Edited by Showkat Ahmad Bhawani | Anish Khan Awang Ahmad Sallehin Awang Husaini | Mohd Razip Asaruddin

ENZYMES IN OIL PROCESSING Recent Developments and Applications

Elsevier

Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands 125 London Wall, London EC2Y 5AS, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright \bigcirc 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-323-91154-2

For Information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Candice Janco Senior Acquisitions Editor: Anita Koch Editorial Project Manager: Dan Egan Production Project Manager: Saibabu Rao Erragounta Cover Designer: Christian Bilbow

Typeset by MPS Limited, Chennai, India

Contents

List	t of co	ontribut	ors .	хііі
1.	Adv	vance	s in enzymatic interesterification	1
	Nay	eem A	hmed	
	1.1	Introc	luction	1
	1.2	Mech	anism of enzymatic interesterification	2
	1.3	Enzyn	natic and chemical interesterification processes	4
	1.4	Enzyn	natic interesterification process	5
		-	/ersus immobilized enzymes	8
	1.6	Specit	ficity of enzymes	10
	1.7		nces on enzymatic interesterification	10
	1.8		nuous versus batch process	11
			Enzymatic versus chemical interesterification: advantages and	
			disadvantages	11
			usion and future outlook	12
	Refe	erences		13
2.	Enz	ymati	c biodiesel production	15
	Deb	arupa	Dutta Chakraborty, Lila Kanta Nath and Prithviraj Chakraborty	
	2.1	Introc	luction	15
	2.2	Biodie	esel	15
		2.2.1	A brief description of biodiesel chemistry	16
			Biodiesel production resources	17
		2.2.3	Advances of biodiesel	20
	2.3	Proce	dure in the production of biodiesel	20
		2.3.1	Benefits of enzymatic biodiesel production	21
	2.4	Lipase	• • • • • • • • • • • • • • • • • • •	21
		2.4.1	Sources of lipase	21
			Lipases: their properties	23
		2.4.3	Benefits of lipase usage biodiesel production	24
			Enzymatic production of alkyl esters: enzymes, alcohols, and water	24
	2.5		usion and future prospect	26
	Refe	erences		27

3.	Enz	ymes	for the recovery of oil from edible seeds	33
	Ash	a Valsa	alan, P. Sivaranjana, N. Rajini and V. Arumugaprabu	
	3.1	Introc	duction	33
	3.2	Struct	ture of oilseeds	34
	3.3	Select	tivity of enzymes for various components of cell wall	35
		3.3.1	Cell wall constituents and specific enzymes	35
		3.3.2	Cellulose	35
		3.3.3	Hemicelluloses	36
		3.3.4	Lignin	38
		3.3.5	Pectin	40
	3.4	Enzyr	natic oil extraction in aqueous medium	43
	3.5	Proce	ss of enzyme-based oil extraction	44
	3.6	Micro	bial enzymes in oil extraction	46
	3.7	Isolati	ion of enzymes for oil extraction	47
	3.8	Facto	rs influencing the enzymatic extraction of oil	47
		3.8.1	Particle size of the oil-bearing material	47
	3.9	Concl	lusion	49
	Refe	erences		49
4.	Enz	ymati	ic transesterification of waste cooking oil	55
			Sharma, Harsha Arora, Manya Chopra, Priyanshu Sharma, tim Bora and Sumit H. Dhawane	
	4.1		duction	55
			Problem statement	55
			Benefits of utilizing waste cooking oil	57
			cooking oil	58
	4.3	Trans	esterification	61
			Enzyme-catalyzed transesterification	64
	4.4	-	natic catalysis	65
		4.4.1	Introduction	65
		4.4.2	Enzymes as biological catalysts	66
		4.4.3	Why are catalysts needed?	66
	4.5	Classi	fication	67
		4.5.1	Extracellular lipase	67
		4.5.2	Intracellular lipase	69
	4.6	Mech	anism	69
		4.6.1	Description	69
		4.6.2	Models of enzyme-substrate interaction	70
	4.7	Immo	bilization	72

		4.7.1 Immobilization of lipase by cross-linking	72
		4.7.2 Enzyme immobilization by adsorption strategy	73
		4.7.3 Affinity immobilization	73
		4.7.4 Immobilization by entrapment	74
	4.8	Case studies	74
	4.9	Conclusion	79
	Refe	rences	80
	Furt	her reading	82
5.	Bio	remediation of cooking oil waste by lipases	83
	Kha	lid Umar, Sadiq Umar, Tabassum Parveen, Oo Chuan Wei and Rani Rahat	
	5.1	Introduction	83
	5.2	Bioremediation of waste cooking oil using lipase from orange waste	84
		5.2.1 Lipase extraction	84
		5.2.2 Experimental design	85
		5.2.3 Efficiency	87
	5.3	Bioremediation of waste cooking oil using lipase produced by	
		Penicillium chrysogenum	88
		5.3.1 Lipase production	88
		5.3.2 Experimental design	90
		5.3.3 Efficiency	91
	5.4	Bioremediation of waste cooking oil using lipase produced by marine	02
		Aspergillus awamori 5.4.1 Lipase production	92 92
			92 94
		5.4.2 Experimental design5.4.3 Efficiency	94 94
	F F	Bioremediation of oil waste using lipase produced by marine <i>Bacillus cereus</i>	94 94
	5.5	5.5.1 Lipase production	94 94
		5.5.2 Experimental design	98
		5.5.3 Efficiency	98
	56	Conclusion	99
		erences	100
	nere		100
6.	Enz	ymatic processing of rice bran oil	103
		c John Umaru, Kerenhappuch Isaac Umaru, Hauwa A. Umaru and nanuel Chikodiri Okoli	
	6.1	Rice bran oil	103
	6.2		
		rice bran oil	104
		6.2.1 Fatty acids profile of rice bran oil	104

		6.2.2	Phytochemical's composition	105
		6.2.3	γ-Oryzanol	105
	6.3	Extrac	tion of rice bran oil	107
		6.3.1	Conventional methods of rice bran oil extraction	107
		6.3.2	Enzyme-assisted aqueous extraction	111
	6.4	Enzyn	natic refining of rice bran oil	114
		6.4.1	Enzymatic stabilization of rice bran oil	114
		6.4.2	Enzymatic degumming of rice bran oil	116
		6.4.3	Enzymatic deacidification of rice bran oil	120
		6.4.4	Enzymatic interesterification of rice bran oil	123
	6.5	Concl	usion	125
	Refe	erences		127
	Furt	her rea	ding	131
7.	Infl	uence	of enzymes on oil extraction	133
	Emr	nanuel	Chikodiri Okoli, Isaac John Umaru and Kerenhappuch Isaac Umaru	
	7.1	Introc	luction	133
		7.1.1	Conventional methods	134
		7.1.2	Solvent extraction	134
			Mechanical expression	135
		7.1.4	Nonconventional methods	136
		7.1.5	Microwave-assisted extraction	136
		7.1.6	Ultrasonic-assisted extraction	138
	7.2		itical water extraction	139
	7.3	Super	critical CO_2 extraction	139
	7.4		itical CO_2 fluid extraction	140
	7.5		ne-assisted aqueous extraction	140
	7.6		nce of enzymes on oil extraction	141
			Influence of enzymes on oil yield	141
	7.7		nce of enzymes on oil quality	144
	7.8		nce of enzymes on phytochemical composition	145
		Concl		145
		rences		146
	Furt	her rea	ding	149
8.	Enz	ymati	c processes for edible oil extraction	151
	Dars	shanjo	t Kaur, Ovais Shafiq Qadri and Basharat Yousuf	
	8.1	Intro	duction	151
	8.2	e Enzy	mes used in extraction processes	154
		8.2.1	Temperature	154

		8.2.2	На	155
			, Moisture	155
		8.2.4	Incubation time	155
	8.3	The e	enzymatic extraction processes for edible oil recovery	155
		8.3.1	Aqueous enzymatic extraction	156
	8.4	Effect	t of enzymatic hydrolysis of oilseeds	158
	8.5	Adva	ntages	158
	8.6	Disac	lvantages	158
		8.6.1	Ultrasound-assisted enzymatic extraction	159
	8.7	Adva	ntages	160
		8.7.1	Enzyme-assisted three-phase partitioning	160
		8.7.2	Ammonium sulfate concentration	161
		8.7.3	pH	161
		8.7.4	Temperature	162
		8.7.5	Ratio of slurry: t-butanol	162
		8.7.6	Enzyme concentration	162
	8.8	Adva	ntages	163
	8.9	Disac	lvantages	163
		8.9.1	Microwave-assisted enzymatic extraction	163
		8.9.2	Time	164
		8.9.3	Temperature	164
		8.9.4	Irradiation power	164
		8.9.5	Enzyme concentration	164
		Adva	5	165
		Conc	lusion	165
	Refe	rences		166
9.	Aqı	ieous	enzymatic extraction of oil	169
			Umaru, Michael Sunday Abu, Hauwa A. Umaru and	
	Kere	nnapp	uch Isaac Umaru	
	9.1	Introd	uction	169
			raction efficiency of different enzymes	170
			enzyme as a pretreatment agent in oil extraction	173
	9.4		atment step prior to enzymatic extraction	174
	9.5		s influencing enzymatic extraction efficiency	174
		9.5.1	Oil-bearing component particle size	174
		9.5.2	The ratio of enzyme to substrate	175
			Water-to-oil-bearing-material ratio	175
			Extraction medium pH	176
		9.5.5	Temperature of incubation	177

		9.5.6 Incubation period	177
		9.5.7 Rate of agitation	178
	9.6	Aqueous enzymatic deemulsification techniques	178
	9.7	Cream emulsion deemulsification enzymes	180
	9.8	Factors influencing enzymatic deemulsification efficiency	180
		9.8.1 Concentration of enzymes	180
		9.8.2 pH level	180
		9.8.3 Time and temperature of incubation	181
	9.9	Conclusion	182
	Refe	rences	182
	Furtl	her reading	185
10.	Mic	rowave-assisted enzymatic extraction of oil	187
		n Marius Avramescu, Irina Fierascu, Radu Claudiu Fierascu and a Popescu	
		Introduction	187
	10.1	10.1.1 Classic extraction processes	189
		10.1.2 Ecological alternatives for oil extraction	191
	10.2		199
		rences	199
11.	Ultr	asound-assisted enzymatic extraction of oil	205
11.		rasound-assisted enzymatic extraction of oil neer Ahmad, Asfaq, Mohd Ishfaq Bhat and Gazia Nasir	205
11.		eer Ahmad, Asfaq, Mohd Ishfaq Bhat and Gazia Nasir	205
11.	Sam 11.1	eer Ahmad, Asfaq, Mohd Ishfaq Bhat and Gazia Nasir	
11.	Sam 11.1 11.2	eer Ahmad, Asfaq, Mohd Ishfaq Bhat and Gazia Nasir	205
11.	Sam 11.1 11.2 11.3	eer Ahmad, Asfaq, Mohd Ishfaq Bhat and Gazia Nasir Introduction Walnut	205 207
11.	Sam 11.1 11.2 11.3 11.4	eer Ahmad, Asfaq, Mohd Ishfaq Bhat and Gazia Nasir Introduction Walnut Peanut	205 207 209
11.	Sam 11.1 11.2 11.3 11.4 11.5	eer Ahmad, Asfaq, Mohd Ishfaq Bhat and Gazia Nasir Introduction Walnut Peanut Perilla seeds	205 207 209 211
11.	Sam 11.1 11.2 11.3 11.4 11.5 11.6	 eer Ahmad, Asfaq, Mohd Ishfaq Bhat and Gazia Nasir Introduction Walnut Peanut Perilla seeds Advantage of ultrasound aqueous-assisted enzymatic extraction 	205 207 209 211 212
11.	Sam 11.1 11.2 11.3 11.4 11.5 11.6 11.7	 eer Ahmad, Asfaq, Mohd Ishfaq Bhat and Gazia Nasir Introduction Walnut Peanut Perilla seeds Advantage of ultrasound aqueous-assisted enzymatic extraction Effect on fatty acid composition of perilla oil 	205 207 209 211 212 213
11.	Sam 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8	 heer Ahmad, Asfaq, Mohd Ishfaq Bhat and Gazia Nasir Introduction Walnut Peanut Perilla seeds Advantage of ultrasound aqueous-assisted enzymatic extraction Effect on fatty acid composition of perilla oil Soybean 	205 207 209 211 212 213 213
	Sam 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 Refe	 Heer Ahmad, Asfaq, Mohd Ishfaq Bhat and Gazia Nasir Introduction Walnut Peanut Perilla seeds Advantage of ultrasound aqueous-assisted enzymatic extraction Effect on fatty acid composition of perilla oil Soybean Conclusion 	205 207 209 211 212 213 213 213 214
	Sam 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 Refe	 Heer Ahmad, Asfaq, Mohd Ishfaq Bhat and Gazia Nasir Introduction Walnut Peanut Perilla seeds Advantage of ultrasound aqueous-assisted enzymatic extraction Effect on fatty acid composition of perilla oil Soybean Conclusion 	205 207 209 211 212 213 213 213 214 214 217
	Sam 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 Refe	 Heer Ahmad, Asfaq, Mohd Ishfaq Bhat and Gazia Nasir Introduction Walnut Peanut Perilla seeds Advantage of ultrasound aqueous-assisted enzymatic extraction Effect on fatty acid composition of perilla oil Soybean Conclusion rences yme-assisted extraction of essential oils ish Rizwan, Sajad Ahmad Mir, Saiqa Aziz and Farooq Ahmad Masood 	205 207 209 211 212 213 213 213 214 214 217
	Sam 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 Refe Enz Dani	 heer Ahmad, Asfaq, Mohd Ishfaq Bhat and Gazia Nasir Introduction Walnut Peanut Perilla seeds Advantage of ultrasound aqueous-assisted enzymatic extraction Effect on fatty acid composition of perilla oil Soybean Conclusion rences yme-assisted extraction of essential oils ish Rizwan, Sajad Ahmad Mir, Saiqa Aziz and Farooq Ahmad Masood Introduction	205 207 209 211 212 213 213 214 214 214 217
	Sam 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 Refe Dani 12.1	 Heer Ahmad, Asfaq, Mohd Ishfaq Bhat and Gazia Nasir Introduction Walnut Peanut Perilla seeds Advantage of ultrasound aqueous-assisted enzymatic extraction Effect on fatty acid composition of perilla oil Soybean Conclusion rences yme-assisted extraction of essential oils ish Rizwan, Sajad Ahmad Mir, Saiqa Aziz and Farooq Ahmad Masood Introduction 	205 207 209 211 212 213 213 214 214 214 217
	Sam 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 Refe Enz Dani 12.1 12.2	 heer Ahmad, Asfaq, Mohd Ishfaq Bhat and Gazia Nasir Introduction Walnut Peanut Perilla seeds Advantage of ultrasound aqueous-assisted enzymatic extraction Effect on fatty acid composition of perilla oil Soybean Conclusion rences yme-assisted extraction of essential oils ish Rizwan, Sajad Ahmad Mir, Saiqa Aziz and Farooq Ahmad Masood Introduction Extraction of essential oils	205 207 209 211 212 213 213 214 214 214 214 217 217 218

13. Enzyr	ne-assi	sted extraction of virgin olive oil	235
Isaac J	ohn Um	aru, Moses Adondua Abah and Kerenhappuch Isaac Umaru	
13.1	Introdu	iction	235
		cation olive oil	236
		Extra virgin olive oil	237
		Virgin olive oil	238
		Ordinary virgin olive oil	238
		Refined olive oil	238
	13.2.5	Olive oil	238
	13.2.6	Olive pomace oil that has been refined	238
	13.2.7	Olive pomace oil	238
13.3	Compo	osition of virgin olive oil	238
	13.3.1	Triacylglycerols	239
	13.3.2	Tocopherols	240
	13.3.3	Phenolic compounds	240
	13.3.4	Other pigments	241
13.4	Main o	live enzymes involved in olive oil extraction process	242
	13.4.1	Oxidoreductases	243
	13.4.2	Lipoxygenases	243
	13.4.3	Peroxidases	243
	13.4.4	Polyphenol oxidases	244
	13.4.5	Hydrolases	244
	13.4.6	Lipases	244
	13.4.7	Glycosidases	245
		e-assisted extraction of virgin olive oil	246
13.6		nvolved in enzyme-assisted virgin olive oil extraction	246
		Removal of leaf and washing	246
		Milling/crushing	247
		Malaxation	248
		Solid—liquid extraction	249
		Liquid/liquid separation	250
		Storage of olive oils	251
40 7		Filtration of virgin olive oil	251
13.7		affecting the efficiency of enzymatic extraction of blive oil	252
	13.7.1	Oil-bearing material's particle size	252
	13.7.2	Ratio of enzyme/substrate	252
	13.7.3	Perturbation rate	253
	13.7.4	pH of extraction medium	253
	13.7.5	Incubation temperature	253

		13.7.6 Incubation time	254
	13.8	Advantages of enzyme-assisted extraction of virgin olive oil	254
		Disadvantages of enzyme-assisted extraction of virgin olive oil	254
		Conclusion	255
	Refere	ences	255
		er reading	261
	-		
		me-assisted extraction of oil (soybean, rapeseed, canola, and peanut)	263
		Aaqib Sheikh, Kaleem Ahmad, Vinay Kumar Panday and Mohammad	
	14.1	Introduction	263
	14.2	Enzyme assisted extraction of rapeseed oil	266
	14.3	Enzyme assisted extraction of soyabean oil	269
	14.4	Enzyme-assisted extraction of oil from canola	271
	14.5	Enzyme-assisted extraction of corn oil	272
	14.6	Enzyme-assisted extraction of oil from peanut	273
	14.7	Conclusion	274
	Refere	ences	275
15.	Curre	ent scenario and future prospects of enzymatic	
		ent scenario and future prospects of enzymatic formation of used vegetable cooking oil for biodiesel	279
	trans		279
	trans Sange	formation of used vegetable cooking oil for biodiesel	279 279
	trans Sange 15.1	formation of used vegetable cooking oil for biodiesel eeta Negi	
	trans Sange 15.1	formation of used vegetable cooking oil for biodiesel eeta Negi Introduction	279
	trans Sange 15.1 15.2	formation of used vegetable cooking oil for biodiesel eeta Negi Introduction Availability of used cooking oil as feedstock	279 281
	trans Sange 15.1 15.2	formation of used vegetable cooking oil for biodiesel eeta Negi Introduction Availability of used cooking oil as feedstock 15.2.1 Composition of unused vegetable oil and used vegetable oil	279 281 282
	trans Sange 15.1 15.2	formation of used vegetable cooking oil for biodiesel eta Negi Introduction Availability of used cooking oil as feedstock 15.2.1 Composition of unused vegetable oil and used vegetable oil Conversion of used cooking oil into biodiesel	279 281 282 283
	trans Sange 15.1 15.2	formation of used vegetable cooking oil for biodiesel eeta Negi Introduction Availability of used cooking oil as feedstock 15.2.1 Composition of unused vegetable oil and used vegetable oil Conversion of used cooking oil into biodiesel 15.3.1 Collection of used cooking oil	279 281 282 283 283
	trans Sange 15.1 15.2	formation of used vegetable cooking oil for biodiesel eeta Negi Introduction Availability of used cooking oil as feedstock 15.2.1 Composition of unused vegetable oil and used vegetable oil Conversion of used cooking oil into biodiesel 15.3.1 Collection of used cooking oil 15.3.2 Pretreatment of used cooking oil	279 281 282 283 283
	trans Sange 15.1 15.2 15.3	formation of used vegetable cooking oil for biodiesel eeta Negi Introduction Availability of used cooking oil as feedstock 15.2.1 Composition of unused vegetable oil and used vegetable oil Conversion of used cooking oil into biodiesel 15.3.1 Collection of used cooking oil 15.3.2 Pretreatment of used cooking oil 15.3.3 Conversion of vegetable oil into esters through	279 281 282 283 283 283 283
	trans Sange 15.1 15.2 15.3	formation of used vegetable cooking oil for biodiesel eta Negi Introduction Availability of used cooking oil as feedstock 15.2.1 Composition of unused vegetable oil and used vegetable oil Conversion of used cooking oil into biodiesel 15.3.1 Collection of used cooking oil 15.3.2 Pretreatment of used cooking oil 15.3.3 Conversion of vegetable oil into esters through transesterification	279 281 282 283 283 283 283 283
	trans Sange 15.1 15.2 15.3	formation of used vegetable cooking oil for biodiesel eeta Negi Introduction Availability of used cooking oil as feedstock 15.2.1 Composition of unused vegetable oil and used vegetable oil Conversion of used cooking oil into biodiesel 15.3.1 Collection of used cooking oil 15.3.2 Pretreatment of used cooking oil 15.3.3 Conversion of vegetable oil into esters through transesterification Lipases—A biocatalyst	279 281 282 283 283 283 283 286 286
	trans Sange 15.1 15.2 15.3 15.4 15.5 15.6	formation of used vegetable cooking oil for biodiesel eeta Negi Introduction Availability of used cooking oil as feedstock 15.2.1 Composition of unused vegetable oil and used vegetable oil Conversion of used cooking oil into biodiesel 15.3.1 Collection of used cooking oil 15.3.2 Pretreatment of used cooking oil 15.3.3 Conversion of vegetable oil into esters through transesterification Lipases—A biocatalyst 15.4.1 Immobilized lipases as catalyst Recent research and development Current scenario	279 281 282 283 283 283 283 286 288 290
	trans Sange 15.1 15.2 15.3 15.4 15.5 15.6 15.7	formation of used vegetable cooking oil for biodiesel eeta Negi Introduction Availability of used cooking oil as feedstock 15.2.1 Composition of unused vegetable oil and used vegetable oil Conversion of used cooking oil into biodiesel 15.3.1 Collection of used cooking oil 15.3.2 Pretreatment of used cooking oil 15.3.3 Conversion of vegetable oil into esters through transesterification Lipases—A biocatalyst 15.4.1 Immobilized lipases as catalyst Recent research and development Current scenario Future prospects	279 281 282 283 283 283 283 286 288 290 290
	trans Sange 15.1 15.2 15.3 15.4 15.5 15.6 15.7	formation of used vegetable cooking oil for biodiesel eeta Negi Introduction Availability of used cooking oil as feedstock 15.2.1 Composition of unused vegetable oil and used vegetable oil Conversion of used cooking oil into biodiesel 15.3.1 Collection of used cooking oil 15.3.2 Pretreatment of used cooking oil 15.3.3 Conversion of vegetable oil into esters through transesterification Lipases—A biocatalyst 15.4.1 Immobilized lipases as catalyst Recent research and development Current scenario	279 281 282 283 283 283 286 288 290 290 290 294

List of contributors

Moses Adondua Abah

Department of Biochemistry, Faculty of Pure and Applied Sciences, Federal University Wukari, Wukari, Taraba State, Nigeria

Michael Sunday Abu

Department of Biochemistry, Faculty of Pure and Applied Sciences, Federal University Wukari, Wukari, Taraba State, Nigeria

Kaleem Ahmad

Department of Chemical Engineering, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India

Sameer Ahmad

Department of Food Technology, Jamia Hamdard University, New Delhi, India

Nayeem Ahmed

Department of Chemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India

Harsha Arora

Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India

V. Arumugaprabu

Department of Chemistry, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India; Centre for Composite Materials, Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India

Asfaq

Department of Agriculture, Integral Institute of Agricultural Science and Technology, Integral University, Lucknow, Uttar Pradesh, India

Sorin Marius Avramescu

Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, Romania; Research Center for Environmental Protection and Waste Management, University of Bucharest, Bucharest, Romania

Saiqa Aziz

Department of Food Science and Technology, University of Kashmir, Srinagar, Jammu and Kashmir, India

Mohd Ishfaq Bhat

Department of Post Harvest Process and Food Engineering, G.B.P.U.A.T., Pantnagar, Uttarakhand, India

Akash Pratim Bora

Department of Chemical Engineering, Indian Institute of Technology (IIT-ISM), Dhanbad, Jharkhand, India

Debarupa Dutta Chakraborty

Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam, India

Prithviraj Chakraborty

Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam, India

Manya Chopra

Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India

Sumit H. Dhawane

Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India

Irina Fierascu

National Institute for Research and Development in Chemistry and Petrochemistry— ICECHIM, Bucharest, Romania; University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania

Radu Claudiu Fierascu

National Institute for Research and Development in Chemistry and Petrochemistry— ICECHIM, Bucharest, Romania; Department of Science and Engineering of Oxide Materials and Nanomaterials, University "Politehnica" of Bucharest, Bucharest, Romania

Darshanjot Kaur

Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India

Farooq Ahmad Masoodi

Department of Food Science and Technology, University of Kashmir, Srinagar, Jammu and Kashmir, India

Sajad Ahmad Mir

Department of Food Science and Technology, University of Kashmir, Srinagar, Jammu and Kashmir, India

Ubaid Mohammad

Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India

Gazia Nasir

Department of Bioengineering, Faculty of Engineering and IT, Integral University, Lucknow, Uttar Pradesh, India

Lila Kanta Nath

Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam, India

Sangeeta Negi

Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India

Emmanuel Chikodiri Okoli

Department of Biochemistry, Faculty of Pure and Applied Sciences, Federal University Wukari, Wukari, Taraba State, Nigeria

Vinay Kumar Panday

Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India

Tabassum Parveen

Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India

Roua Popescu

Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania; Independent Research Association, Bucharest, Romania

Ovais Shafiq Qadri

Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India

Rani Rahat

College of Dentistry, University of Illinois, Chicago, IL, United States

N. Rajini

Department of Chemistry, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India; Centre for Composite Materials, Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India

Danish Rizwan

Department of Food Science and Technology, University of Kashmir, Srinagar, Jammu and Kashmir, India

Divyansh Sharma

Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India

Priyanshu Sharma

Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India

Mohd Aaqib Sheikh

Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India

P. Sivaranjana

Department of Chemistry, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India

Khalid Umar

School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia

Sadiq Umar

College of Dentistry, University of Illinois, Chicago, IL, United States

Hauwa A. Umaru

Department of Biochemistry, Faculty of Pure and Applied Sciences, Modibo Adama University Yola, Yola, Adamawa State, Nigeria

Isaac John Umaru

Department of Biochemistry, Faculty of Pure and Applied Sciences, Federal University Wukari, Wukari, Taraba State, Nigeria

Kerenhappuch Isaac Umaru

Department of Biochemistry, Faculty of Pure and Applied Sciences, Federal University Wukari, Wukari, Taraba State, Nigeria

Asha Valsalan

Department of Chemistry, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India

Oo Chuan Wei

School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia

Basharat Yousuf

Department of Food Technology, University of Kashmir, Srinagar, Jammu and Kashmir, India

Enzymes in Oil Processing

Enzymes in Oil Processing

Recent Developments and Applications

Edited by

SHOWKAT AHMAD BHAWANI

Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia

ANISH KHAN

Centre of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia

AWANG AHMAD SALLEHIN AWANG HUSAINI

Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia

MOHD RAZIP ASARUDDIN

Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia

Index

Note: Page numbers followed by "f" and "t" refer to figures and tables, respectively.

Α

Acid-catalyzed transesterification, 288 Acid value (AV), 212-213 Acidolysis, 2 Acoraceae, 217-218 Acylation, 3 ADM. See Archer Daniels Midland (ADM) Adsorption, 73 enzyme immobilization by adsorption strategy, 73 AEE. See Aqueous enzymatic extraction (AEE) AEED. See Aqueous enzymatic emulsion deemulsification (AEED) AEP. See Aqueous extraction processing (AEP) Affinity chromatography, 47 Affinity immobilization, 73-74 Affinity precipitation, 47 Agarose gel electrophoresis, 95 Agitation effect of agitation rate on enzymatic oil extraction process, 48-49 rate of, 178 AHA. See American Heart Association (AHA) Ajinomoto Co. Inc., 6-7 Alcalase, 169 Alcalase 2.4L, 170-173 Alcohols, 24-26, 134 Alkyl esters, enzymatic production of, 24 - 26 α -amylase, 263–264 α-l-arabinofuranosidases, 37 American Heart Association (AHA), 104 - 105Ammonium sulfate concentration, 161 Amphiphiles, 61 Amylase, 219-223 Amyloglucosidase, 221-223 Animal fats, 15-17

Animal wastes, 16 Aqueous enzymatic deemulsification techniques, 178-179 Aqueous enzymatic emulsion deemulsification (AEED), 178-179 Aqueous enzymatic extraction (AEE), 156-158, 169, 192, 266-268. See also Microwave-assisted enzymatic extraction; Ultrasoundassisted enzymatic extraction (UAEE) enzyme additive amount, 156–157 general process flowchart of, 157f hydrolysis temperature, 158 of oil aqueous enzymatic deemulsification techniques, 178-179 cream emulsion deemulsification enzymes, 180 enzyme-assisted aqueous extraction of sesame seed oil and protein hydrolysates, 171f extraction efficiency of different enzymes, 170-173 factors influencing enzymatic deemulsification efficiency, 180 - 182factors influencing enzymatic extraction efficiency, 174-178 layers produced after centrifugation of AEE of oil from safflower seeds, 171fpretreatment step prior to enzymatic extraction, 174 use of enzyme as pretreatment agent in oil extraction, 173 yields obtained by AEE of oleaginous materials, 157t pH, 158 process, 43-44 sample to solvent ratio, 156

Aqueous enzymatic oil extraction, 140–141 Aqueous extraction processing (AEP), 43–44, 143, 158, 224, 265–270 Aqueous medium, enzymatic oil extraction in, 43–44 Archer Daniels Midland (ADM), 6–7 Aromatic plants, 217–218 *Artemisia argyi*, 224–229 Asp-His-Ser trio, 2–3 *Aspergillus*, 23, 289 *A. jumigatus*, 46–47 *A. niger*, 289–290 *A. oryzae*, 23

В

Bacillus thermocatenulatus, 15-16 Bark, 236 Base-catalyzed transesterification, 287-288 Batch process, 11-12 Bay leaves (Laurus nobilis L.), 224-229 BBD. See Box-Behnken design (BBD) β -aryl ethers, 40 β-glucosidases, 36 β-glycosidic bond, 245–246 β-mannanases, 37 β -1,4-manno-oligomers, 37 β-xylosidases, 38 Bioactive phytochemicals of tocols, 124 Biocatalysts, 67 Biodiesel, 15-20, 57 advances of, 20 chemistry, 16-17 classification of, 16f conversion of used cooking oil into, 283 - 288oilseed enzyme pretreatment for biodiesel industry, 174f procedure in production of, 20-21 benefits of enzymatic biodiesel production, 21 production benefits of lipase usage, 24 cycle, 56f resources, 17-20 Biodiesel Blending Programme, 296 Biofuels, 15-16, 57

Biological catalysts, enzymes as, 66 Biological oxygen demand (BOD), 98 Bioremediation of waste cooking oil using lipase from orange waste, 84-88 efficiency, 87-88, 89f experimental design, 85-86 lipase extraction, 84-85 using lipase produced by marine Aspergillus awamori, 92–94 efficiency, 94 experimental design, 94 lipase production, 92-94 using lipase produced by marine Bacillus cereus, 94-99 efficiency, 98-99, 98t, 99f experimental design, 98 lipase production, 94-97 using lipase produced by Penicillium chrysogenum, 88-92 efficiency, 91-92 experimental design, 90-91 lipase production, 88-90 Biotransformation efficiency, 290-291 BOD. See Biological oxygen demand (BOD) Box-Behnken design (BBD), 198 Brassica napus L Canola (BrassicanapusL.)

С

CALB. See Continent lipase B (CALB) Calophyllum inophyllum, 16 Candida C. antarctica, 23, 67, 85, 289-290 C. dejormance, 289 C. lipolytica, 289 C. rugosa, 24-26, 289-290 Candida rugosa lipase (CRL), 121 Canola (Brassica napus L.), 271-272 enzyme-assisted extraction of oil from, 271 - 272Carbon dioxide (CO₂), 134, 280 Catalysts, 66-67 immobilized lipases as, 290 Cavitation, 110 CBE. See Cocoa butter equivalent (CBE) Cell wall constituents, 35

and specific enzymes, 35 selectivity of enzymes for components of. 35-43 cellulose, 35-36 hemicelluloses, 36-38 lignin, 38-40 pectin, 40-43 $1,4-\beta$ -cellobiosidase, 36 Cellulase(s), 35, 45, 169, 219–223, 263 - 264Cellulose, 35-36, 43-44, 192 enzymatic degradation mechanism, 35 - 36, 36fCentrifugation distinct phase system after, 207f layers produced after centrifugation of aqueous enzymatic extraction of oil from safflower seeds, 171f Chemical interesterification (CIE), 5, 11-12, 123-124 process, 4-5, 11 Chemically catalyzed reactions, 21 Chromobacterium viscosum, 289–290 CI. See Combustion engines (CI) CIE. See Chemical interesterification (CIE) Cinnamomum burmannii essential oil, 224 - 229Classic extraction processes, 189-191 flowchart of classic oil extraction process, 190f oleosome structure, 191f Cocoa butter equivalent (CBE), 1 Cold pressing, 136, 265-266 Combustion engines (CI), 57-58 Continent lipase B (CALB), 24–26 Continuous enzymatic interesterification process, flow diagram of, 9f Continuous process, 11-12 Conventional extraction process, 224-229 Conventional methods, 134 of rice bran oil extraction, 107-111 enzyme-assisted aqueous extraction, 111 - 114nonconventional method, 109-111 Cooking oil, 83 availability of used cooking oil as feedstock, 281-283

Coproducts, 33–34 Core lipases, 87–88 Corn enzyme-assisted extraction of corn oil, 272–273 plant, 272–273 Cottonseed oil, 96 Cream emulsion deemulsification enzymes, 180 CRL *Candidarugosa* lipase (CRL) Cross-linking, immobilization of lipase by, 72–73 Crushing, 247–248

D

D-Limonene, 108 DAG. See Diacylglycerol (DAG) De-esterification, 42 Deacylation, 3 Degradation of pectin, enzyme for, 41-42 process, 247-248 Degumming of oil, 116 Depitting machine, 247-248 Depolymerization, 40 of lignin, 40 Dextranase, 221-223 Diacylglycerol (DAG), 1–2, 117 Dialkylketones, 11-12 Dichloromethane, 98 Dimethyl carbonate (DMC), 75 Distinct phase system after centrifugation, 207fDMC. See Dimethyl carbonate (DMC) Dry enzyme powder products, 1

Е

EAAE. See Enzyme-assisted aqueous extraction (EAAE)
EAE. See Enzyme-assisted extraction (EAE)
EAEP. See Enzyme-assisted aqueous extraction process (EAEP)
EATPP. See Enzyme-assisted three-phase partitioning (EATPP)
Ecological alternatives for oil extraction, 191–198 Ecological alternatives for oil extraction (Continued) action of cellulase on cellulose surrounding oleosome, 193f configurations of oil extraction process and operational parameters, 196f flowchart of MW-AEE process from oilseeds using immobilized enzyme, 198f type of enzymes used for aqueous enzymatic extraction, 194t Edible fats, 151-152, 187-188, 263-264 advantages, 158, 160-163, 165 ammonium sulfate concentration, 161 enzyme concentration, 162 enzyme-assisted three-phase partitioning, 160-161 pH, 161-162 ratio of slurry, 162 temperature, 162 disadvantages, 158-160, 163-165 enzyme concentration, 164-165 irradiation power, 164 microwave-assisted enzymatic extraction, 163-164 temperature, 164 time, 164 ultrasound-assisted enzymatic extraction, 159-160 enzymatic extraction processes for edible oil recovery, 155-158 aqueous enzymatic extraction, 156 - 158effect of enzymatic hydrolysis of oilseeds, 158 enzymes used in extraction processes, 154 - 155extraction, 34 global consumption of vegetable oils in year 2021/22, 152t share of different enzymes used in industry, 154f Edible protein hydrolysates, 169 Edible vegetable oils, 133 EEOR. See Enzyme-enhanced oil recovery (EEOR) EIE. See Enzymatic interesterification (EIE)

Elucidation of fermentation conditions affecting production of lipase, 97f Emulsion, 145 Endocarp, 236 Energy-saving solvent recovery technologies, 108 Entrapment, immobilization by, 74 Enzymatic biodiesel production biodiesel, 15-20 advances of, 20 chemistry, 16-17 classification of, 16f production resources, 17-20 lipase, 21-26 benefits of lipase usage biodiesel production, 24 enzymatic production of alkyl esters, 24 - 26properties, 23-24 sources of, 21-23 procedure in production of biodiesel, 20 - 21benefits of enzymatic biodiesel production, 21 Enzymatic catalysis, 65-67 catalysts needed, 66-67 enzymes as biological catalysts, 66 Enzymatic catalysts, 67 Enzymatic deacidification of rice bran oil, 120 - 123Enzymatic deemulsification efficiency concentration of enzymes, 180 factors influencing, 180-182 pH level, 180-181 time and temperature of incubation, 181 - 182Enzymatic degradation of hemicellulose, 38f of lignin, 39, 41f mechanism of cellulose, 35-36, 36f mechanism of enzymatic degradation of pectin, 42-43 de-esterification, 42 hydrolytic cleavage, 42-43 lysosomal proteolysis, 43 proteins, 43 ubiquitin-proteasome, 43

mechanism of lignin, 40 depolymerization, 40 solubilization and mineralization, 40 Enzymatic degumming process, 117, 119-120 of rice bran oil, 116-120 advantages of, 117t enzymes in enzymatic degumming of rice bran oil, 117-118 immobilized enzymes, 119-120 liquid enzyme, 118-119 Enzymatic extraction (EAE) factors affecting efficiency of enzymatic extraction of virgin olive oil, 252 - 254incubation temperature, 253 incubation time, 254 oil-bearing material's particle size, 252 perturbation rate, 253 pH of extraction medium, 253 ratio of enzyme/substrate, 252-253 factors influencing enzymatic extraction efficiency, 174-178 extraction medium pH, 176 incubation period, 177 oil-bearing component particle size, 174 - 175rate of agitation, 178 ratio of enzyme to substrate, 175 temperature of incubation, 177 water-to-oil-bearing-material ratio, 175 - 176factors influencing enzymatic extraction of oil, 47-49 pretreatment step prior to, 174 oilseed enzyme pretreatment for biodiesel industry, 174f processes for edible oil recovery, 155 - 158Enzymatic hydrolysis, 44-45, 177 effect of enzymatic hydrolysis of oilseeds, 158 Enzymatic interesterification (EIE), 2, 5, 11-12, 123-124 application in rice bran oil, 124 flowchart of typical enzymatic refining of RBO, 125f

chemical interesterification processes and, 4 - 5continuous vs. batch process, 11 - 12enzymatic vs. chemical interesterification, 11-12 free vs. immobilized enzymes, 8-10 influences on, 10-11 mechanism of, 2-4 process, 5-8 flow diagram of continuous enzymatic interesterification process, 9f flow diagrams based on Peeters' disclosure, 8f flow for solvent-free interesterification process, 7f of rice bran oil, 123-124 specificity of enzymes, 10 Enzymatic oil extraction effect of agitation rate on enzymatic oil extraction process, 48-49 in aqueous medium, 43-44 effect of incubation time on, 48 Enzymatic process, 67, 163-164 of biodiesel production, 24 Enzymatic production of alkyl esters, 24 - 26Enzymatic refining of rice bran oil, 114-124 Enzymatic stabilization of rice bran oil, 114-115 major steps of enzymatic stabilizing process, 116f Enzymatic transesterification, 75, 288 benefits of utilizing waste cooking oil, 57 - 58comparison of fatty acid concentration, 58t case studies, 74-78 classification, 67-69 extracellular lipase, 67-68 intracellular lipase, 69 enzymatic catalysis, 65-67 immobilization, 72-74 mechanism, 69-72 description, 69-70 induced fit model, 71

Enzymatic transesterification (Continued) models of enzyme-substrate interaction, 70-72 substrate interaction and nature of active site, 72 problem statement, 55-57 biodiesel production cycle, 56f different available feedstock for biodiesel, 56f transesterification, 61-65 used cooking oil, 58-60 Enzymatic transformation of used vegetable cooking oil for biodiesel availability of used cooking oil as feedstock, 281-283 composition of unused vegetable oil and used vegetable oil, 282-283, 284t, 285t global production of major vegetable oils, 281t conversion of used cooking oil into biodiesel, 283-288 collection of used cooking oil, 283 conversion of vegetable oil into esters through transesterification, 286-288, 287f pretreatment of used cooking oil, 283 - 286current scenario, 294-296 future prospects, 296-298 lipases, 288-290 recent research and development, 290 - 294microbial sources and immobilization material explored for biodiesel synthesis, 295t Enzymatic-assisted extraction process, 272 - 273Enzyme-assisted aqueous extraction (EAAE), 109, 141 flowchart of enzyme-assisted aqueous extraction of sesame seed oil and protein hydrolysates, 171fEnzyme-assisted aqueous extraction process (EAEP), 33-34, 111-114, 140 - 141

Enzyme-assisted extraction (EAE), 218-229, 264 basic process of enzyme-assisted extraction of essential oils from aromatic plants, 220f of corn oil, 272-273 of edible oils, 153 enzymes and mode of action, 221-223 of essential oils, 224-229 application of various enzymes on different plants for extraction of essential oils, 225t extraction, 218-229 flowchart of enzyme-assisted extraction, 265fof oil from canola, 271-272 of oil from peanut, 273-274 of rapeseed oil, 266-269 rapeseed oil in nutshell, 268f schematic representation of, 267f of soyabean oil, 269-271 variables affecting enzyme-assisted extraction, 223-224 of virgin olive oil, 246 advantages of, 254 disadvantages of, 254-255 Enzyme-assisted three-phase partitioning (EATPP), 160-161, 163 oil yields obtained by enzymatic threephase partitioning extractions, 163t three-phase partitioning for oil separation from edible oilseeds, 161f Enzyme-enhanced oil recovery (EEOR), 33 - 34Enzymes, 1, 24–26, 33, 43–44, 68, 151, 153, 205, 212, 219-220, 253 additive amount, 156-157 as biological catalysts, 66 concentration, 162, 164-165, 180 oil yields obtained by microwaveassisted enzymatic extractions, 165t for degradation of pectin, 41-42 pectinesterase, 42 pectinlyases, 42 polygalacturonase, 41-42 in enzymatic degumming of rice bran oil, 117-118

enzyme-assisted oil recovery, 34 enzyme-based oilseed processing, 153 - 154enzyme-based technology, 33 enzyme-catalyzed transesterification, 64 - 65immobilization by adsorption strategy, 73 influence on oil extraction, 141-144 on oil quality, 144-145 on oil yield, 141-144 on phytochemical composition, 145 isolation of enzymes for oil extraction, 47 models of enzyme-substrate interaction, 70 - 72lock and key model, 71 oil extraction efficiency of different, 170 - 173as pretreatment agent in oil extraction enzyme-assisted aqueous extraction, 173f use of, 173 process of enzyme-based oil extraction, 44 - 45enzymes utilized in oil extraction from edible seeds, 45t ratio of enzyme/substrate, 175, 252-253 reactions, 8-10 for recovery of oil from edible seeds enzymatic oil extraction in aqueous medium, 43-44 factors influencing enzymatic extraction of oil, 47-49 isolation of enzymes for oil extraction, 47 microbial enzymes in oil extraction, 46 - 47particle size of oil-bearing material, 47 - 49process of enzyme-based oil extraction, 44-45 selectivity of enzymes for components of cell wall, 35-43 structure of oilseeds, 34-35

specificity of, 10 steps involved in enzyme-assisted virgin olive oil extraction, 246-252 used for aqueous enzymatic extraction, 194tused in extraction processes, 154-155 enzymes utilized in extraction of edible oils from different seeds, 155t incubation time, 155 moisture, 155 pH, 155 temperature, 154 xylanases, 37 Essential fatty acids, 4, 104 Essential oils, 217-218 enzyme-assisted extraction of, 224-229 extraction of, 218-229 Ester, 61 bond, 117 Esterases, 245-246 Esterification, 61 reaction, 62f Esters through transesterification, conversion of vegetable oil into, 286 - 288Ethanol, 61, 108, 122 Ethanol Blended Petrol Programme, 296 EU. See European Union (EU) European Union (EU), 283 Expeller pressing, 155–156 Experimental design, 85-86, 90-91, 94, 98 bioremediation study medications utilized in titrimetric tests, 86t Extra virgin olive oil, 237 Extracellular lipases, 21-22, 67-68 Extraction of essential oils, 218-229 enzyme-assisted extraction, 219-229 methods widely used for extraction of essential oils, 219f method, 134-135, 141-142 effect of pH of extraction medium, 48, 176 process, 112, 169, 263-266 enzymes used in, 154-155

Extraction (*Continued*) time, 164 of rice bran oil, 107–114 conventional methods of rice bran oil extraction, 107–111 technologies, 33 Extraction yield (EY), 206–207 EY. *See* Extraction yield (EY)

F

FAMEs. See Fatty acid methyl esters (FAMEs) FAs. See Fatty acids (FAs) Fat, oil, and grease (FOG), 280 Fat-soluble vitamins, 263-264 Fatty acid methyl esters (FAMEs), 62, 286 Fatty acids (FAs), 135 alkyl ester, 15 content in common edible oils, 188t effect on fatty acid composition of perilla oil, 213 fatty acid-specific lipases, 10 profile of rice bran oil, 104-105 percentage of fatty acids in rice bran oil, 104*t* Fe₃O₄ hollow submicrospheres (FHSM), 292 Feedstock, 17 availability of used cooking oil as, 281-283 for biodiesel, 56f Feruloyl esterase, 38 FFAs. See Free fatty acids (FFAs) FHSM. See Fe₃O₄ hollow submicrospheres (FHSM) Filamentous fungi, 23 Filtration of virgin olive oil, 251-252 First-era biodiesels, 16 FOG. See Fat, oil, and grease (FOG) Free enzymes, 8-10 Free fatty acids (FFAs), 2, 135, 244-245 Frit lipases, 87-88 Fuel shortages, 15 Fuji Oil Company, 6 Functional FFAs, 124 Fungal sources, 4

G

 $\begin{array}{l} \gamma \text{-Oryzanol, } 105-106\\ \text{Garlic oil, } 224-229\\ \text{Geraniaceae, } 217-218\\ \text{Glucoamylase, } 219-223\\ \text{Glycerides, } 58-59\\ \text{Glycerolysis, } 2\\ 3\text{-glycidoxypropyl trimethoxylsilane}\\ & (3\text{-GPTMS}), 75-76\\ \text{Glycosidases, } 245-246\\ \text{Glycoside hydrolases, } 245-246\\ \text{Glycoside hydrolases, } 245-246\\ \alpha \text{-1,4-glycosidic linkages of pectin,}\\ & 42-43\\ \end{array}$

Н

Halogenated hydrocarbons, 134 Hammer crushers, 247 Hemicellulases, 45 Hemicellulolytic ester hydrolases, 38 Hemicelluloses, 36-38, 219-220 enzymatic degradation of, 38f Hexane, 107-108, 153, 191, 263-264, 269 - 270Higher enzyme concentrations, 175 Higher yield, 219-220 Homogeneous base catalytic transesterification, 287 Homogeneous-catalyzed reactions, 21 Humicola lanuginosa, 46–47 Hydraulic oil press, 152 Hydraulic pressing, 34, 155-156 Hydrocarbons, 134 Hydrogen bonding, 73 Hydrolases, 244 Hydrolysis, 85 reaction tests, 85-86 temperature, 158 Hydrolytic cleavage, 42-43 Hydroxyl quinines, 39 Hydroxylation, 243 Hydroxyproline-rich glycoprotein, 35

I

IE. See Interesterification (IE) Illiciaceae, 217–218

Immobilization, 72-74 affinity immobilization, 73-74 by entrapment, 74 enzyme immobilization by adsorption strategy, 73 of lipase by cross-linking, 72-73 techniques, 6, 73, 290 Immobilized C. antarctica lipase B, 293 Immobilized cells, 97 Immobilized enzymes, 8-10, 119-120 Immobilized FFA deacidification enzymes, 121 Immobilized lipases as catalyst, 290 encapsulated in calcium alginate beads, 291 Incubation period, 177 temperature, 177, 181-182, 253 time, 155, 181-182, 254 effect of incubation time on enzymatic oil extraction, 48 Induced fit model, 71 Interesterification (IE), 4, 114 International Energy Agency, 57, 279 International Olive Council Standards (IOC), 236 Intracellular lipases, 21-22, 69 features of lipase enzyme, 70f IOC. See International Olive Council Standards (IOC) Iodine value (IV), 207-209 Ion-exchange chromatography, 90 Ionic interactions, 73 Irradiation power, 164 Irvingia gabonensis-immobilized lipase, 291 Isolation of enzymes for oil extraction, 47 Isopropanol, 108 IV. See Iodine value (IV)

J

Jatropha curcas, 196-197, 296

Κ

Kocuria fava, 291

L

Laccases, 39-40 Lamiaceae, 217-218 Lauraceae, 217-218 Laurus nobilis L Bay leaves (LaurusnobilisL.) Lavandula angustifolia, 224-229 LDL. See Low-density lipoprotein (LDL) Lignin, 38-40 enzymatic degradation, 39 laccases, 39-40 lignin-degrading enzymes, 39 lignin-modifying enzymes, 39 manganese peroxidases, 39 mechanism of enzymatic degradation, 40 Lignin peroxidase, 39 Ligninolytic enzymes, 39 Linear/branched polysaccharides, 36-37 Linolenic acid, 213 Lipases, 4, 21-26, 84, 244-245, 288-290 benefits of lipase usage biodiesel production, 24 bioremediation of waste cooking oil using lipase from orange waste, 84-88 produced by marine Aspergillus awamori, 92-94 produced by Penicillium chrysogenum, 88 - 92enzymatic production of alkyl esters, 24 - 26extraction, 84-85, 85t immobilization of lipase by cross-linking, 72 - 73immobilized lipases as catalyst, 290 lipase-catalyzed reactions, 69 lipase-mediated biodiesel, 23 production, 88–90, 92–97, 97f properties, 23-24 reuse, 24 specificity, 23 stability, 24 sources of, 21-23, 22t zymogram, 84-85 Lipids, 1, 5-6, 187-188 bodies, 112 lipid-containing composition, 7-8 Lipomode, 180

Lipoxygenases, 243 Lipozyme 435, 121 Lipozyme TLIM, 293 Liquid enzyme, 118–119 Liquid oil, 8–10 Liquid/liquid separation, 250–251 Lock and key model, 71 Low-density lipoprotein (LDL), 207–209 Lysophospholipids, 180 Lysosomal proteolysis, 43

Μ

m-MWCNTs. See Magnetic multiwalled carbon nanotubes (m-MWCNTs) MAE. See Microwave-assisted extraction (MAE) MAG. See Monoacylglycerol (MAG) Magnetic multiwalled carbon nanotubes (m-MWCNTs), 293-294 Magnetic nanoparticles (MNPs), 75-76 Malaxation, 248-249 Malt extricate (ME), 92-93 Manganese peroxidases, 39 Margarines, 124 Marine Aspergillus awamori, bioremediation of waste cooking oil using lipase produced by, 92-94 Marine Bacillus cereus, bioremediation of oil waste using lipase produced by, 94 - 99Marine bacteria, 94-95 mCLEAs-lip. See mCLEAs-lipase (mCLEAs-lip) mCLEAs-lipase (mCLEAs-lip), 75 ME. See Malt extricate (ME) Mechanical expression, 135–136 Mechanical method of oil extraction, 34 Mechanical press(ing), 135-136, 173, 271 - 274MedDiet. See Mediterranean diet (MedDiet) Mediterranean diet (MedDiet), 235 Medium-chain fatty acids, 4 Mesocarp, 236 Methanol, 61, 122, 286-287 Microbial enzymes in oil extraction, 46 - 47

Microbial lipases, 21-22, 288-289 Microwave puffing, 193-196 Microwave radiation, 163-164 Microwave-assisted enzymatic extraction, 163-165. See also Aqueous enzymatic extraction (AEE); Ultrasound-assisted enzymatic extraction (UAEE) of oil classic extraction processes, 189-191 ecological alternatives for oil extraction, 191-198 fatty acids content in common edible oils, 188t oilseeds as multipurpose functional food, 189f Microwave-assisted extraction (MAE), 107, 110, 136-138, 192-193, 218 advantages of, 137t technique, 163 Milling/crushing, 247-248 Mineralization, 40 MNPs. See Magnetic nanoparticles (MNPs) Models of enzyme-substrate interaction, 70 - 72Monoacylglycerol (MAG), 1-2 Monoalcohols, 122 Monounsaturated fatty acids (MUFAs), 104, 209, 235 Moringa oleifera seed oils, 172-173 Mucor, 289 M. miehei, 289-290 MUFAs. See Monounsaturated fatty acids (MUFAs) Multiple phenolic compounds, 244 Multivariate principal component analysis, 86 Myristiceae, 217-218 Myrtaceae, 217-218

Ν

n-hexane, 153
National Biodiesel Board, 15
National Biodiesel Mission, 296
National Biofuel Policy (NBP), 296
National Institute of Nutrition (NIN), 104–105

National Policy on Biofuel-2018, 279
NBP. See National Biofuel Policy (NBP)
NIN. See National Institute of Nutrition (NIN)
Noncatalytic reactions, 20
Noncovalent interactions, 70
Nonedible oils, 187–188
Nonfossil-based biodiesel, 55–56
Novel techniques, 229–230 of milling olives, 247–248
Novozym 435 (NZ435), 121, 294
NZ435. See Novozym 435 (NZ435)

0

O-glycosyl bonds, 41-42 Oil, factors influencing enzymatic extraction of, 47-49 Oil extraction, 159-160, 270-271 conventional methods, 134 ecological alternatives for, 191-198 efficiency of different enzymes, 170 - 173enzyme-assisted aqueous extraction, 140 - 141general method of oil extraction by **UAAEE**, 206*f* influence of enzymes on, 141-144 oil extraction, 141-144 oil quality, 144-145 oil yield, 141-144 phytochemical composition, 145 isolation of enzymes for, 47 MAE, 136-138 mechanical expression, 135-136 microbial enzymes in, 46-47 nonconventional methods, 136 process, 265-266 solvent extraction, 134-135 subcritical CO₂ fluid extraction, 140 supercritical CO2 extraction, 139 - 140SWE, 139 UAE, 138 use of enzyme as pretreatment agent in, 173

Oil waste using lipase produced by marine Bacillus cereus, bioremediation of, 94 - 99Oil yield, influence of enzymes on, 141 - 144Oil-bearing component particle size, 174 - 175Oil-bearing material, particle size of, 47 - 49, 252Oil-containing materials, 141 Oilseeds, 205 effect of enzymatic hydrolysis of, 158 enzyme pretreatment for biodiesel industry, 174f flowchart of MW-AEE process from oilseeds using immobilized enzyme, 198f as multipurpose functional food, 189f structure of, 34-35 Oil-water interactions, 2-3 Olea europaea L Olive tree (OleaeuropaeaL.) Oleic acid, 104, 283 Oleic-oleic-oleic (OOO), 239 Oleosins, 44-45, 112, 270-271 Oleosomes, 34–35 Olive enzymes involved in olive oil extraction process, 242-246 glycosidases, 245-246 hydrolases, 244 lipases, 244-245 lipoxygenases, 243 oxidoreductases, 243 peroxidases, 243 polyphenol oxidases, 244 Olive oils, 238 classification, 236-238 main olive enzymes involved in olive oil extraction process, 242-246 storage of, 251 Olive pomace oil, 238 Olive tree (Olea europaea L.), 235 Omega-3 supplementations, 268-269 One-step transesterification of lipids, 4-5 OOO. See Oleic-oleic-oleic (OOO) Orange wastes bioremediation of waste cooking oil using lipase from, 84-88

Orange wastes (*Continued*) concentration of lipase extracts obtained from, 85*t* Ordinary virgin olive oil, 238 Oryzanol, 103 Oxidation, 243, 251 Oxidoreductases, 243 catalyze oxidation-reduction reactions, 243

Ρ

p-nitrophenol palmitate, 89 PA. See Phosphatidic acid (PA) Packed bed column reactor, 2 Packed-bed reactor (PBRs), 123 Palm oil fraction, 4 PAMAM. See Polyamidoamine (PAMAM) Pancreatic lipase encapsulated in carbonocarboxylate, 292 Papain, 219-223 Partially hydrogenated oils, 2 Particle size of oil-bearing material, 47 - 49effect of agitation rate on enzymatic oil extraction process, 48-49 incubation time on enzymatic oil extraction, 48 pH of extraction medium, 48 ratio of water-to-oil-bearing material, 48 PBRs. See Packed-bed reactor (PBRs) PC. See Phosphatidyl choline (PC) Peanut, 209-211 enzyme-assisted extraction of oil from, 273 - 274oil, 209-210, 273-274 using UAAEE, 210f Pectic compounds, 221-223 Pectin, 40-43, 221-223 enzyme for degradation, 41-42 mechanism of enzymatic degradation, 42 - 43Pectin methyl esterases, 42 Pectinases, 41, 43-44, 169, 177, 219-223, 263 - 264Pectinesterases, 42 Pectinlyases, 42

Penicillium chrysogenum, 288-289 bioremediation of waste cooking oil using lipase produced by, 88-92 SNP5, 88-89 Perfusion chromatography, 47 Pericarp, 236 Perilla oil, effect on fatty acid composition of, 213 Perilla plant, 211 Perilla seeds, 211–212 perilla oil extraction using UAAEE, 213f Peroxidases (PODs), 242-243 Peroxide value (PV), 207-209 Perturbation rate, 253 Petroleum ether-dissolved enzyme (PE-dissolved enzyme), 1-2 pH range, 176 Phenolic components, 238-239 Phenolic compounds, 240–241, 241f Phosphatidic acid (PA), 117 Phosphatidyl choline (PC), 116-117 Phosphatidyl ethanolamine, 116 Phosphatidyl inositol, 116 Phospholipase A1 (PLA1), 117 Phospholipases (PLD), 117 Phospholipids, 116 Phosphorus (P), 116-117 Photobacterium lipolyticum, 289-290 Phytochemical composition, 105 health benefits of RBO phytochemicals, 106f influence of enzymes on, 145 of rice bran oil, 105t Phytosterols, 136 Pigments, 241-242, 242f Ping foetor metal Bi mechanism, 24-26 PLA1. See Phospholipase A1 (PLA1) Plackett-Burman experimental design, 96 Plackett-Burman matrix, 96 Plants, 133 lipases, 84 lipoxygenases, 243 PLD. See Phospholipases (PLD) Poaceae, 217-218 PODs. See Peroxidases (PODs) Polyamidoamine (PAMAM), 293-294 Polygalacturonases, 41-43

Polymethylgalacturonases, 42-43 Polyphenol oxidases (PPOs), 242, 244 Polyunsaturated fatty acids (PUFAs), 4, 104, 209, 238-239, 268-269 Pomace, 249 Positional-specific lipases, 10 PPOs. See Polyphenol oxidases (PPOs) Pressurized liquid extraction, 218 Pretreatment process of oilseeds, 46-47 Proteases, 43-45, 221-223, 263-264 Proteasome, 43 Protein hydrolysates, 144, 171f Proteins, 43, 187-188, 190 Protizyme, 274 Pseudomonas P. cepacia, 24-26, 67, 289-290 P. fluorescens, 68, 289-290 PUFAs. See Polyunsaturated fatty acids (PUFAs) PV. See Peroxide value (PV)

Q

Quinones, 39

R

Rapeseed oil aqueous extraction, 267-268 enzyme assisted extraction of, 266-269 fatty acid profile, 268-269 in nutshell, 268f Ratio of slurry, 162 Ratio of water-to-oil-bearing material, 48 RB. See Rice bran (RB) RB oil (RBO), 103 RBO. See RB oil (RBO) Reactors, 7-8 Refined olive oil, 238 Regeo-specific lipases, 4 Renewable Energy Directive II, 297 Renewable resources of energy, 55 Renewable sources, 57 Response surface methodology (RSM), 197-198, 212-213, 293-294 Rhamnose residue, 40-41 Rhizomucor, 23 R. miehei, 67, 289-290, 292

Rhizomucor miehei lipase (RML), 293-294 Rhizopus, 23 R. chinensis, 289-290 R. oryzae, 24-26, 67, 289-290 Rice bran (RB), 103 chemical composition and nutritional and health properties of, 104 - 106fatty acids profile of rice bran oil, 104 - 105 γ -oryzanol, 105–106 phytochemical's composition, 105, 105tenzymatic refining of, 114-124 enzymatic deacidification of rice bran oil. 120-123 enzymatic degumming of rice bran oil, 116-120 enzymatic interesterification of rice bran oil, 123–124 enzymatic stabilization of rice bran oil, 114 - 115extraction of rice bran oil, 107-114 conventional methods of rice bran oil extraction, 107-111 oil, 103 RML R.miehei lipase (RML) Rosemary (Rosmarinus officinalis L), 224 - 229Rosmarinus officinalis L Rosemary (RosmarinusofficinalisL) RSM. See Response surface methodology

S

(RSM)

Safflower seeds, layers produced after centrifugation of aqueous enzymatic extraction of oil from, 171*f*Sample to solvent ratio, 156
Santalaceae, 217–218
Saturated fatty acids (SFAs), 104, 211–212, 282
Scanning electron microscopic analysis, 35
Scarification method, 136
Screw-cap Pyrex tube, 90–91
Seawater samples, 92–93
Secondary screening, 95–96 Seed oils, 133 yield, 133 Sesame seed oil, flowchart of enzymeassisted aqueous extraction of, 171f SFAs. See Saturated fatty acids (SFAs) SFE. See Supercritical fluid extraction (SFE) Shaking incubation extraction (SIE), 210 - 211Short-chain alcohols, 24-26, 61, 107-108 Short-chain fatty acids, 4 SIE. See Shaking incubation extraction (SIE) SLs. See Structural lipids (SLs) Sodium hydroxide (NaOH), 207-209 Solid-state fermentation (SSF), 68, 88-89 Solid-liquid extraction, 249 Solubilization, 40 Solvent extraction, 107, 134-135, 153, 155-156, 207-209, 271-274 Solvent treatment, 173 Solvent-free approach, 8–10 Solvent-free interesterification process, process flow for, 7f Solvents, 153 Sonication, 206 Soxhlet extraction, 107 Soxhlet process, 137 Soxhlet solvent extraction procedure, 135 Soybean, 134, 213-214 oil, 269-270 enzyme assisted extraction of, 269 - 271ultrasound-assisted enzymatic extraction of soybean oil, 213-214, 214f Specific enzymes, 35 1,3-specific lipases, 23 Spherosomes, 34-35 Sporotrichum thermophile, 46-47 SSF. See Solid-state fermentation (SSF) Sterols, 103 Streptomyces sp., 289-290 Structural lipids (SLs), 124 Subcritical CO₂ fluid extraction, 140 Subcritical water (SW), 110-111, 139 Subcritical water extraction (SWE), 139 Submerged fermentation, 68

Substrate

interaction and nature of active site, 72
ratio of, 252–253
ratio of enzyme to, 175

Sulfuric acid, 288
Supercritical CO₂ extraction, 139–140
Supercritical fluid extraction (SFE), 134, 218
SW. See Subcritical water (SW)
SWE. See Subcritical water extraction

(SWE)

Т

t-butanol, 162 TAGs. See Triacylglycerols (TAGs) Temperature of incubation, 177 Thermomyces, 23 Thermomyces lanuginose, 289–290 Three-phase partitioning (TPP), 47, 160-161, 163 Titrimetric method, 95-96 Tocopherols, 5, 103, 136, 145, 240, 240f Tocotrienols, 103 Total phenolic content (TPC), 207-209 Total suspended solids (TSS), 98 TPC. See Total phenolic content (TPC) TPP. See Three-phase partitioning (TPP) Traditional degumming techniques, 116 Transesterification, 2, 6, 16-17, 20, 61 - 65, 85classification of transesterification, 65f conversion of vegetable oil into esters through, 286-288 enzyme-catalyzed transesterification, 64 - 65esterification reaction, 62f mechanism of typical esterification reaction, 63f process, 62 reaction, 63f of vegetable oil/plant oil, 64f of UCO, 280-281 of vegetable oils, 62-63 of waste cottonseed oil, 74-75 Triacylglycerol acylhydrolase, 244-245 Triacylglycerols (TAGs), 239, 239f, 244 - 245

Triglycerides, 58–59, 187–188, 238–239 TriSyl 150IE, 7–8 TSS. See Total suspended solids (TSS)

U

UAAEE. See Ultrasound-assisted aqueous enzymatic extraction (UAAEE) UAE. See Ultrasonic-assisted extraction (UAE) UAEE. See Ultrasound-assisted enzymatic extraction (UAEE) Ubiquitin-proteasome, 43 UCO. See Used cooking oil (UCO) UCOME. See Used Cooking Oil Methyl Ester (UCOME) UFA. See Unsaturated fatty acids (UFA) Ultrasonic power, 159 Ultrasonic temperature, 160 Ultrasonic-assisted extraction (UAE), 109-110, 136, 138, 138t Ultrasonic-microwave-assisted extraction, 224 - 229Ultrasonication, 159 time, 159-160 Ultrasound, 206 Ultrasound aqueous-assisted enzymatic extraction, advantage of, 212-213 Ultrasound-assisted aqueous enzymatic extraction (UAAEE), 209-210 process of peanut oil using, 210f Ultrasound-assisted enzymatic extraction (UAEE), 158-160, 205. See also Aqueous enzymatic extraction (AEE); Microwave-assisted enzymatic extraction of oil advantage of ultrasound aqueousassisted enzymatic extraction, 212 - 213distinct phase system after centrifugation, 207f effect on fatty acid composition of perilla oil, 213 general method of oil extraction by UAAEE, 206f peanut, 209-211 perilla seeds, 211-212

soybean, 213-214 walnut, 207-209 oil yields obtained by, 160t of soybean oil, 213-214, 214f ultrasonic power, 159 ultrasonic temperature, 160 ultrasonication time, 159-160 Unilever. 5-6 United States Environmental Protection Agency, 263-264, 269-270 Unsaturated fatty acids (UFA), 268 - 269Unused vegetable oil, composition of, 282 - 283Used cooking oil (UCO), 55-60, 280 chemical and physical properties, 59t from various sources, 59t, 60t collection of, 283 contribution of waste cooking oil by different sources, 60f conversion of used cooking oil into biodiesel, 283-288 pretreatment of, 283-286 Used Cooking Oil Methyl Ester (UCOME), 280-281 Used vegetable oil, composition of, 282 - 283

۷

Vacuum evaporation, 286 Vacuum filtration, 286 Van der Waals forces, 73 Vegetable oils, 15-17, 58-59, 187-188 conversion of vegetable oil into esters through transesterification, 286 - 288acid-catalyzed transesterification, 288 base-catalyzed transesterification, 287 enzymatic transesterification, 288 extraction process, 169 Virgin olive oil (VOO), 235, 238 advantages of enzyme-assisted extraction of virgin olive oil, 254 classification olive oil, 236-238 extra virgin olive oil, 237 obtention ways and, 237f olive oil, 238

Virgin olive oil (VOO) (Continued) olive pomace oil, 238 ordinary virgin olive oil, 238 refined olive oil, 238 virgin olive oil, 238 composition of, 238-242 phenolic compounds, 240-241 pigments, 241-242 tocopherols, 240 triacylglycerols, 239 disadvantages of enzyme-assisted extraction of virgin olive oil, 254 - 255enzyme-assisted extraction of, 246 factors affecting efficiency of enzymatic extraction of virgin olive oil, 252 - 254olive cultivars, 236f olive enzymes involved in olive oil extraction process, 242-246 steps involved in enzyme-assisted virgin olive oil extraction, 246-252 filtration of virgin olive oil, 251-252 liquid/liquid separation, 250-251 malaxation, 248-249 milling/crushing, 247-248 removal of leaf and washing, 246 - 247solid-liquid extraction, 249 storage of olive oils, 251 Vitamins, 235 Volatile oils, 217-218 VOO. See Virgin olive oil (VOO)

W

Walnut, 207–209 Washing process, 246–247 Waste cooking oil (WCO), 57, 83. See also Used cooking oil (UCO) benefits of utilizing, 57-58 bioremediation of waste cooking oil using lipase from orange waste, 84-88 produced by marine Aspergillus awamori, 92-94 produced by Penicillium chrysogenum, 88 - 92Waste cooking palm oil (WCPO), 76 Water, 24-26 extraction, 141 Water-to-oil-bearing-material ratio, 48, 175 - 176WCO. See Waste cooking oil (WCO) WCPO. See Waste cooking palm oil (WCPO) Wedge press, 152 Wheat bran, 88-89 WHO. See World Health Organization (WHO) Whole-cell biocatalyst, 293-294 World Health Organization (WHO), 104 - 105

Х

Xanthoceras sorbifolia Yellow horn seeds (Xanthocerassorbifolia)

Y

Yellow horn seeds (Xanthoceras sorbifolia), 197–198

Ζ

Zingiberaceae, 217–218