

Contents lists available at ScienceDirect

Energy Reports

journal homepage: www.elsevier.com/locate/egyr

An enhanced maximum power point tracking and voltage control for proton exchange membrane fuel cell using predictive model control techniques

Jye Yun Fam^{a,1}, Shen Yuong Wong^{b,*,1}, Hazrul Bin Mohamed Basri^a, Kasumawati Binti Lias^a, Mohammad Omar Abdullah^c

^a Department of Electrical & Electronics Engineering, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak 94300, Malaysia

^b Department of Electrical and Electronics Engineering, Xiamen University Malaysia, Sepang, Selangor 43900, Malaysia

^c Department of Chemical Engineering & Energy Sustainability (ChemES), Universiti Malaysia Sarawak, Kota Samarahan, Sarawak 94300, Malaysia

ARTICLE INFO

Keywords: Renewable Energy Proton exchange membrane fuel cell Maximum power point tracking Finite-control-set model predictive control DC-DC boost converter DC-AC inverter

ABSTRACT

Proton Exchange Membrane Fuel Cells serve as sustainable devices for converting renewable energy sources into electricity, offering advantages such as rapid startup, high power density, and operation at low temperatures. They are highly efficient and environmentally friendly energy sources, yet their non-linear output characteristics under variable conditions present challenges in maximizing power output. Furthermore, they generates direct current, while many electrical devices rely on alternating current. This research addresses the necessity of enhancing the performance and efficiency through the development of an advanced maximum power point tracking technique and voltage control strategy. A modified finite-control-set model predictive control technique is proposed for both maximum power point tracking and voltage control. Specifically, a finite-control-set model predictive control technique approach is employed to modulate the switching signal for both the DC-DC boost converter and the DC-AC inverter. The DC-DC boost converter step up the fuel cell output voltage to the desired level, ensuring it reaches the maximum power point, and a DC-AC inverter to convert the direct current voltage to a pure sinusoidal alternating waveform. The investigation demonstrates the effectiveness of the proposed method in achieving its objectives. The proposed maximum power point tracking technique accuracy achieved the maximum power with a rate of 97 % with excellent respond time within 7 ms. For alternating current power, only less than 1.5 % of total harmonic distortion is recorded. The study evaluates the control scheme under robust operating conditions, demonstrating its effectiveness in optimizing PEMFC output and providing highquality AC voltage.

1. Introduction

Renewable energy sources have many advantages over fossil fuels as they are cleaner, more sustainable, and less harmful to the environment and human health (Singla et al., 2023). Using renewable energy can also reduce greenhouse gas emissions and mitigate climate change. Fuel cell technology is one of the renewable energies that has high energy conversion efficiency, is environmentally friendly, and has demonstrated promising results using different renewable energy resources (Olabi et al., 2022). Hydrogen is considered as the future fuel as it has no environmental impacts and it could be produced from water by electrolysis and various other methods.

Fuel cells are one such electrochemical device that convert

electrochemical energy to electrical energy without a combustion process (Huang et al., 2020). Fuel cells and chemical batteries are similar in that they both convert chemical energy directly into electrical energy. However, the energy of the battery is stored in a battery, whereas the chemical energy of the fuel cell is stored in its external fuel and oxidant (Huang et al., 2020). There are several advantages of fuel cell technology as it is compared to traditional power sources. It is more reliable, efficient silent when operating, and environmentally friendly (Aly and Rezk, 2020). Recently, fuel cells have been applied for portable electronic appliances, and electrical generation of power plants (Karthikeyan et al., 2018).

Proton exchange membrane fuel cell (PEMFC) is one of the most famous types of fuel cells due to its high efficiency, lightweight, low operating temperature, and quick start-up (Fathy et al., 2021). It is

* Corresponding author.

Received 5 May 2024; Received in revised form 19 July 2024; Accepted 19 August 2024 Available online 6 September 2024

2352-4847/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

E-mail address: shenyuong.wong@xmu.edu.my (S.Y. Wong).

 $^{^{1}\,}$ Co- First Authors

https://doi.org/10.1016/j.egyr.2024.08.055

Nome	Nomenclature		Concentration Overvoltage (V)
		V_{FC}	Fuel Cell Output Voltage (V)
A	Active Area (cm^2)	V_{ohm}	Ohmic Overvoltage (V)
A_q	Conversion Matrix A	V _{peak}	Peak Voltage (V)
B_q	Conversion Matrix B	V _{rms}	Root Mean Square Voltage (V)
C	Capacitance (<i>mF</i>)	ξ_1	Coefficient 1
C_f	Filter Capacitance (μF)	ξ_2	Coefficient 2
Enerst	Cell Electric Potential (V)	ξ_3	Coefficient 3
f	Frequency (Hz)	ξ4	Coefficient 4
F	Faraday Constant $(Cmol^{-1})$	λ_m	Membrane Water Content
k	Discrete Sampling Steps	$ au_{H_2}$	Hydrogen Time Constant (s)
k_{H_2}	Hydrogen Valve Molar Constant ($kmolatm^{-1}$ s^{-1})	$ au_{O_2}$	Oxygen Time Constant (s)
k_{O_2}	Oxygen Valve Molar Constant $(kmolatm^{-1} s^{-1})$	Abbreviations	
k _r	Modelling Constant ($kmolA^{-1}$ s^{-1})	AC	Alternating Current
n	Number of Electrons	CSO	Cuckoo Search Optimization
N	Number of Cell	CVTF	Capacitor Voltage Feedback
i	Iteration	DC	Direct Current
i,	Inverter Current (A)	EA	Evolutionary Algorithm
i.	Source Current (A)	ES	Extremum Seeking
i.	Maximum Current Density (Acm^{-2})	FCS-MP	C Finite-Control-Set Model Predictive Control
IFC	Fuel Cell Output Current (A)	FLC	Fuzzy Logic Control
Imm	Maximum Power Point Current (A)	FSSO	Flying Squirrel Search Optimization
Inagh	Peak Current (A)	GA	Genetic Algorithms
I	Boot Mean Square Current (A)	GFor	Grid-Forming
I	Inductance (mH)	IBC	Interleaved Boost Converter
	Filter Inductance (<i>mH</i>)	IC	Incremental Conductance
	Average Dower (W)	ISBO	Improved Satin Bowerbird Optimization
	Evel Cell Output Dever (W)	MPP	Maximum Power Point
P _{FC}	Partial Program of Hudrogen Cos (atm)	MPPT	Maximum Power Point Tracking
P _{H2}	Partial Pressure of Ovugon Cas (atm)	NN	Neural Networks
P ₀₂	Partial Pressure of Oxygen Gas (unit)	NST	Non-shoot-through
P peak	$\frac{1}{1}$	PEMFC	Proton Exchange Membrane Fuel Cell
q_{H_2}	Hydrogen input Flow (kmols ²)	PI	Proportional-Integral
q_{O_2}	Oxygen Input Flow(<i>kmols</i> ⁻¹)	PID	Proportional-Integral-Derivative
R	Gas Constant $(J \mod^{-1} K^{-1})$	PR	Proportional-Resonant
R_f	Filter Resistance (Ω)	PSO	Particle Swarm Optimization
S	Switching State	PV	Photovoltaic
t	Time (s)	P&O	Perturb and Observe
t _m	Membrane Thickness (<i>cm</i>)	qZSI	Quasi-Z-Source Inverter
T	Operating Temperature (<i>K</i>)	RBFN	Radial Basis Function Network
T_s	Sampling Time (μs)	RNN	Rigdelet Neural Networks
THD	Total Harmonic Distortion (%)	SBI	Switched-Boosted Inverter
v_{ac}	AC Voltage (V)	SMC	Sliding Mode Control
v_i	Inverter Voltage (V)	SFO	Sunflower Optimization algorithm
v_s	Source Voltage (V)	ST	Shoot-Through
Vact	Activation Overvoltage (V)	VSI	Voltage Source Inverter
V _{boost}	Boost Converter Output Voltage (V)	ZSI	Z-Source Inverter
V _{cell}	Cell Voltage (V)	-	

suitable for most electrical appliances as it is manageable from a few watts to a few hundred kilowatts (Fathy et al., 2021). PEMFC is highly dependent on the operating temperature, membrane water content, and partial pressure of reactant gases and its output shows a non-linear behavior (Huang et al., 2020; Aly and Rezk, 2020). For example, Fig. 1 shows that different operating temperatures will create different V-I characteristic curves of PEMFC. This means that the fluctuation of the internal parameters of PEMFC will lead to variations in output power. For PEMFC to be implemented as effectively as possible, the cell must be run at the MPP in order to get the optimum power from it (George et al., 2022). This is the first aim of this research to study the PEMFC behaviour and maximize the output power.

The P-I polarization curves in Fig. 1 illustrate a specific maximum

power point (MPP) for every operating temperature. Therefore, it is important to determine the MPP so that the efficiency of PEMFC can be maximized. Therefore, a maximum power point tracking (MPPT) technique becomes necessary in tracking the MPP of PEMFC. Derbeli et al (Derbeli et al., 2018). defined the maximum power current estimation equation to the PEMFC model for MPPT for all conditions of that particular PEMFC. It is the new defined polynomial equation that needs to be determined for each PEMFC before the implementation.

Since the MPPT is necessary for PEMFC, many MPPT methods have been introduced. George et al. (2022) reviewed the previous MPPT methods applied in PEMFC. Among the MPPT method, Perturb and Observe (P&O) control strategy and Incremental Conductance (IC) method are the conventional techniques of MPPT. Perturb and Observe