartment and a few interaction parameters. The problem is formulated based on a time-varying SVEIR model, which 
facilitates the reproduction of the disease’s dynamic evolution with fewer parameters and accounts for the continually changing 
suppression measures employed by the Pakistani government. To maintain mathematical simplicity in our formulation, we 
have overlooked significant epidemiological factors that arise over extended periods, such as the loss of immunity following 
recovery, reinfection, the impact of vaccinations, and virus variations.  

2. MATERIALS AND METHODS  

2.1 Data Source 
The COVID-19 data in Pakistan, covering the period from 18 March 2020 to April 2022, was obtained from reliable sources, 
including the Countrywide Disaster Control Authority (NDMA) [28], the Ministry of National Health Services Regulations 
and Coordination [29], and the official website of the Pakistan Bureau of Statistics [30]. The variables consist of active cases, 
quarantine periods and death rates. 

2.2 Data Analysis 
The model analysis provides an outbreak simulation that includes the duration of the outbreak, outbreak peak in months and 
peak active case numbers during the period. These simulations were conducted when no control and movement control 
measures were taken. Furthermore, the reduction in the percentage of the highest active cases through various controlling 
measures established was described and analysed.  

2.3 Model Formulation 
This study introduces an innovative mathematical model considering five variables: Susceptible (𝑆𝑆), Vaccinated (𝑉𝑉), Exposed 
(𝐸𝐸), Infected (𝐼𝐼) and Recovered (𝑅𝑅); in short (the SVEIR model). The compartmental diagram of the proposed model, which 
is based on Pakistani data, is shown in Figure 1. By comparing the above compartment model and Gill et al. [27], the scenario 
can be represented as a system of ordinary differential equations as: 

  
𝑑𝑑𝑆𝑆
𝑑𝑑𝑑𝑑

= (𝜇𝜇 + 𝜔𝜔)𝑉𝑉 −
𝛽𝛽𝛽𝛽𝑆𝑆𝐼𝐼
𝑁𝑁

− 𝜏𝜏𝑆𝑆,
 

(1) 

𝑑𝑑𝑉𝑉
𝑑𝑑𝑑𝑑

= 𝜏𝜏𝑆𝑆 − (𝜇𝜇 + 𝜔𝜔)𝑉𝑉,
 

(2) 

𝑑𝑑𝐸𝐸
𝑑𝑑𝑑𝑑

=
𝛽𝛽𝛽𝛽𝑆𝑆𝐼𝐼
𝑁𝑁

− 𝜑𝜑𝐸𝐸,
 

(3) 

𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

= 𝜑𝜑𝐸𝐸 − 𝜀𝜀𝐼𝐼 − 𝛿𝛿𝐼𝐼 − 𝛾𝛾𝐼𝐼,
 

(4) 
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Figure 1. The extended Susceptible (𝑆𝑆), Vaccinated (𝑉𝑉), Infected (𝐼𝐼), Exposed (𝐸𝐸) and Recovered (𝑅𝑅) model depicts the 

control measures taken in Pakistan. The additional compartment is the vaccinated population (𝑉𝑉).  

𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝐼𝐼.
 

(5) 

The description of the different interaction parameters involved in the above SVEIR model and their estimated values (either 
obtained from reliable sources or calibrated using the Pakistan data) are listed in Table 1. 

Table 1. List of the parameters and their corresponding values used in the model simulation. 

Parameters Description Value Source 
N Total human population in Pakistan 235,824,862 Pakistan Bureau of 

Statistics [30] 
1 𝜙𝜙⁄  Incubation Period 0.1 Estimated using the data 
𝛽𝛽 The probability of susceptibility becoming infectious 

per contact 
0.273 Calibrated using data 

1 𝛾𝛾⁄  Infectious period 1/6.5 Calibrated using data 
𝜀𝜀 The death rate due to COVID-19 0.25 Estimated 
𝛽𝛽 The average number of contacts per day per case 30 Calibrated using data 
𝜏𝜏 People in the vulnerable groups receiving 

vaccination rate 
1.0 Calibrated using data 

𝜇𝜇 Natural death rate (constant for all classes) 0.8408 Calibrated using data 
𝜔𝜔 Vaccine wane rate 1.0 Calibrated using data 
𝛿𝛿 The mean daily rate at which infectious cases are 

isolated 
0.039 Fitted 

 

The above model (Equations (1) - (5)) is based on the mathematical modelling theories for disease epidemics [1], 
whereas, for the endemic equilibrium state, we must have 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ = 𝑑𝑑𝐸𝐸 𝑑𝑑𝑑𝑑⁄ = 𝑑𝑑𝐼𝐼 𝑑𝑑𝑑𝑑⁄ = 𝑑𝑑𝑅𝑅 𝑑𝑑𝑑𝑑⁄ = 0. Therefore, assuming 
initially that the population attains disease-free equilibrium as �𝑆𝑆(0),𝐸𝐸(0), 𝐼𝐼(0),𝑅𝑅(0)� = (𝑁𝑁, 0, 0, 0), then 𝑆𝑆 𝑁𝑁⁄ = 1. For the 
disease to spread in the population 𝐼𝐼 > 0, resulting in 𝛽𝛽𝑆𝑆 − (𝛿𝛿 + 𝛾𝛾 + 𝜀𝜀) > 0. Comparing this inequality with the definition of 
the basic reproductive number, 𝑅𝑅0, this can be defined as: 

𝑅𝑅0 =
𝛽𝛽𝛽𝛽

(𝛿𝛿 + 𝛾𝛾 + 𝜀𝜀).
 

(6) 

 
Accordingly, we obtained the vaccinated reproductive number (𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣) through the SVEIR model using the Next Generation 
Matrix (NGM). The vaccination reproduction number represents the number of secondary cases that can arise from a single 
infected individual in a completely susceptible population, considering the effect of vaccination. It can be calculated as: 
  

𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣 =
𝜃𝜃𝛽𝛽(1 −𝜓𝜓𝛽𝛽)

(𝜃𝜃 + 𝜇𝜇)(𝛼𝛼𝐼𝐼 + 𝛿𝛿𝐼𝐼 + 𝜆𝜆𝐼𝐼 + 𝜇𝜇) (𝑆𝑆∗ + 𝜔𝜔𝑉𝑉∗),
 

(7) 

 
where 𝜃𝜃 is the duration of quarantine, 𝜓𝜓 is vaccine efficacy, 𝛼𝛼 is the vaccine's effectiveness in reducing susceptibility, 𝜆𝜆 is the 
force of infection, 𝑆𝑆∗and 𝑉𝑉∗ are endemic equilibrium points of Susceptible and Vaccinated, respectively.  It is also noteworthy 
to mention that if 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣 >  1, the epidemic is likely to increase exponentially, indicating a higher transmission potential, and if 
𝑅𝑅 𝑣𝑣𝑣𝑣𝑣𝑣 <  1, the epidemic is expected to reduce over time. 
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The endemic equilibrium points for the dependent variables exist when 𝑅𝑅0 > 1. Suppose that 𝑋𝑋* = (𝑆𝑆∗, 𝑉𝑉∗, 𝐸𝐸∗, 𝐼𝐼∗, 𝑅𝑅∗) is 
the endemic equilibrium point of the model (Equations (1) - (5)), then 𝑋𝑋* can be computed by taking all derivatives of the 
equations and equating them to zero as: 

(𝜇𝜇 + 𝜔𝜔)𝑉𝑉∗ −
𝛽𝛽𝛽𝛽𝑆𝑆∗𝐼𝐼∗

𝑁𝑁
− 𝜏𝜏𝑆𝑆∗ = 0,

 
(8) 

𝜏𝜏𝑆𝑆∗ − (𝜇𝜇 + 𝜔𝜔)𝑉𝑉∗ = 0,
 

(9) 
𝛽𝛽𝑆𝑆∗𝐼𝐼∗

𝑁𝑁
− 𝜑𝜑𝐸𝐸∗ = 0,

 
(10) 

𝜑𝜑𝐸𝐸∗ − 𝜀𝜀𝐼𝐼∗ − 𝛿𝛿𝐼𝐼∗ − 𝛾𝛾𝐼𝐼∗ = 0,
 

(11) 
𝛾𝛾𝐼𝐼∗ = 0.

 
(12) 

 
Solving Equations (8) – (12) yields 𝑋𝑋* as 

𝑆𝑆∗ =
𝑁𝑁(𝜇𝜇 + 𝜔𝜔)𝑉𝑉∗ − 𝛽𝛽𝛽𝛽𝐼𝐼∗𝑆𝑆∗

𝑁𝑁𝜏𝜏  
(13) 

𝑉𝑉∗ =
𝜏𝜏𝑆𝑆∗

(𝜇𝜇 + 𝜔𝜔)
,
 

(14) 

          𝐸𝐸∗ = 𝛽𝛽𝛽𝛽𝑆𝑆∗𝐼𝐼∗

𝜑𝜑𝜑𝜑
, 

 
(15) 

𝐼𝐼∗ =
𝜑𝜑𝐸𝐸∗ − 𝜀𝜀𝐼𝐼∗ − 𝛿𝛿𝐼𝐼∗

𝛾𝛾
,
 

(16) 

𝑅𝑅∗ = 0.
 

(17) 

2.4 Model Simulation 
The nonlinear system of ordinary equations (Equations (1) – (5)) was solved numerically by writing a user-defined code for 
the higher-order Runge-Kutta (RK) method on R software. The initial conditions applied were taken from the data, and the 
values of the other parameters used in the model were chosen, as mentioned in Table 1. It was observed that the death rate (𝜀𝜀), 
vaccination rate (𝜏𝜏) and the vaccine wane rate (𝜔𝜔) are the most significant compared to other parameters. Hence, the sensitivity 
analysis of these three parameters was conducted with varying values. Before sensitivity analysis, a few trials for validation of 
the active cases were also conducted. For instance, Figure 2 shows the number of active (𝑁𝑁𝑣𝑣𝑣𝑣) cases in Pakistan from 28 
December 2021 to 10 March 2022, and Figure 3 compares the active cases data with numerical results for Pakistan for a period 
of 17 November 2021 to 10 April 2022. 

The simulation results in Figure 2 were measured without MCO (Movement control order). Based on this simulation, it is 
estimated that the number of active cases will exponentially rise and drop after reaching a certain critical point. In addition, 
the simulation can project the outbreak well over the next few months. 

3. RESULTS AND DISCUSSION  
The section presents the results of three sensitive parameters and basic reproductive number (R0) obtained from the numerical 
solution of the SVEIR.  

3.1 Sensitivity Analysis of the Death Rate of COVID-19 
Figures 4-8 exhibit the variations in S, V, E, I and R under the influence of 𝜀𝜀, respectively. The behaviour of the trends 
demonstrates that the S, E, I and R pose more variations to 𝜀𝜀 while V has less effect towards 𝜀𝜀. The average values of all five 
dependent variables under the varied values of ε are listed in Table 2. Furthermore, increasing the values of 𝜀𝜀, the trends of S, 
E, I and R also increased simultaneously. Figure 4 shows that the susceptible population (S) tends to decrease for the number 
of days to some extent and then marginally increase or asymptotically decrease for some fixed values of ε. It appears that the 
values of 𝜀𝜀 can control the behaviour of (S) significantly. In contrast, the vaccinated population (V) is not significantly affected 
by 𝜀𝜀, as depicted in Figure 5. Figure 6 reveals that the exposed population (E) tends to behave like normally distributed data 
where the E shows the normal curves to the number of days. When ε is increased, the peak of curves is reduced. In Figure 7, 
the infected population (I) also exhibits normal behaviour concerning time, but as the values of ε are reduced, the peak of 
normal curves reaches an upward direction significantly. This suggests that to reduce the infection, ε should be set to high 
values to reduce the infection. The behaviour of the recovered population (R) under the influence of ε is shown in Figure 8. It 
can be seen from the results that for the intermediate values of ε, more recovery is expected as compared to other smaller or 
larger values.  The analysis presented in Figures 4-8 may help to select any feasibility value of ε for which the infection can be 
put into any desired range. 
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Figure 2. SVEIR model simulation of COVID-19 active 

cases in Pakistan (28 December 2021 to 10 March 2022). 

 
Figure 3. Comparison of actual data with numerical results 

of the SVEIR model for Pakistan. 
 
 

Table 2. Effect of the 𝜀𝜀 on the 𝑆𝑆,𝑉𝑉,𝐸𝐸, 𝐼𝐼,𝑅𝑅 population of Pakistan. 

ε Susceptible, S Vaccinated, V Exposed, E Infected, I Recovered, R 
0.25 34,040,504 1,942,888 39,778,580 19,847,416 237,972,173 
0.50 276,704,574     1,942,909    16,860,919     8,649,101    83,091,958 
0.75 193,244,161     1,942,902    28,644,037    14,314,555   132,116,353 
1.00 136,015,435     1,942,897    34,474,716    17,208,178   168,138,651 

 
 
 

 
Figure 4. Behaviour of Susceptible (S) class for different 

death rates due to COVID-19 (𝜀𝜀) values. 

 
Figure 5. Behaviour of Vaccinated (V) class for different 

death rates due to COVID-19 (𝜀𝜀) values. 
 
 

 
Figure 6. Behaviour of Exposed (E) class for different death 

rates due to COVID-19 (𝜀𝜀) values. 

 
 

 
Figure 7. Behaviour of Infected (I) class for different death 

rates due to COVID-19 (𝜀𝜀) values. 
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Figure 8. Behaviour of Recovered (R) class for different death rates due to COVID-19 (𝜀𝜀) values. 

 

3.2 Sensitivity Analysis of the Vaccination Rate 
Similarly, to study the relation between the vaccination rate and the behaviour of the S, E, I, V and R populations, the SVEIR 
model was run for the different values. 𝜏𝜏 = 0.001, 𝜏𝜏 = 0.01, 𝜏𝜏 = 0.1 and 𝜏𝜏 = 1 while all other parameters were set, as 
mentioned in Table 1. The average values of all five dependent variables under the varied values of 𝜏𝜏 are listed in Table 3. 
Figures 9-13 exhibit the variations in S, E, I, V and R under the influence of 𝜏𝜏 respectively. The behaviour of the trends 
demonstrates that the S, E, I, V and R do not pose more variations towards 𝜏𝜏. It appears that only for a higher value of 𝜏𝜏 = 1  
the trends of S, E, I, V and R abruptly increase while for other small values of 𝜏𝜏 the slight variations in the dependent variables 
are observed. The analysis also suggests that the time duration for the S and V is too small to be affected by the 𝜏𝜏 while for 
other classes, E, I and R, the time to reach the asymptotic value is significant.  
 
 

Table 3. Effect of the 𝜏𝜏 on the S, V, E, I, R population of Pakistan. 

𝜏𝜏 Susceptible, S Vaccinated, V Exposed, E Infected, I Recovered, R 
0.001 136,015,434 1,942,897 34,474,716 17,208,178 168,138,651 
0.010 35,459,887 2,129,359 43,222,250 21,509,527 257,036,309 
0.100 48,819,740 4,532,697 87,446,014 42,855,197 505,030,569 
1.000 212,478,655 116,797,869 2,157,338,841 1,041,959,426 12,731,433,504 

 

 
 

 
Figure 9. The behaviour of the Susceptible (S) class for 

different vaccination rate (𝜏𝜏) values. 

 
Figure 10. The behaviour of the Vaccinated (V) class for 

different vaccination rate (𝜏𝜏) values. 
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Figure 11. Behaviour of the Exposed (E) class for different 

vaccination rate (𝜏𝜏) values. 

 
Figure 12. The behaviour of the Infected (I) class for 

different vaccination rate (𝜏𝜏) values. 
 

 
Figure 13. Behavior of the Recovered (R) class for different vaccination rate (𝜏𝜏) values. 

3.3 Sensitivity Analysis of the Vaccine Wane Rate  
To analyse the effect of the vaccine vane rate 𝜔𝜔 on the behaviour of the S, E, I, V and R population, the SVEIR model was run 
for the different values such as 𝜔𝜔 = 0.25, 𝜔𝜔 = 0.5, 𝜔𝜔 = 0.75 and 𝜔𝜔 = 1 while all other parameters were set, as mentioned in 
Table 1. The average values of all five dependent variables under the varied values of 𝜔𝜔 are listed in Table 4. Figures 14-17 
show the variations in S, E, I, V and R under the influence of 𝜔𝜔 respectively. It is revealed that the S and V do not pose significant 
variations towards 𝜔𝜔, whereas the E and I trend increase and then decrease after reaching the peak point; their period to reach 
an asymptote is more significant than S and V. The recovered class R is exposed under an abrupt change of 𝜔𝜔 = 1.  
 

Table 4. Effect of the 𝜔𝜔 on the S, E, I, V and R population of Pakistan. 

ω  Susceptible, S Vaccinated, V Exposed, E Infected, I Recovered, R 
0.25 34,150,079 2,461,229 39,778,361 19,847,161 237,506,191 
0.5 34,112,990 2,213,656 39,778,508 19,847,279 237,717,403 

0.75 34,076,145 2,052,794 39,778,567 19,847,359 237,864,132 
1.0 34,040,504 1,942,888 39,778,580 19,847,416 237,972,173 

 
 

 
Figure 14. The behaviour of the Susceptible(S) class for 

different vaccine wane rate (𝜔𝜔) values. 

 
Figure 15. The behaviour of the Vaccinated (V) class for 

different vaccine wane rate (𝜔𝜔) values. 



 K. LAGHARI ET AL., APPLICATIONS OF MODELLING AND SIMULATION, 9, 2025, 12-21.  
 

19 
 

 
Figure 16. Behaviour of Exposed (E) class for different 

vaccine wane rate (𝜔𝜔) values. 

 
Figure 17. Behaviour of Infected (I) class for different 

vaccine wane rate (𝜔𝜔) values. 
 

 
Figure18. Behaviour of Recovered (R) class for different vaccine wane rate (𝜔𝜔) values. 

 

3.4 Basic Reproductive Number 
More specifically, the sensitivity analysis of the Basic Reproduction Number (𝑅𝑅0) is performed under the simultaneous effect 
of 𝛽𝛽, 𝛿𝛿, 𝛾𝛾, 𝛽𝛽 and 𝜀𝜀 values, respectively. In this regard, Figure 19 shows the changes in the reproduction number based on the 
mean daily rate of isolated infectious cases 𝛿𝛿 and the probability of susceptibility 𝛽𝛽. It is revealed that with a simultaneous 
increase in 𝛽𝛽 and 𝛿𝛿, the values of reproductive number decrease. Moreover, Figure 20 depicts the changes in the reproduction 
number according to the infectious period 1/𝛾𝛾 versus the average number of contacts per day per case, 𝛽𝛽. The figure shows 
that with a simultaneous increase in 𝛽𝛽 and 1/𝛾𝛾 decreases the values of the basic reproductive number. Further, Figure 21 
depicts the changes in the reproduction number according to the mean daily rate at which infectious cases are isolated δ versus 
the infectious period 1/𝛾𝛾. It can be observed that an increase in 𝛿𝛿 leads to a decrease in 𝑅𝑅0. At the same time, the increase in  
γ also increases the value of R0. Figure 22 depicts the changes in the reproduction number according to the death rate due to 
COVID-19, 𝜀𝜀 versus the probability of susceptibility becoming infectious per contact 𝛽𝛽. It can be observed that the 
simultaneous increase in the values of 𝛽𝛽 and 𝜀𝜀 decreases the values of  𝑅𝑅0 whereas the magnitude of 𝑅𝑅0 is much higher at 𝛽𝛽 
and 𝜀𝜀. In summary, the R0 remains more significant than 1 for the combination of 𝛽𝛽 and 𝜀𝜀 and for other parameters, it remains 
less than 1.  

4. CONCLUSION 
The mathematical modelling of COVID-19, specifically in Pakistan, has been the focus of this paper. First, a SVEIR 
mathematical model was obtained by incorporating the vaccination variable and other interaction parameters. Then, the 
numerical solution was obtained on R by writing a systematic user-defined code. Different simulation trials were run to validate 
the data, and the most appropriate values for the interaction parameters were examined. Since the main objective was to analyse 
the sensitivity of the most significant parameters on the dynamics of S, V, E, I and R classes, the sensitivity of the key 
parameters, including death, vaccination, and vaccine wane rates, was analyzed. In addition to these parameters, the other 
parameters, such as the probability of susceptibility becoming infectious per contact isolated infectious cases, infectious period, 
the average number of contacts per day per case, and death rate, were assessed for the sensitivity of the Basic Reproduction 
Number R0. The analysis reveals that the death rate is more sensitive as it produces more variations in almost all population 
classes. The vaccination rate reveals a higher number of recovered and reduced infected populations, and the vaccine wane 
rate performs better for intermediate values of the selected interval. Also, the R0 remains more significant than 1 for the 
probability of susceptibility becoming infectious per contact and death rate, and for other parameters, it remains less than 1. 
The results of this study may be quite helpful in understanding and predicting the behaviour of COVID-19. They may also 
provide insight into the control measures and the policy-making to mitigate the infection of such diseases that may probably 
appear in the future.       
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Figure19. Sensitivity analysis of basic reproduction number 
R0 under simultaneous variation in the parameters β and δ . 

 
Figure 20. Sensitivity analysis of basic reproduction number 
R0 under simultaneous variation in the parameters 𝛽𝛽and 𝛾𝛾. 

 

 
Figure 21. Sensitivity analysis of basic reproduction number 

R0 under simultaneous variation in the parameters 𝛿𝛿 and 
1/γ . 

 

 
Figure 22. Sensitivity analysis of basic reproduction number 
R0 under simultaneous variation in the parameters 𝛽𝛽 and 𝜀𝜀. 
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