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Abstract. LiDAR sensing is an active sensor that can produce three-dimensional point clouds. 

This sensor offers the 3D acquisition and analysis of forest data, providing details on the 

vertical structures of the forest. This study delved into the processing of raw LiDAR data 

obtained through laser scanning, employing software tools such as Justin Javad, Pospac MMS, 

LMS, Terrascan and TerraMatch. The processes involved are mission planning, LiDAR data 

scanning, trajectory processing and data calibration. This is the crucial part of processing that 

defines the quality of the raw LiDAR data. The results showed that the standard error recorded 

for intensity metric ranged from 0.14 to 0.68. It is important to characterize the intensity 

metrics that provide useful information for identifying specific objects in a LiDAR point cloud. 

Foresters can leverage this information to interpret both the forest canopy and terrain, aiding in 

effective forest management. The precision achieved in intensity metrics enhances the utility of 

LiDAR technology in providing actionable data for forestry applications. This study has 

resulted in a data processing tool designed to optimize the advantages of utilizing intensity data 

for object recognition. This tool holds significant importance for users of LiDAR data. 

Keywords: LiDAR, three-dimensional, point clouds, intensity metric, tropical forest. 
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1.  Introduction 

The traditional field-based approach for measuring forests is increasingly being replaced by methods 

that integrate on-site observations with remote sensing (RS) data. Remote sensing data are highly 

valuable across various fields, including environmental studies [1] [2], agriculture [3] and land use 

change detection [4]. A significant advancement in this evolution was the introduction of airborne 

laser scanning (ALS) [5] [6]. ALS enables precise examination of both vegetation and terrain, a 

capability challenging to achieve with passive remote sensing. Private companies in Scandinavia have 

primarily employed ALS for area-based forest inventory and single-tree remote sensing (STRS), as 

noted in studies by [7] and [8]. Additionally, ALS has found application in image based or 

photogrammetric STRS, owing to its user-friendly nature in three-dimensional (3D) reconstruction of 

intricate canopies, as demonstrated by research such as [9]. 

Currently, there are lot previous studies to extract the individual trees [10] [11] [12] [13]. Many 

new algorithms and filtering methods have been developed to minimize the error of LiDAR data and 

achieve the objective of the research. For instance, correction pits free algorithm, natural neighbour 

(NN), interpolation of the highest point method (HPM), median, and mean filter. All the filtering 

approach are used to minimize the error and improve the accuracy of LiDAR data. 

LiDAR, or Light Detection and Ranging, is a remote sensing technology that uses laser light to 

measure distances and create detailed, three-dimensional maps of the terrain. In the context of tropical 

forests, which are often dense and complex, the intensity metrics refer to the strength of the return 

signal from the laser beams. The backbone of a LiDAR sensor includes its key components such as the 

laser source, scanning mechanism, and detectors. Different LiDAR sensors may have varying 

specifications, including pulse repetition rate, pulse energy, beam divergence, and detector sensitivity. 

These factors collectively contribute to the intensity values recorded by the sensor. 

In tropical forests, the dense vegetation can affect LiDAR signals in several ways. The interaction 

between the laser pulses and the forest canopy leads to variations in the intensity of the return signals. 

Understanding how the LiDAR sensor's backbone interacts with the tropical forest environment is 

crucial for accurate and meaningful data interpretation. Researchers typically conduct calibration and 

validation exercises to characterize the sensor's response in tropical forest conditions. This involves 

collecting ground truth data and comparing it with the LiDAR-derived metrics. The goal is to identify 

any biases or limitations in the intensity values and to develop correction algorithms if necessary. 

Moreover, the choice of intensity metrics matters. Some LiDAR sensors provide multiple intensity 

returns per laser pulse, allowing for a more detailed analysis of vegetation structure and composition. 

Researchers may explore metrics such as peak intensity, mean intensity, or waveform analysis to 

extract valuable information about the tropical forest canopy. 

The lack of studies using LiDAR metrics in Tropical forests and their potential for estimate 

variables of forests structure was the motivation for this study. The objective of this study to process 

the raw data of LiDAR data in intensity metrics of tropical forests. The raw processing LiDAR 

sensor's in intensity metrics of tropical forests involves understanding the interplay between the 

sensor's design, the dense vegetation, and the resulting intensity values. This knowledge is essential 

for accurate and reliable remote sensing applications in tropical forest ecosystems. 
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2.  Materials and methods 

 

2.1.  Study area 

Danum Valley is situated in the southeastern part of Borneo Island, within the state of Sabah, precisely 

located at 4˚50′N-5˚00N and 117˚35′E-117˚45′E (refer to Figure 1). Managed by the Sabah 

Foundation, this region spans a total area of 43,800 hectares, subdivided into primary forest, secondary 

forest, and replanting timber areas. The forest in Danum is predominantly characterized by 

Dipterocarps, with notable species including Parashorea malaanonan, Shorea johorensis and P. 

tomentella. Dipterocarps dominate the upper layer, complemented by understory species from 

families such as Euphorbiaceae and Rubiaceae. The study conducted in this area recorded a total of 44 

different species.  

 

 
Figure 1. Map of study area. 
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2.2.  LiDAR data 

In this study, LiDAR discrete return data were used to characterise forest structures and canopies. This 

LiDAR system has millions of point clouds capable of penetrating every layer of the forest canopy and 

characterising the variables of forest structures on the horizontal and vertical axis. The system has 

extensive spatial coverage to collect data at point densities of one to several laser returns per square 

meter and is sufficient to accurately identify individual tree crowns. 

 

2.3.  Differential global positioning systems 

During the flight scan, the DGPS equipment was set up at the GPS control point (M415) at Taliwas, 

the nearest GPS control point from the study site. DGPS data collection was set up at 9.11 am with a 

height of 1.403m. The GPS static data was collected at one-second intervals for time lengths of eight 

hours using Global Navigation Satellite System (GNSS) receivers. The antenna heights were measured 

and recorded from the base of the antennas and reduced to the phase centre during post-processing. 

Figure 2 shows DGPS setup at the JUPEM GPS control points and at the centre of the plots. This 

allowed the system to create its location in 3D space so that the extraction of forest structure variables 

will have a precise 3D position as the ground needs real-time observation with the main ground 

control point using (GNSS) receivers. 

Apart from that, during the ground measurement of forest structure variables, the DGPS was set up 

with a duration of two hours to achieve mm accuracy for each plot. At the same time, the other DGPS 

was set up at the Danum Centre weather station. The location for each plot was also recorded by the 

DGPS for the calibration of the total plot readings. However, due to the complexity of the canopies, 

some of the DGPS points in the plots received minor satellite interference from the adjacent trees. 

 

 
Figure 2. DGPS setup at the JUPEM GPS control points and at the centre of the plots. 

 

 

 

2.4.  Raw LiDAR data 

This study collects raw LiDAR data from laser scanning until it produces point clouds in a readable 

format as product data. Figure 3 shows the process flow of raw LiDAR data from the laser pulse to 

registered point clouds data. LiDAR data is processed using Justin Javad, Pospac MMS, LMS, 

TerraScan and TerraMatch. The adjusted GPS data and the IMU data were combined in order to 

obtain a fixed-wing position, altitude, and to keep track of the aircraft rotations in the x, y, z axis and 

the GPS to keep track of the actual location of the aircraft in space. The output point clouds in binary 

format are obtained using this software. After pre-processing, the product data are exported to the 

micro station for the cleaning process to remove the noise. 
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Figure 3. The workflow processing of the LiDAR system. 

 

 

 

2.5.  Mission planning 

Before the aircraft scans the study area, mission planning was carried out to ensure the accuracy of 

data collected and to set all the parameters needed for data collection. ALTM-NAV Planner software 

was used in the mission planning for data logging, flight management, and survey planning (refer to 

Figure 4). In ALTM-NAV Planner software, the study area was identified, and several parameters 

were set to ensure that all necessary data was collected. The essential parameters were recorded, 

including the number of flight lines, scan angle, flight speed, overlap percentage, flight altitude, flight 

duration, and point density. 

 

 

 
Figure 4. Mission planning in ALTM-NAV Planner for the study area. 
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2.6 LiDAR data scanning 

After the mission planning was successfully set up, on 10 October 2013, aircraft LiDAR sensor 

scanned two areas, including Danum Valley, which covers the primary and secondary forests, and 

Tawau city, which were used for calibration purposes. There are 21 flight lines scanned for the study 

area and 7 flight lines for the calibration area. Table 1 shows the LiDAR metadata in the study area. 

Table1. Metadata for airborne LiDAR in the study area. 

 Tawau City Danum Valley 

Acquisition Date 9 October 2013 11 October 2013 

Laser Scanner Optech Orion-C200 

Aircraft Nomad N22C 

Flight Altitude 900 m 500 m 

Flight Speed 120 kts 90 kts 

Scan Angle 20o 14.2o 

Scan Frequency 35 Hz 70 Hz 

Point per square metre (PPM2) 1.75 8.00 

Point repetitive frequency (PRF) 100 KHz 175 z 

 

2.7 LiDAR data preparation 

After the data collection, the pre-processing task followed with trajectory processing and data 

calibrations of the point cloud. The final output after pre-processing stages will produce a registered 

coordinate system of the point cloud as product data in .las file format. Figure 5 below shows the flow 

chart process of raw LiDAR data. 

 

 

 

 

 

 

Figure 5. The workflow processing of raw LiDAR data. 

Raw LiDAR data 

Trajectory processing 

Data calibration 

Classification point 

clouds 

Point cloud .las format 

CHM FVC VAI 
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2.8 Trajectory processing 

LiDAR trajectory processing is the process to combine the POS data from GPS and IMU systems that 

determine the positional accuracy of LiDAR data. The IMU tracks the tilt in the skies as the aircraft is 

used for LiDAR scanning flies and calculates the accuracy of elevation. The GPS (TRIUMPH-VS 

DGPS) was also set up on the ground during the LiDAR scan. In this study, Taliwas JUPEM 

benchmark (M415) is the nearest GPS control point from the study area and is used as reference. Both 

the GPS and IMU systems were processed using POSPac MMS 6.1 to link the LiDAR point clouds to 

the real-world coordinate system. The processing of GPS and IMU results in the final orientation 

parameters consisting of X, Y, Z coordinates and their orientation angles for each LiDAR points to the 

location on the ground. 

 

2.9 Data calibration 

After the point cloud has been registered, the data is calibrated. Optech LiDAR Mapping Suite 

Manager (Optech LMS Manager) software is used to calibrate LiDAR data and process the data in a 

readable format (.las format). In order to correct the angular misalignment between the IMU and the 

laser, and also to check the consistency of the collected data, the calibration building was carried out 

by having the aircraft fly several passes over the building before and after data acquisition. The 

correction process is called bore sighting and usually involves the correction of four scanning errors 

known as heading, pitch, roll, and scale.  

Tawau City was used to calculate all misalignment errors, and the final results were used in the 

Danum Valley study area to correct any misalignment that occurred within the overlapping LiDAR 

flight strips. Further calibration procedures were carried out using Terrascan and Terramatch extension 

tools in Microstation to increase the accuracy of LiDAR data. The dz RMS value was used to evaluate 

the accuracy of the calibration. The lower final value of the dz RMS compared to the initial value 

indicates that the misalignment had decreased (error reduced). The general acceptance level of error is 

less than 0.15m. 

 

2.10 LiDAR data processing 

 

2.10.1 Classification point clouds 

The processed LiDAR points in.las format was then classified using the Microstation V8i software. 

Data in point-cloud form have been classified into the ground and non-ground points. Figure 6 shows 

the classification of the point cloud to ground and non-ground points. 

 

Figure 6. Classification of the point cloud to ground and non-ground. 
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After the point cloud has been classified, the next step is to normalise the LiDAR points. Lasheight 

in the lastools is used to normalise the point cloud. During this process, the undesired point cloud 

derived from LiDAR raw data will be eliminated. Figure 7 shows the difference between the 

normalised point cloud data starting from zero is relative to the similar ground altitude datum. This 

differs with the raw data that starts with a negative value due to the influence of the terrain. 

Normalised vegetation point cloud data were then used for further analysis in which various LiDAR 

metric information were extracted as an input rainfall interception estimation model. 

 
(a) 

 
(b) 

Figure 7. (a) Raw point cloud, (b) Normalized point cloud. 

 

3.  Results and Discussions 

 

3.1 Accuracy assessment raw LiDAR data 

To achieve the objective, this study processed the raw LiDAR data from laser penetration until it 

produced data point clouds. This section presents the results of GPS network adjustment, data 

calibration, strip adjustment and classification of point clouds. 

 

3.2 GPS network adjustment 

The aircraft GPS trajectories were differentially corrected to the ground GPS control point. The 

corrected GPS control point at Danum Weather Station (DWS) was used for differential correction to 

the other 30 plots to ensure reliable differential processing of aircraft GPS data. To determine the 

coordinate for the individual points, the Inertial Measurement Unit (IMU) and Digital Global 

Positioning System (DGPS) in the aircraft were combined with the Position and Orientation System 

(POS) data. The final geographic coordinates with the corresponding mean sea level and ellipsoid 

vertical elevations are shown below in Table 2. GPS stations were observed in WGS 84 format and 

have an ellipsoidal height for each plot that are relative to Malaysian primary GPS network. An 

ellipsoidal height recorded a range between 1.27m to 1.77m recorded by plot DV144 and DV19, 

respectively. The ultimate height value shall be within 0.15m accurate to actual value RMSE or any 

other value as specified. From the results obtained, it is shown that the final adjusted baselines have 

low standard deviations and RMS errors (Table 3). All of the baselines meet and exceed the first order 

network standards as specified by the Federal Geodetic Control Committee (FGCC) Standards and 

Specifications for Geodetic Control Networks. 
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      Table 2. Final Geographic Coordinates. 

Plot Y X Z 

Height 

(m) 

DV05 549381.1 590924.5 273.67 1.76 

DV06 549187.5 590864.3 237.61 1.74 

DV07 549350.8 591590.5 300.81 1.66 

DV105 550336.2 592664.2 304.63 1.56 

DV107 550117.1 592332.2 340.33 1.52 

DV11 549556.2 590004.3 234.23 1.34 

DV117 549947.1 592081.0 323.97 1.65 

DV12 549584.2 590487.5 238.02 1.58 

DV144 549596.3 591350.3 256.84 1.27 

DV145 549560.5 591498.4 267.58 1.28 

DV17 549721.9 589916.7 244.95 1.59 

DV19 550094.1 590403.4 280.54 1.77 

DV20 549726.0 591559.8 276.80 1.61 

DV203 550110.5 592855.3 365.43 1.68 

DV204 550364.4 591965.7 269.50 1.52 

DV205 550159.2 592017.9 284.95 1.46 

DV207 549983.3 591159.5 352.51 1.34 

DV208 549988.5 591289.1 353.56 1.66 

DV23 549396.3 590604.1 256.00 1.66 

DV301 549331.0 591368.7 268.64 1.64 

DV302 549179.2 591473.3 298.21 1.72 

DV303 549777.2 590870.5 322.37 1.59 

DV304 549598.5 590973.7 300.10 1.56 

DV306 549963.5 590299.6 260.96 1.59 

DV306 549743.7 590358.5 266.91 1.70 

DV309 549748.9 592061.4 303.52 1.60 

DV31 549903.9 590449.9 275.24 1.68 

DV40 549583.2 592168.1 289.68 1.61 

DV42 549937.4 592733.4 351.45 1.41 

DV43 550086.3 592544.2 337.38 1.77 
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3.3 Data calibration and strip adjustment 

The coordinates of the point of the overlap strip are not the same due to differences in trajectory 

measurement for each strip. By comparing the points in the overlapping region, the misalignment error 

is corrected. The alternative is to use LiDAR Mapping Suite (LMS) tools for automated LiDAR point 

cloud rectification, which can remove surface features per flight line and generate geo-metrically 

correct point clouds. The automated system calibration includes heading, roll, pitch, and scanner 

mirror. The values of calibration are examined on the flight-by-flight basis. Table 3 shows the final 

RMS value of 0.10m. 

 

Table 3. Report of HRPM and Z shift. 

Starting RMS 0.0950 

Final RMS 0.1021 

Standard error 0.0453 

Average magnitude 0.11765 

 

 

3.4 Classification point clouds 

The final data product point clouds are produced in .las format file. There are 21 flight lines scanned 

for the study area and produced 246,132,031 point clouds. As presented in Table 4, there are 97.6% of 

point clouds classified as non-ground and 2.4% as ground point clouds. Every point cloud penetrates 

forest structure according to the return pulse. Table 5 shows the percentage of point clouds classified 

into first, second, third, and fourth returns are 49.71%, 31.63%, 14.13 %, and 4.53%, respectively. In 

forested areas, the first return typically would come from the tree canopy, the second from the lower 

branches, and the third or fourth return from the ground. This study utilized all point clouds to 

maximize the accuracy extraction of variables of forest structure. The number of ground points in the 

forested areas increases greatly when first and last returns are combined (Wehr and Lohr, 1999). 

Moreover, the density of point clouds in this study is sufficient to derive the variables of forest 

structures. 

 

  

Table 4. Report of classification point clouds. 

Classification Point Count Z Min  Z Max  Min 

Intensity 

Max 

Intensity 

1  Non-Ground 240,229,435 194.06 461.94 1 2464 

2 Ground 5,902,234 193.89 408.48 1 4085 

 

 

Table 5. Report of point clouds returns. 

Return Point Count Z Min  Z Max  

First 122,362,879, 193.89 461.94 

Second 77,851,278 193.9 460.84 

Third 34,770,827 193.91 459.33 

Fourth 11,147,047 193.95 455.66 

Last 122,447,636 193.89 461.92 

Single 44,570,150 193.89 461.92 

First of Many 77,792,729 194.89 461.94 

Last of Many 77,877,486 193.9 460.31 

 All 246,132,031 193.89 461.94 
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Figure 8 displays a histogram analysis illustrating intensity metrics reflecting the strength of the 

laser pulse returned from forest structures. The mean intensity values extracted from LiDAR data 

range from 0.68 to 76.60, spanning from the 1st to the 99th intensity percentiles. This indicates a 

moderate density of canopy and vegetation cover in the study area, attributed to its status as a 

secondary forest in the process of recovery following previous logging activities. The standard 

deviation of intensity reveals considerable variability in vegetation densities, canopy heights, and 

structural complexities, ranging from 8.68 to 31.45. The standard error recorded for intensity metric 

ranged from 0.14 to 0.68 This variability underscores the presence of diverse ecosystems characterized 

by heterogeneous vegetation composition.  

 

 

  

 
Figure 8. Histogram analysis for intensity metrics. 

 
Figure 9 showed the scatter plots relationship between intensity metrics and percentiles. scatter plot 

reveals that there is a linear relationship between different percentiles and intensity metrics, it suggests 

a consistent pattern across the distribution. For instance, plotting mean intensity against the 50th 

percentile intensity reveals that there is a linear relationship between the central tendency of intensity 

values and their median values. it suggests a consistent pattern across the distribution. However, there 

are outliers that appear as data points that deviate significantly from the general pattern observed in the 

scatter plot. For instance, the 30th percentile intensity. These outliers could result from measurement 

errors, environmental factors, or unique characteristics of the scanned area. Identifying outliers is 

crucial for ensuring data quality for analysis. 
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 Figure 9. Scatter plots of intensity metrics of percentiles. 
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4.  Conclusions 

Processing raw LiDAR data to analyze intensity in tropical forests presents significant challenges, 

particularly due to variations in targets and echo types. However, the analysis of LiDAR intensity 

metrics is crucial for discerning forest structures, composition, and overall health, thereby enhancing 

sustainable forest management practices. Furthermore, monitoring LiDAR intensity metrics facilitates 

the creation of predictive models and decision support tools, which are invaluable for optimizing 

forest management operations and conserving biodiversity. By leveraging these metrics, stakeholders 

can make informed decisions and implement strategies that promote both ecological health and 

resource sustainability within tropical forest environments. 
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