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Abstract— Wearable robots have become increasingly 

significant in rehabilitation treatments aimed at improving 

patients suffering from walking gait abnormalities. The 

effectiveness of these robots depends on their ability to 

accurately track trajectories. This paper proposes a hybrid 

technique for tuning a PID controller in a wearable lower limb 

rehabilitation robot (WLLR). The combination of GA and PSO, 

termed HGAPSO, is utilized to acquire PID parameters for the 

hip and knee joints, with the aim of minimizing overshoot and 

tracking error. Notably, the percentage overshoot recorded by 

HGAPSO for the hip and knee is superior to that of conventional 

ZN, GA, and PSO methods, with percentages of 4.9% and 

0.42%, respectively. Furthermore, the maximum error (ME) 

and average error (AE) between desired and actual trajectories 

recorded for a range of motion (ROM) and walking conditions 

do not exceed 0.05, which are deemed acceptable errors. The 

maximum root mean square error (RMSE) recorded for both 

ROM and walking conditions is 0.028 and 0.043, respectively. 

Additionally, the coefficient of determination (R2) for both 

conditions is more than 99%, indicating a close fit between 

desired and actual trajectories under various conditions. 

Keywords—Lower Limb Robot, Exoskeletons, PID Controller, 

Genetic Algorithm, Locomotion, Particle Swarm Optimization 

I. INTRODUCTION 

In recent years, there has been an increase in stroke 
patients and the aging population experiencing abnormal 
walking gaits [1]. Consequently, the demand for wearable 
robots in rehabilitation treatments has become more 
pronounced [2]. Researchers have thus focused more on 
designing and developing wearable rehabilitation robots to 
restore muscle strength and address walking gait 
abnormalities. Additionally, these robots assist patients who 
have lost their ability to perform daily tasks due to conditions 
such as accidents and spinal cord injuries (SCI). Wearable 
lower limb rehabilitation robots (WLLRs) operate alongside 
human limbs, aiming to rehabilitate patients who are unable to 
walk [3-6]. Furthermore, WLLRs function as gait training 

robots requiring controllers to minimize steady-state errors 
and improve tracking performance. Various methods and 
algorithms for controlling WLLRs have been explored [7-8]. 

The Proportional-Integral-Derivative (PID) controller is 
widely used in position tracking control due to its simplicity, 
robustness, and successful practical applications. Galvan et al. 
[9] designed a PID controller for WLLRs that exhibited good 
joint angle tracking performance despite disturbances. 
Similarly, Sanngoen et al. [10] utilized PID to control the 
WAR robot, demonstrating consistent footpath and actual foot 
trajectory patterns. The accuracy of the position tracking 
control algorithm depends on precise controller tuning, which 
enhances the robot's ability to track input signals while 
minimizing position tracking errors. The conventional 
Ziegler-Nichols (ZN) method is a popular approach for tuning 
PID controllers due to its speed, simplicity, and ease of 
implementation. Several studies have reported tuning WLLR 
positions using conventional ZN [11-12]. However, this 
method still has drawbacks, such as the need for further fine-
tuning to improve transient response and tracking errors. 
Additionally, the PID closed-loop system is highly sensitive 
to parameter variations, resulting in large overshoots and 
oscillatory responses. Thus, there is ongoing research interest 
in improving controller accuracy and reducing position 
tracking errors. 

To address these challenges, optimization techniques such 
as genetic algorithms (GA) and Particle Swarm Optimization 
(PSO) have been introduced to tune PID parameters. GA is an 
evolutionary optimization technique that employs concepts of 
natural selection, crossover, and mutation [13]. Meanwhile, 
PSO is a metaheuristic technique inspired by biological 
behaviors such as swarming, bird flocking, and fish schooling 
[14]. Elbayomy et al. discussed PID controller tuning using 
GA for the Electro-Hydraulic Servo Actuator System 
(EHSAS), showing improved PID performance compared to 
conventional tuning methods [15]. Similarly, Cuellar et al. 
[16] combined Gain Phase Margin (GMP) with GA to tune the 
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PID controller, while Azar et al. [17] utilized GA to optimize 
controller parameters for a six-bar Steward parallel robot. PSO 
has also been employed in various applications, including 
tuning PID control for lower-limb human exoskeletons. 
Although PSO converges faster than GA in achieving globally 
optimal solutions, it is susceptible to getting trapped in local 
optima.  

In this study, our contribution lies in implementing a 
hybrid technique that combines genetic algorithms and 
particle swarm optimization, termed hybrid HGAPSO, to 
acquire PID controller parameters for WLLR joints. Our 
motivation behind this hybrid technique is to enhance the 
chances of minimizing control overshoot and reducing 
tracking errors across both ranges of motion (ROM) and 
walking gait conditions. We derived the transfer function of a 
dynamic model for the hip and knee joints using Lagrangian 
formulation and Kirchoff's Law, based on mathematical 
modeling approaches [18]. A decentralized closed-loop 
control system is utilized in the tuning process, where GA is 
initially run with random initial values, and the results guide 
PSO to find optimal PID parameters for the control system. 
We simulate a three-dimensional model (3D) of the WLLR 
using MATLAB Simmechanics software to analyze the 
proposed controller's behavior under different experimental 
conditions, including ROM and walking gait conditions 

II. METHODOLOGY 

A. Development of Controller 

A closed-loop control algorithm implemented for the 
WLLR  is represented in Fig. 1, in which the left/right hip and 
knee joint is controlled by PID separately. The    and    
represent the desired and actual trajectory of the control 
system. A PID controller is used for controlling the joints of 
the WLLR due to its potential in providing satisfactory results 
and comfort of operation [19]. Besides, the PID controller's 
characteristic is simple, easy to implement, robust and 
practical in a wide range of application.  The closed-loop 
transfer function of the PID controller is expressed in (1). 

 

 

Fig. 1: Closed Loop Control Algorithm for hip and knee joint 
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The transfer function of a dynamic model  is  present by   
while i =1, 2 represents the femur and tibia respectively.   is 
the transfer function of the PID controller written as in (2). 
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Kp, Ki, and Kd respectively present proportional, integral, 
derivative parameter. The tracking error   is different between 
desired and actual trajectory expressed in the following 
equation. 

����� � ������ � ������            (3) 

where    and   is the desired and actual trajectory of the 
WLLR motion.   is denoted as the input error to the PID 
controller while  (s) is the controller output and input to the 
dynamic model. The objective function of optimization is 
determined by fixed the control system input as a step 
response ( = 1) while i=1,2,3,4 represent right hip, left hip, 
right knee and left knee, respectively. Therefore, by 
substitution of (1) in (3), the error  is expressed in (4). 
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In this study, the objective function is determined based on 
Integral Time Absolute Error (ITAE) [5], which is the 
summation of absolute error, weighted by time and sample 
time is expressed as in the following equation; 

�� ! � "���� � # $
∞

%
|�obj��$�|dt                 (5)                                                                                                     

where   is the error of the control system in the time domain 
and   is the elapsed time. This section details the methodology 
employed in the research. The modeling of WLRR is detailed 
out in []It is focused on the designing the controller, and will 
further elaborate on the utilization of a hybrid algorithm for 
tuning the PID controller.  

B. Hybrid Algorithm for PID-Based Controller 

The PID tuning is set as an optimization problem and solved 
by the combination of genetic algorithm(GA) and Particle 
Swarm Optimization(PSO) in series, called HGAPSO 
(Hybrid technique). GA is an evolutionary optimization 
technique based on the concept of natural selection, 
crossover and mutation [20]. Meanwhile, PSO is a 
metaheuristic technique called population-based 
optimization strategy, inspired by the biological behaviour 
of swarms, birds flocking, and fish schooling [21]. The 
tuning process stated by the GA optimization algorithm and 
the optimized parameters of  Kp, Ki, and Kd values obtained 
used as initial values of the PSO algorithm. Hence, GA 
provides search space or initial value for the PSO algorithm. 
The PSO then converges the PID parameters to the optimal 
solution. In this technique, the PSO resembles GA in setting 
the initial population and finding the best solution iteratively. 
However, there is no mutation and crossover. PSO has been 
implemented in various types of problem and proven to 
converge faster than GA in achieving a globally optimal 
solution, but easy to trap in local optima [22-23]. The design 
variables of the optimization problem are three parameters 
of the PID controller. Fig. 2 illustrates the configuration of 
the first population, in which each gene consists of 30 sets of 
random values for PID parameters. After creating the initial 
population, each gene is evaluated by the objective function. 
The genes are then arranged based on the objective function 
value by sorting from the lowest to the highest. The 
generation is created by crossover, mutation and some of 
them evaluated as the best gene remains unchanged called 
"elite genes"[24]. Crossover extracts the genes from the 
population and recombines them to increase the chance of 
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finding the best result. Mutation remains the diversity of GA 
from one generation to the next one.  

 

 
 

Fig. 2.   Initial Population Configuration 

Creating the next generation consists of keeping 5% of the 
previous population unchanged as elite genes. These genes 
should have the best results after evaluation. In this study, 
crossover and mutation probabilities are set to 0.8 and 0.2. It 
means that 80% of the remain population are selected via a 
crossover, and the rest 20% be filled using mutation. The 
adaptive feasible is selected as a method for mutation. The GA 
parameters setup in MATLAB is shown in Table I. The 
optimization and evaluation cycle continues until the 
generation of GA terminated. It means that the GA achieved 
the optimal solution. The output of GA is shown as in (6); 

,
- � .��, �� , ��0           (6) 

The optimization process then continues by the PSO 
algorithm, in which each particle carries the PID parameter 
values, as shown in (7). 

,�,� � 1234�.,
- � 5, ,
- � 50�               (7) 

Where y is defined as parameter tolerance.  The population 
of the next generation is created as in (8). 

,�,� � ,�6�,� � 7�,�          (8) 

TABLE I.  GA TUNING PARAMETERS 

GA Property Value/Method 

Population Size 30 

Number of Generation Hip:60 Knee:60 

Objective Function ITAE 

Selection Function Tournament 

Probability of Crossover 0.8 

Crossover Function Arithmetic 

Mutation Function Adaptive Feasible 

Probability of Mutation 0.2 

Elite Genes 0.05 

 

Where Vi, j represents the next generation particle and x i 
−1,  j is the particle of the previous generation. Generally, the 
velocity equation in PSO is written as follows: 

7�,� � 8�97�6�,� � :�9 1234�9 <���=,�6� �
:>9 1234>9 ?���= � 9�,�          (9) 

where rand 1 and rand 2 are the random values between 0 and 
1, C1 and C2  are positive coefficients of the self-recognition 
component and social components respectively, usually, the 
value is set as 2 . Pbest, i and g best are defined as the best 
position of each population and global best of them 
respectively while ωi is called as the inertia weight where its 
value readjusted as the following equation per each iteration: 

8� � 8��@�9 8�6�               (10)                                                                                                                

 ω damp is set as 0.05.  In each generation, the objective 
function is determined to evaluate the particles. Each particle 
with a minimum value of the objective function is stored as p 
best, i. Among the stored value of p best, i, the lowest value is 
selected as global best, which shown as g best. The PSO 
tuning parameters setup in MATLAB is shown in Table II. 
The particle of g best is chosen as the final result of the 
HGAPSO algorithm. 

TABLE II.  PSO TUNING PARAMETERS 

GA Property Value/Method 

Population Size 30 

Number of Generation Hip:40 Knee:40 

Objective Function ITAE 

Self Recognition Component ( C1) 1.5 
Social Component (C2) 2 
Initial Weight 0.05 

 

In this technique, the total number of generation setup is 
100. It means that, for the hip, 60  generations is run by using 
GA tool box in MATLAB and 40 generations continued by 
using PSO code developed in MATLAB. Similarly for knee, 
60 generations is run by GA and the rest 40 generation is run 
by PSO to obtain the optimal solution. The optimization block 
diagram of GA, PSO and HGAPSO  in MATLAB is shown as 
in Fig. 3. 

 

 Fig. 3: Optimization Block Diagram in MATLAB 

III. RESULTS AND DISCUSSIONS 

In order to verify the controller performance, PID 
parameters tuned via HGAPSO has been added to the 
simulation model as shown in Fig. 1. The WLLR model was 
tested to validate the performance of the controller in two 
different simulation experiments, which are ROM and 
walking gait condition. In ROM condition, only one joint is 
moved while the other joints are fixed [9].  The ROM 
trajectory applied to the hip and knee joint shown in Table III. 
Fig. 4 compares the desired and actual trajectory performance 
of WLLR controlled by PID via HGAPSO in ROM condition. 
Fig. 4(a) illustrated the right and left hip, while Fig. 4(b) 
illustrated the right and left knee. 
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TABLE III.  PID PARAMETERS (HIP) 

 MROM 

(radian) 
MROM (degree) MS 

(rad/s) 
Hip 
Flexion/Extension 

-0.8 to 0.8 -45.84 to 45.84 1 

Knee 
Flexion/Extension 

-1.49 to 0 -85.37 to 0 1 

 

(a) 

(b) 

Fig. 4: Tracking Performance of PID-HGAPSO in ROM Condition (a) 
Right and Left Hip (b) Right and Left Knee 

 

Statistical analysis was carried out in order to validate the 
data result. The statistical analysis of the PID tuned via  
HGAPSO performance in ROM which is ME, AE, RMSE, 
and R2 represent the maximum error, average error, root-
mean-square and coefficient of determination, respectively. 
The results discovered that ME and AE recorded for ROM 
condition are still not exceeding 0.05, which are still 
acceptable for ROM. Besides, the maximum of root means 
square error( RMSE) is only 0.028 while R2 of all joints are 
more than 99 %. These statistical results indicating that the 
desired ROM trajectory nearly fitted to all variability of the 
actual ROM trajectories. 

In walking condition, hip and knee joints for both left and 
right leg moved simultaneously to test the controller 
performance. Human gait was adopted as input for motion 
trajectory. However, some modification was made in order to 
fix the gait data to the simulation model. The walking gait  
result illustrated as in Fig. 6, which is Fig. 5(a) and Fig. 5(b) 
represent right and left hip, while Fig. 5(c) and Fig. 5(d) 
represent right and left knee, respectively. Similarly ROM, 
Statistical analysis was also carried out to validate the data 
result. The results revealed that ME and AE for walking 
condition are also not exceeding 0.05, which are still 
acceptable for walking motion. Furthermore, the maximum of 
RMSE is only 0.043 while R2 of all joints are more than 99 %, 
indicating that the desired precisely fitted to all variability of 
the actual walking trajectories. 

 

 (a) 

(b) 

 (c) 

 (d) 

Fig. 5: Tracking Performance of PID-HGAPSO  in Walking Condition 
(a) Right hip (b) Left hip (c) Right Knee (d) Left knee 

IV. CONCLUSION 

  The dynamic of the  WLLR is derived using Lagrangian 
formulation and  Kirchhoff's law based on a mathematical 
modelling approach. The optimized PID parameters Kp, Ki, 
and Kd, were tested in the 3D model in MATLAB 
Simmechanic for two different experiments which are ROM 
and walking gait conditions. The results showed that the PID 
control tuned via HGAPSO is better than the conventional 
PID tuning in term of overshoot and tracking performance. 
The tuning process started with a genetic algorithm (GA), and 
the result obtained provides search space for particle swarm 
optimization(PSO)  to converge the optimal solution for the 
PID parameters. This technique can be used to tune PID 
control for WLLR in order to help stroke patients in lower 
limb training. However, the limitations of this study are the 
controller only tested on the fixed structure and not tested on 
the actual structure of the WLLR. Besides, the influences of 
disturbance of the human are not considered in this study. 
Based on these limitations, an adaptive control system based 
on PID tuned via HGAPSO can be extended in future works 
to wind stand against disturbance and flexible to the adjustable 
frame of the WLLR. This analysis is essential as a preliminary 
stage before further development of adaptive control for 
WLLR. 
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