

Modelling and Investigating the Impact of Process Control Devices on the Ultrafiltration Membrane Performance

Michael Anggie Anak Boniface

Master of Engineering 2024

Modelling and Investigating the Impact of Process Control Devices on the Ultrafiltration Membrane Performance

Michael Anggie Anak Boniface

A thesis submitted

In fulfilment of the requirements for the degree of Master of Engineering

(Operation Research)

Faculty of Engineering UNIVERSITI MALAYSIA SARAWAK 2024

DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgement has been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

.....

Name: Michael Anggie Anak Bonifa		
Matric No.: 21020348		
Faculty of Engineering		
Universiti Malaysia Saraw	ak	
Date:		

DEDICATION

This thesis is a symbol of appreciation to people who help the author to complete the project. (Supervisor, Family and Friends)

ACKNOWLEDGEMENT

First and foremost, I am grateful to God for providing me with good health and wellbeing that were necessary to complete this thesis. I gratefully acknowledge the support and guidance from my supervisor, Professor Dr M. Shahidul Islam, and two other co-supervisors, Associate Professor Dr Rubiyah Bt Hj Baini and Ir. Ts. Dr Shirley Johnathan Tanjong. I wish to highlight the exceptional role of Professor Dr M. Shahidul Islam, my main supervisor. His thoughtful encouragement, meticulous attention, and dedicated supervision have been indispensable in transforming my ideas into a cohesive and meaningful thesis.

I express heartfelt gratitude to those who consistently encouraged and supported my research journey, namely YB Datuk Dr. Haji Abdul Rahman Bin Haji Junaidi, YB Datuk Dr. Malcom Mussen Lamoh, academic staffs, and technicians from the Engineering Faculty. Special appreciation goes to Mr. Calvin Jose Jol, Mr. David Allan for their invaluable assistance. Completing this work would have been considerably more challenging without their support. I extend my sincere thanks to the Mechanical and Manufacturing Engineering Department for their unwavering support and the opportunity to undertake this research.

Finally, I extend heartfelt gratitude to my family, with a special acknowledgment to my wife. Her unwavering support - both in terms of physical assistance, financial backing, and continuous prayers - has been indispensable to the completion of this research. I express sincere thanks for her steadfast support and understanding during my academic journey.

ABSTRACT

The current research aims to address the problem of Ultrafiltration Membrane's (UFM) low productivity in producing clean water that affect the water demand. The novelty of this research is of increasing productivity at a minimum energy consumption performance at optimum clean water production by UFM in association process of control devices (PCD). Experimental research has conducted with UFM, PCD, feed water pump and clean water storage tank. The experimental runs were estimated by central composite design (CCD) and optimization was determined by design of experiments (DOE). The experiment was divided into the three main steps. Step one assesses the effect of the PCD on permeate flux [m³(sqm)⁻ ¹] by operating the system without, and then with PCD. Step two evaluates the impact of PCD on energy consumption rate $[kW(m^3)^{-1}]$ using a similar two-phase approach. Step three aims to optimize UFM performance by adjusting and analyzing feed water pressure (bar), energy consumption rate $[kW(m^3)^{-1}]$ and permeate flux $[m^3(sqm)^{-1}]$. The experimental findings demonstrated that PCD devices have significantly impacted on saving 31.6% in permeate flux wastage at a P-value < 0.05. Additionally, the PCD has significantly (at Pvalue < 0.05) contributed to produce clean water at energy consumption rate 0.43 kW(m³)⁻ ¹. The optimum performance (at P-value < 0.05) of UFM in association with PCD was 0.68 m^3 (sqm)⁻¹ clean water production per square meter of membrane surface area at 1.5 bar optimum pressure and $0.42 \text{kW}(\text{m}^3)^{-1}$ energy consumption rate. The R² statistic of the regression was 0.8993, which is good fit of the regression, meaning is the output is 89.93% associated with inputs. The research findings have a few implications in contributing to achieve higher productivity in clean water production by UFM, which will obviously reduce the water crisis, water production cost. This finding would be a reference for policy makers and government agencies involved in clean water sustainability (SDG 6). In conclusion, this research has provided valuable insights into the impact of process control devices and UFM on optimization of clean water at a minimum energy consumption rate. The performance optimization of UFM by the process control devices are the Novelty of this work. indeed, this study suggests for further research in this field for developing a robust model.

Keywords: UFM, process control devices, permeate flux, energy consumption, performance, optimum, modelling

Menentukan Kesan Peranti Kawalan Proses Terhadap Prestasi Membran Ultrafilter Dalam Pengeluaran Air Bersih

ABSTRAK

Penyelidikan semasa bertujuan untuk menangani masalah produktiviti rendah membran Ultrafiltrasi dalam pengeluaran air bersih yang mempengaruhi permintaan air. "Novelty" penyelidikan ini adalah untuk meningkatkan produktiviti pada prestasi penggunaan tenaga minimum pada pengeluaran air bersih optimum oleh membran Ultrafiltrasi (UFM) dalam proses peranti kawalan (PCD). Penyelidikan eksperimen telah dijalankan dengan UFM, PCD, pam air suapan dan tangki simpanan air bersih. Rancangan eksperimen ini telah dianggarkan oleh reka bentuk komposit pusat (CCD) dan pengoptimuman telah ditentukan oleh reka bentuk eksperimen (DOE). Eksperimen ini dibahagikan kepada tiga langkah utama. Langkah pertama menilai kesan PCD pada fluks air bersih [m³(sqm)⁻¹] dengan mengoperasikan sistem tanpa dan kemudian dengan PCD. Langkah kedua menilai kesan PCD pada kadar penggunaan tenaga $[kW(m^3)^{-1}]$ menggunakan pendekatan dua fasa yang serupa. Langkah ketiga bertujuan untuk mengoptimumkan prestasi UFM dengan melaraskan dan menganalisis tekanan air suapan (bar), kadar penggunaan tenaga $[kW(m^3)^{-1}]$ dan fluks $[m^3(sqm)^{-1}]$. Penemuan eksperimen menunjukkan bahawa peranti PCD mempunyai kesan yang ketara dalam menjimatkan 31.6% fluks pada nilai P < 0.05. Selain itu, PCD telah menyumbang dengan ketara (pada nilai P < 0.05) dalam pengeluaran air bersih pada kadar penggunaan tenaga 0.43 kW(m³)⁻¹. Prestasi optimum (pada nilai P <0.05) UFM yang berkaitan dengan PCD adalah 0.68 $m^3(sqm)^{-1}$ pengeluaran air bersih per meter persegi kawasan permukaan membran pada tekanan optimum 1.5 bar dan kadar penggunaan tenaga 0.42 $kW(m^3)^{-1}$. Statistik R² regresi adalah 0.8993, yang menunjukkan kesesuaian yang baik bagi regresi, bermakna output adalah 89.93% berkaitan dengan input.

Penemuan penyelidikan ini mempunyai beberapa implikasi dalam menyumbang kepada peningkatan produktiviti dalam pengeluaran air bersih oleh UFM, yang secara jelas akan mengurangkan krisis air, kos pengeluaran air. Penemuan ini akan menjadi rujukan untuk pembuat dasar dan agensi kerajaan yang terlibat dalam kelestarian air bersih (SDG 6). Kesimpulannya, penyelidikan ini telah memberikan pandangan berharga tentang kesan peranti kawalan proses dan UFM terhadap pengoptimuman air bersih pada kadar penggunaan tenaga minimum. Pengoptimuman prestasi UFM oleh peranti kawalan proses adalah kebaruan kerja ini. Malah, kajian ini mencadangkan penyelidikan lanjut dalam bidang ini untuk membangunkan model yang kukuh.

Kata kunci: Membran ultrafilter, peranti kawalan proses, fluks, penggunaan tenaga, prestasi, optimum, pemodelan

TABLE OF CONTENTS

DECLARATION		i
ACKNOWLEDGEMENT		iii
ABST	RACT	v
ABST	RAK	vi
TABL	E OF CONTENTS	viii
LIST	OF TABLES	XV
LIST	OF FIGURES	xvi
LIST	OF ABBREVIATIONS	xviii
СНАР	TER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Background of Research	1
1.3	Problem Statement	4
1.4	Research Objectives	5
1.4.1	Scope of Study	6
1.5	Hypothesis of The Research	7
1.5.1	Hypothesis Test for Permeate Flux Production	7
1.5.2	Hypothesis Test for Energy Consumption Rate	8
1.5.3	Hypothesis Test for Optimal Performance of UFM	8
1.6	Novelty and Contribution of Research	9

1.7	Structure of The Thesis	10
СНАРТ	TER 2 LITERATURE REVIEW	13
2.1	Overview	13
2.2	Definition and Classification of Membrane	15
2.2.1	Dead End UFM	16
2.2.2	Cross Flow UFM	17
2.3	Permeate Flux of UFM	18
2.4	Feed Pressure in Producing Permeate Flux from UFM 19	19
2.5	Energy Consumption Rate in Permeate Flux from UFM	20
2.6	Process Control Devices in Performance Optimization of UFM	20
2.6.1	Variable Frequency Drive (VFD)	21
2.6.2	Level Sensor (Floating Type)	23
2.7	Measuring the Performance of UFM	24
2.8	Theoretical Framework Relating to Performance of UFM in Clean	24
	Water Production	
2.9	Factors Affecting the Performance of UFM	27
2.9.1	Membrane Pore Size Affect Performance of UFM	27
2.9.2	Effect of Pre-Treatment Efficiency on the Performance of UFM	28
2.9.3	Effect of Membrane Cleaning on the UFM Performance	28
2.9.4	Effect of Feed Water Pressure on Water Production Performance of UF	29
2.9.5	Effect of Operating Time on Permeate Flux of UFM	30

2.10	Effect of Process Control Devices on the Performance of UFM	31
2.10.1	Relationship between Pressure Controllers and Feed Flow Controllers	33
2.10.2	Impact of Process Control on UFM's Productivity	
2.10.3	Proportional Controllers	35
2.10.4	Application of Process Controllers in Plant Output Optimization	36
2.11	Water Production Optimization from Membrane by Process Control System	37
2.12	Central Composite Design for Optimization by Process Control System	39
2.12.1	Fundamental of Central Composite Design	40
2.12.2	Detail Steps of Central Composite Design	42
2.12.3	Response Surface Methodology on Water Production Optimization by UFM	42
2.13	Use of Design of Experiment on Water Production Optimization	43
2.14	Statistical Model for Hypothesis Test	45
2.14.1	The P-value	45
2.14.2	Probability Event and Statistical Significance	46
2.14.3	Test to Estimate P-value	49
2.14.4	General Concept of Statistical Hypothesis	51
2.14.5	Hypothesis Testing	51
2.14.6	Null Hypothesis	52
2.14.7	Alternative Hypothesis	53
2.14.8	Assessing Significance of Hypothesis Testing	53
2.14.9	Common Misinterpretations of Single P-value	55

2.15	Gap Analysis of Literature Review	58
2.15.1	Gap Analysis of Literature Review Relating to Objective One	58
2.15.2	Gap Analysis of Literature Review Relating to Objective Two	60
2.15.3	Gap Analysis of Literature Review Relating to Objective Three	62
CHAPT	ER 3 RESEARCH METHODOLOGY	65
3.1	Overview of Research Methodology	65
3.2	Research Design for Achieving Objective	65
3.3	Experimental Set Up and Operation	68
3.4	Research Design for Achieving Specific Objective One	70
3.4.1	Procedure of Conducting Experiment Relating to Objective One	72
3.4.2	Theoretical Framework Used for Data Analysis	74
	of Experiment Relating to Objective One	
3.5	Hypothesis Test to Evaluate the Contribution of Process Control Devices	76
3.5.1	Null Hypothesis	77
3.5.2	Alternative Hypothesis	77
3.5.3	Significance T-Test for Evaluating the Impact of Process Control Device	77
	on UFM Performance in Permeate Flux Production	
3.6	Research Design for Achieving Specific Objective Two	78
3.6.1	Equipment Set Up for Conducting Experiment	80
3.6.2	Procedure of Conducting Experiment Relating to Objective Two	80
3.6.3	Theoretical Framework Relating to The Objective Two	83

3.7	Hypothesis Test to Evaluate the Contribution Of Process Control Devices	84
3.7.1	Null Hypothesis	84
3.7.2	Alternative Hypothesis	84
3.7.3	Significance T-Test for Evaluating the Impact of Process Control Device	85
	On UFM Performance In Energy Consumption	
3.8	Research Design for Achieving Specific Objective Three	85
3.8.1	Experimental Set Up Relating to Objective Three	88
3.8.2	Procedure Conducting Experiment Relating to Objective Three	88
3.9	Designing Model Optimization and Validation	91
3.10	Research Variables	92
3.11	Data Analysis Method	94
3.12	Significance T-Test for Evaluating the Impact of Process Control Device on	
	UFM Performance in Optimum Performance	95
3.13	The Conceptual Input-Outputs Model of UFM in Producing Permeate Flux	95
3.14	Chapter Summary	97
CHAPT	ER 4 RESULTS AND DISCUSSION	98
4.1	Introduction	98
4.2	Experiment Without Process Control Devices for Permeate Flux Production	98
4.3	Experiment with Process Control Devices for Permeate Flux Production	100
4.4	Evaluation of the Impact of Process Control Devices on UFM's Productivity	
	in Permeate Flux Production	103

4.5	Hypothesis Test to Check Whether Process Control Devices Has a	
	Significant Impact on The UF Performance in Producing Permeate Flux	105
4.6	Findings and Answer to The Research Question One	107
4.7	Conducting Experiment and Research Findings Relating to Objective Two	107
4.8	Experiment Without Process Control Devices for Measuring Energy	
	Consumption Rate	108
4.9	Experiment with Process Control Devices for Measuring Energy	
	Consumption Rate	111
4.10	Evaluate the Impact of Process Control Devices for Measuring Energy	
	Consumption Rate	114
4.11	Hypothesis Test to Check Whether Process Control Devices Has a	
	Significant Impact on The UFM Performance in Energy Consumption	115
4.12	Findings and Answer to the Research Question Two	118
4.13	Research Finding on Relating to the Objective Three	118
4.14	The Conceptual Input-Outputs Model of UFM in Producing Permeate Flux	119
4.15	Data Analysis and Model Development for Performance Optimization	120
4.16	Model Analysis and Experimental Findings	124
4.17	Model Analysis	126
4.18	Model Validation With 14 Experimental Outputs	127
4.19	Comparison Data Based on RSM Model and Experimental Data	128
4.20	Research Findings and Answer to the Question Three	128

4.21	Conclusion and Chapter Summary	129
CHAPT	ER 5 CONCLUSION AND RECOMMENDATIONS	131
5.1	Chapter Overview	131
5.2	Outcome of Research	131
5.2.1	Research Outcome Number One	133
5.2.2	Research Outcome Number Two	133
5.2.3	Research Outcome Number Three	133
5.3	Implication of Research Outcomes	134
5.3.1	Implication of Research Outcome to The Environment	136
5.3.2	Implication of Research Outcome to The Economy	136
5.3.3	Implication of Research Outcome to The Industry	137
5.3.4	Implication of Research Outcome to The Society	138
5.3.5	Implication of Research Outcome to The Policy Issue	139
5.4	Novelty of The Research and Contribution to Knowledge System	139
5.4.1	Limitation of Study	140
5.5	Conclusion and Recommendations of the Study	142
REFERENCES 14:		145
APPENI	APPENDICES 169	

LIST OF TABLES

	Page
Table 3.1: Distribution of Experimental Runs and Duration of Experiment	73
Table 3.2: Data when Plant Operate with and Without Process Control devices	74
Table 3.3: Theoretical Framework for to estimate the permeate flux (QPF) rate	75
Table 3.4: Distribution of Experimental Runs and Duration of Experiment	82
Table 3.5: Data when Plant Operate With and Without Process Control devices	82
Table 3.6: Theoretical Framework for Energy Consumption and Efficiency Analysis	83
Table 3.7: Data Table for Effect of Feed Pressure, Flux and Energy Consumption	88
Table 3.8: List of Variables and Definitions for Ultrafiltration Performance	92
Table 3.9: List of Independent and Dependent Variables Used	92
Table 4.1: Data when Plant Operate without Process Control Devices at RPM 1500	99
Table 4.2: Data when Plant Operate with Process Control Devices at RPM 1170	101
Table 4.3: Energy Data when Plant Operate without Process Control Device at RPM1500	108
Table 4.4: Average Energy Consumption by the UFM	110
Table 4.5: Energy Data when Plant Operate with Process Control device at RPM 1170	111
Table 4.6: Average Energy Consumption and Efficiency of the UFM	113
Table 4.7: Experimental Data of Independent and Dependent Variables for Process	
Optimization	121
Table 4.8: ANOVA Analysis	124
Table 4.9: Fit Statistic	125
Table 4.10: Comparison Data Based on RSM Model and Experimental Data	128

LIST OF FIGURES

	Page
Figure 1.1: Structure of the Thesis	10
Figure 2.1: Pore Size Diameter of Each Membrane Classification (Anis et al., 2019)	15
Figure 2.2: Dead End Filtration Mode, the effects on the permeate flux and the	17
the formation of the layer cake (Han et al., 2021)	
Figure 2.3: Cross Flow Filtration Mode, the effects on the permeate flux and the	18
formation of the layer cake	
Figure 2.4: Variable Frequency Drive (VFD)	22
Figure 2.5: Level Sensor Floating Type	23
Figure 2.6: Effect of backwash on UFM cleaning Performance	29
(Shahidul & Michael, 2022)	
Figure 2.7: The effect of feed pressure on permeate flux of UFM	30
Figure 2.8: Effect of Operating Time on Flux (Russel & Kumar, 2017)	31
Figure 2.9: VFD VS Control Valve for Pump Control Valve	33
Figure 2.10: PID Process Control (Filo et al., 2023)	34
Figure 2.11: Input-Output Optimization (Burdett, 2016)	39
Figure 2.12: Probability & Statistical Significance Test (Kim & Bang, 2016)	49
Figure 2.13: Hypothesis Significance Test by Szucs and Ioannidis (2017)	54
Figure 2.14: Effect of Transmembrane Pressure on Instantaneous Output Flux	64
(Ren et al., 2019)	
Figure 3.1: Research Methodology of Study	66
Figure 3.2: Schematic diagram to Achieve the Objectives	68
Figure 3.3 (a): Experimental Set Up	69
Figure 3.3 (b): UF Membrane and VFD	69

Figure 3.3 (c): Storage Tank and Level Sensor Set Up	70
Figure 3.4: Steps in the Research Methodology for Specific Objective One	71
Figure 3.5: Normal Distribution Curve for 't' test	78
Figure 3.6: Steps in the Research Methodology for Specific Objective Two	78
Figure 3.7 (a): Steps in the Research Methodology for Specific Objective Three	79
Figure 3.7 (b): Steps in the Research Methodology for Specific Objective Three	80
Figure 3.8: Input-Out Model of UFM in producing permeate flux	96
Figure 4.1: Permeate Flux production Yield without Process Control Devices	100
Figure 4.2: Permeate Flux production Yield with Process Control Devices	102
Figure 4.3:'t' score for hypothesis test with mean value of average water	106
consumption rate	
Figure 4.4: Energy Consumption Pattern of UFM's Pump when Operate Without	110
Process Control Devices	
Figure 4.5: Energy Consumption Pattern with Process Control Device	112
Figure 4.6: 't' score for Hypothesis test with mean value of Energy consumption rate	117
Figure 4.7: Input-Out Model of UFM in producing permeate flux	119
Figure 4.8: Relationship between Feed Pressure, Flux and Energy Consumption	122
Figure 4.9: The 3D plots of Surface Respond Diagram between Feed Pressure,	123
Energy Consumption and Flux	123
Figure 4.10: Contribution of feed pressure to Permeate Flux	126
Figure 4.11: Contribution of Energy to Permeate Flux	126
Figure 4.12: Distribution of Predicted and Actual Outputs for Model Estimation	127
Figure 5.1: Outcomes of Research - Modelling of CU of UFM Plant	132

LIST OF ABBREVIATIONS

AFM	Analogue Flow Meter
CAC	Command and Control
CCD	Central Composite Design
CLC	Close Loop Control
СМА	Critical Material Attributes
CMF	Crossflow Membrane Filtration
СР	Concentration Polarization
СРР	Critical Process Parameters
CQA	Critical Quality Attributes
CU	Capacity Utilization
CUF	Capacity Utilization Factor
CV	Control Valve
DCS	Distributed Control System
DOE	Design of Experiments
ECMT	Energy Consumption and Monitoring Technology
HMI	Human Machine Interface
I&C	Instruments and Control
RSM	Response Surface Methodology
SDG	Sustainable Development Goals
J	Permeate Flux
MF	Microfiltration
MFM	Microfiltration Membrane

MTDP	Maximum Target Desired Profile
NDP	Net Driving Pressure
NFM	Nanofiltration Membrane
NRW	Non-Revenue Water
OP	Osmotic Pressure
Pa	Pascal
PG	Pressure Gauge
рН	Potential of Hydrogen
PID	Proportional, Integral and Derivative
PLC	Programmable Logic Controller
RM	Ringgit Malaysia
RO	Reverses Osmosis
SS	Suspended Solids
TMP	Transmembrane Pressure
TDS	Total Dissolve Solids
TSS	Total Suspended Solids
UF	Ultrafiltration
UFM	Ultrafiltration membrane
TMP	Transmembrane Pressure
VFD	Variable Frequency Drive
WWTP	Wastewater Treatment Plant

CHAPTER 1

INTRODUCTION

1.1 Introduction

Chapter 1.0 describes the objective of this study, which is focused on determining the impact of process control devices on the performance of UFM in clean water production. This research is an experimental work, which aims to evaluate the process control devices on the productivity in permeate flux production by UFM, to demine the impact of process control devices on the energy consumption in permeate flux production, and finally optimizing the performance of UFM with respect to permeate flux and energy consumption. The chapter is structured as follows: Section 1.2 provides an overview of the research background. Sections 1.3 and 1.3.1 present the problem statement and research questions, respectively. The research objective is explicitly stated in Section 1.4, while the scope of the research is specified in Section 1.4.1. Sections 1.5 and 1.6 are dedicated to outlining the hypotheses and highlighting the novelty of this research. The structure of the thesis is elucidated in Section 1.7, and a summary of the chapter is presented in Section 1.8.

1.2 Background of Research

This research endeavors to confront the prevalent challenge of subpar performance in clean water production, a significant obstacle hindering the attainment of a sustainable and reliable clean water supply for safeguarding public health. To fulfill the research objective specifically, enhancing the efficiency of the UFM system process control devices have been employed. These devices play a pivotal role in mitigating water and energy wastage while concurrently optimizing the overall performance of the UFM. Water plays an indispensable role in meeting the daily needs of all living organisms on this planet in which its absence would inevitably lead to the extinction of life (Ross, 2022). Water sources are leveraged for the socio-economic development (Mannina et al., 2022). Sarawak is blessed with vast natural water resources, primarily sourced from rivers and drains. In regards water supply, it should not be a problem, but the opposite seems to be the case with the water crisis being reported every year, affecting thousands of people who endure water shortages (Abdul Rahman et al., 2023). Contrary to expectations and standard measurements, this state should not be experiencing a water crisis (Elena et al., 2023).

There are 222 water-stressed areas identified by the Sarawak State Authorities (Borneo Post Online, 2018). The clean water crisis in Sarawak has been attributed to inadequate water management, water pollution, and inefficiencies in water production. The primary sources of pollution include industrial wastes, household garbage dumps, palm oil mill effluent, oil and chemical spills, hospital wastes, and sewage dumps. These factors collectively exert a substantial impact on the production of clean water in the region (Zainal Abidin, 2015).

Various incidents of water contamination have also been reported as a result of waste disposal from the manufacturing industries which includes palm oil mills, livestock, construction, and oil spills. All these pollutants are affecting the ability of treatment plants to treat polluted water (Dalun & Abdullah, 2021). A few studies on clean water supply constraint issues demonstrated that the poor productivity of existing water treatment plants is also responsible for the water crisis in the state (Rahman et al., 2021).

Several factors contributing to the shortage in clean water supply have been identified. The increased demand for water, driven by population growth, rapid expansion of unregulated areas, and industrialization, stands out as a primary cause. Firstly, the escalation of industrialization and the expansion of irrigated agriculture further intensify the strain on water resources. Additionally, a significant factor exacerbating the shortage is the slower growth rate of clean water production in comparison to the escalating demand for water.

While Sarawak is endowed with abundant natural water resources, the data reveals a significant impact on numerous communities across different regions owing to a shortage of clean water. This issue can be attributed to various constraints, such as the absence of suitable technology, inefficiencies in water resource development, and the inability to harness natural water sources due to pollution (Subramaniam et al., 2020; Chew et al., 2021).

Advanced filtering techniques called UFM are used to remove dissolved molecules, bacteria, and particles from liquids, usually water. These membranes are efficient at eliminating pollutants like bacteria, viruses, colloids, and suspended particles because their pore diameters fall between 0.01 and 0.1 micrometres. UFM have extensive application in diverse industries such as biotechnology, food and beverage processing, pharmaceuticals, and water and wastewater treatment. Because of their many advantages—including high filtration efficiency, low energy consumption, and low-pressure operation—they are a well-liked option for applications needing high-purity water (Ma, B., et al., 2019).

Given this background, the central question emerges: "*Can the performance and energy consumption rates reach their optimum levels through the use of ultra-filter membrane*, *thereby achieving the research objectives*?" This study is meticulously crafted to provide a comprehensive answer to this inquiry. To achieve this goal, the research combines a comprehensive literature review with an experimental investigation employing