

Journal of Advanced Research in Applied Sciences and Engineering Technology 57, Issue 1 (2026) 107-116

107

Journal of Advanced Research in Applied

Sciences and Engineering Technology

Journal homepage:
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index

ISSN: 2462-1943

OWASP A03 Injection Vulnerability in Web Application Development

Phei-Chin Lim1,*, Ging-Wei Andy Chieng2, Huo-Chong Ling3, Nurfauza Jali1

1

2

3

Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
Asia Pacific Cloud Continuous Operation & Delivery Department, Huawei Technologies Co. Ltd., 50400 Kuala Lumpur, Malaysia
School of Science, Engineering & Technology, RMIT University Vietnam, 700000 Ho Chi Minh City, Vietnam

 ABSTRACT

Web applications are crucial for businesses and individuals by providing efficient
communication, collaboration, and access to services and information via browsers,
boosting connectedness, productivity, and creativity in the digital era. Insecure web
applications pose risks of data breaches, malware, and unauthorized access which
jeopardize user privacy, trust, and organizational security. Web developers must be
knowledgeable and prepared to deal with common vulnerabilities in web applications.
A prototype web application (https://webriska3.tech) with lesson and editor module is
developed to train web developers on the Open Web Application Security Project
(OWASP) Top Ten security risks, focusing on A03 - Injection vulnerability. OWASP A03
Injection vulnerability is one of the most common vulnerabilities that is at the heart of
any database-driven web applications. Evaluation on the prototype in improvement
knowledge on A03 – Injection vulnerability, testers are recruited to complete two
coding tasks in laboratory environment. 80% of testers mastered Output
escaping/encoding defensive technique while Prepared statement/Parameterized
Query defensive technique is the hardest to master. The prototype obtained average
System Usability Scale (SUS) score of 57 that is below average, indicating issues with
the prototype interface. This work showed promising results of increase understanding
on A03 Injection vulnerability and implementation skills to protect web application
against attack and exploitations.

Keywords:

OWASP Top 10; Web application
vulnerability; Web security; SQL
injection

1. Introduction

The World Wide Web (WWW) has evolved significantly over the years since the conceptualization
by Tim Berners-Lee [1]. The concept of Web 1.0 was initially designed in the 1990s as ‘static web’ to
display information to users, and later evolved to ‘dynamic web’ or Web 2.0 in the 2000s which allows
users to finally participate, connect and interact. Blogs, wiki and forums that allowed collaborative
content and knowledge sharing became popular. Web 2.0 is also the era of social media where
applications such as Facebook, Twitter and YouTube gained millions of active users. Web 3.0 or
‘semantic web’ [2] is the current phase that focuses on decentralization, openness, and personalized

* Corresponding author.
E-mail address: pclim@unimas.my

https://doi.org/10.37934/araset.57.1.107116

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 57, Issue 1 (2026) 107-116

108

user experience through ‘read, write, execute Web’. With the leveraging of technologies such as
artificial intelligence, machine learning, and Internet of Things (IoT), risks such as privacy and
cybersecurity become a significant challenge as Web 3.0 relies on extensive data collection and
analysis.

In the era with exponential growth of information technologies, more and more of small, medium
to enterprise adopted digital transformation especially due to Covid-19 pandemic lockdown. There
are increasing illegal cyberattacks targeting web applications, such as stealing personal data like
Personal Identifiable Information (PII) and Personal Health Information (PHI) [3] for ransom, or selling
it to other parties for financial gain [4]. To minimize the vulnerability of web applications,
cybersecurity awareness education [5,6] and detection framework [7] are both crucial. An open
community consisting of corporations, foundations, developers, and volunteers have initiated and
supported the Open Web Application Security Project or OWASP. The OWASP Top 10 version 2021
[8] contains the top 10 critical security risks with web applications:

A01: Broken Access Control
A02: Cryptographic Failures
A03: Injection
A04: Insecure Design
A05: Security Misconfiguration
A06: Vulnerable and Outdated Components
A07: Identification and Authentication Failures
A08: Software and Data Integrity Failures
A09: Security Logging and Monitoring Failures
A10: Server-Side Request Forgery

Loose web security may be abused by hackers through injection attack. The injection attack is the

third security risk in the OWASP Top Ten 2021. The paper focus on the education prototype to
highlight and implement the important issues in A03 Injection during code writing. The lessons and
editor module in the prototype can be used to train web developers in writing secure code [9]. The
structure of this paper is as follows: defending techniques and insecure web applications are
reviewed in Section 2, methodology is discussed in Section 3, while Section 4 reports testing results
and discussion. Conclusion of this work is given in Section 5.

2. Related Work

According to Marashdeh et al., [10], SQL injection refers to the type of attack towards the web

application’s database through injecting malicious code to gain access to confidential information
without authentication. The most common injection attack in A03 injection vulnerability is SQL
Injection [11,12] and Cross-Site Scripting XSS injection [13,14]. Through the injection attack like SQL
Injection, the attacker can have full access to the web application’s database. Therefore, it is critical
for web developers or security professionals to implement OWASP Top 10 as a security guideline
[15,16] to effectively patch web application vulnerabilities and minimize the security risk.

2.1 Defencing Techniques

In 2021, Rai et al., [17] reviewed and summarized ten counter measures on the SQL Injection,

which are simpler than other OWASP Top 10 vulnerabilities as most of the defencing techniques

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 57, Issue 1 (2026) 107-116

109

involves comparatively simpler, but effective handling of user provided data. These ten defencing
techniques are used as a metric to evaluate existing web applications compliances with OWASP Top
10 web application security risks.

The first technique is whitelisting and blacklisting (WB) which are detection methods to detect
illegal SQL database query in the web application [18]. To use blacklisting detection method, the user
must define the illegal SQL queries pattern such as AND, OR and others in their web application.
When the web application receives the illegal SQL query from the injection attack, it will ignore the
blacklisted SQL queries pattern. However, using blacklisting detection is not an efficient way in
preventing SQL injection attack. It will be ineffective if the web developer does not define the entire
backlist list for the illegal SQL query due to insufficient knowledge in this field.

i. Prepared Statement/Parameterized Query (PSPQ): One of the methods used to prevent

SQL injection attack. This technique refers to when the web application developer uses a
more secure way in predefining the SQL queries where the queries have the placeholder.
Parameterized queries force the web developer to define all SQL statements first and the
parameter of the user input will be passed into the prepared query later. Prepared
statement also has high efficiency when the web application needs to execute same or
similar SQL query frequently [19].

ii. Stored Procedure (SP): A group of predefined SQL statements that are stored in database
for repetitive tasks such as data insert, update, delete or query. To prevent an attack, user
input is passed as parameters to Stored Procedure where user input will be validated and
sanitized by the database [20].

iii. Defensive Coding Practice (DCP): emphasizes the coding skills of the web application
developer in developing secure code, for example, forbidding of the uses of meta-
characters or the identification on the user input field.

iv. Taint Based Approach / Taint Analysis (TBA): A method to track the data flow of sensitive
data inside the web application [21]. Taint analysis is used to detect malicious data flow,
code or malicious behaviour happening in the web application. By using Taint analysis,
web developers can know how the data is being processed inside the web application.
The first step in Taint based approach is to identify the sources of untrusted input in the
program, such as user-supplied data passed through form fields or query parameters.
Once the untrusted inputs are identified, they are tainted with a special marker to indicate
that they are unsafe to use without proper validation. The taint is then propagated
through the program as the inputs are passed to different variables and data structures.

v. Proxy Filter (PF): A method used to prevent SQL injection by setting up a proxy barrier
between the client-side and MySQL database. An example of the proxy filters is MySQL
proxy. MySQL proxy acts as a middleware which connects and manages all communication
between client connection request and SQL database at the backend. It can monitor,
analyse, or modify the communication between client side and SQL database. It contains
a lot of other functions such as load balancing, fault analysis, query analysis, query filter
and so on [22]. Hadabi et al., [23] proposed a model of using proxy filter as a middle layer
between client and database. It acts as a filter barrier on the user’s input. When a client
makes a request to proxy server and the client is a new user, registration is required where
the hash value of username and password are checked for authentication before the
process continues.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 57, Issue 1 (2026) 107-116

110

Modern programming languages provide built-in functions (BIF) to sanitize the user input before
it is inserted to the database. PHP offers functions such as mysqli_real_escape_string() or
mysqli::real_escape_string() to escape special characters in user input [24]. The
mysqli_real_escape_string() function will escape special characters such as \n, \r, \, ', " which are
used in the creation of illegal SQL query that leads to SQL injection. Another useful built-in function
offered in PHP is filter_vars() which is used to validate and sanitize data such as email id, IP address
etc. The filter_var() function can validate and sanitize various variables by using specific filter
parameters such as FILTER_VALIDATE_DOMAIN, FILTER_VALIDATE_EMAIL, FILTER_VALIDATE_IP and
many more [24].

Instruction Set Randomization (ISR) prevents SQL injection by randomizing the SQLs keyword such
as SELECT, FROM or WHERE by appending a random integer that forms a completely different
instruction sets [18]. The randomized SQL statements are processed and checked by proxy for
malicious code. Implementing ISR can be very complicated, as it requires setting up proxy filter
against web application and SQL database [25].

All database management system has a user account management mechanism to control who
and what to access, which is also known as privileges. According to Wu et al., [26], web developers
should always enforce the principle of low privileges (LP) where the user’s permissions given are
necessary and sufficient to complete the task. This helps to minimize the chance of database being
attacked and prevents data exploitation. An attacker may not have privileges restricted by database
that can perform dangerous and irreversible attacks such as altering or dropping a table.

Lastly, output escaping/encoding (OE) is the process of converting some predefined characters or
untrusted values to HTML entities or JavaScript code so that it is interpreted as content only [14].
PHP htmlspecialchars() function converts some predefined characters to HTML entities [24]. For
example, sensitive characters in SQL such as single quote (‘) will be encoded into ' which
provides totally different meanings when it is processed by the SQL database. This technique can
prevent cross-site scripting attack by escaping malicious command.

2.2 Insecure Web Applications

This section reviewed four insecure web applications created with OWASP standard for training

and to raise awareness among interested web developers in testing web application vulnerabilities.
OWASP WebGoat is an open-source vulnerable Java-based web application led by Mayhew et al.,

[27]. WebGoat is extremely vulnerable to attacks, which makes WebGoat a great platform for the
interested web application developers to learn about web application security and penetration
testing technique. The main goal of WebGoat is to create an interactive teaching platform on the
web application vulnerability by providing three learning steps. The first step is to explain the
fundamental concepts in security vulnerabilities, followed by hands-on assignments to learn how it
works, and lastly possible mitigations for actual web applications. OWASP WebGoat adapted PSPQ,
SP, DCP, BIF, LP and OE defencing techniques.

Damn Vulnerable Web Application or DVWA [28] is a PHP and MySQL web application that is
designed for web developers to test their hacking skills in a legal way as well as let them know on the
flows to securing the web application that they developed. It was first developed in 2008 and it
further received features updates until 2015. DVWA aims to provide practice to some of the most
common web vulnerabilities. This means that DVWA only complies with the OWASP Top 10 version
before year 2015 and only adapted PSPQ, SP, DCP and LP defensive techniques.

OWASP Juice Shop [29] is a web application mimicking an online shopping platform for purchasing
juice products. It is written in Node.Js, Express and Angular. It is created by Björn Kimminich and is

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 57, Issue 1 (2026) 107-116

111

being developed, maintained, and translated by a team of volunteers starting from year 2014 until
today. Unlike WebGoat and DVWA, Juice Shop does not provide any lesson to the user on
vulnerability, which means that the user that wishes to exploit this website must have certain level
of understanding and basic in attacking on the vulnerability. OWASP Juice Shop is more like a hacking
challenging website that contains scoreboard that records the vulnerability exploited by the user.
Users will have to explore the website, use their knowledge in attacking vulnerabilities to find the
underlying vulnerabilities to score the challenges. Juice Shop adapted PSPQ, SP and DCP defencing
techniques.

Hacksplaining.com [30] is a web application that encourages learning on how to protect web
application through attacking it. As an alternative to educate web vulnerabilities, hacksplaining.com
provides visualized lesson which involves interactive between the hacksplaining.com and users in the
learning process. The defencing techniques adapted are PSPQ, SP, DCP, BIF, LP and OE.

3. Methodology

A web application was developed where all 10 defencing techniques summarized by Rai et al.,

[17] are implemented to comply with OWASP A03 Injection. The mapping of weaknesses from CWE
[31] in OWASP A03 Injection to the 10 defencing techniques (refer Table 1) is the outcome of
requirement analysis.

UML modelling is adapted in the design phase where use case, class and sequence diagrams are
created to guarantee that the prototype outcome will match the requirements. For the
implementation phase, installation, and software configuration for Visual Studio Code, Laravel,
Node.js and MySQL is completed. The developed prototype (https://webriska3.tech) aims to teach
and guide web developers to create secure code through the lesson and editor module. Ten lessons
that correspond to the ten defencing techniques in Table 1 are created in the lesson module.

 Table 1
 CWE weakness mapped to the 10 defensive techniques

Defensive Technique CWE Weaknesses ID in OWASP Top Ten 2021 Category A03 -
Injection

Whitelisting and blacklisting (WB) 20, 74, 75, 77, 78, 79, 88, 89, 90, 91, 94, 95, 96, 98, 99, 113, 138,
184, 470, 564, 643

Prepared Statement/Parameterized Queries
(PSPQ)

89, 564, 652

Stored Procedure (SP) 89, 564
Defensive Coding Practice (DCP) 20, 74, 75, 89, 95, 917
Taint Based Approach (TBA) 89

89
89
89
89

Proxy Filters (PF)
Using built in function (BIF)
Instruction Set Randomization (ISR)
Low Privileges (LP) 89, 564
Output Escaping (OE) 78, 79, 80, 83, 87, 96, 98, 113, 116, 138, 644

Example of the lesson page is given in Figure 1.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 57, Issue 1 (2026) 107-116

112

Fig. 1. Lesson module

For web developers to practice the defencing techniques, editor module is created as shown in

Figure 2.

Fig. 2. Editor module

4. Results and Discussion

In the testing phase, laboratory testing and usability testing using system usability scale (SUS) [32]

are conducted. Laboratory testing is conducted to test the effectiveness of the prototype developed
in improving knowledge on OWASP A03 injection vulnerability, while user evaluate the usability of
the prototype using SUS. 15 student testers are recruited from Software Engineering program (year
1 to year 4), Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak.
66% of the testers have no prior knowledge of OWASP A03 Injection.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 57, Issue 1 (2026) 107-116

113

In laboratory testing, testers interacted with the prototype under the authors’ observation to
complete two scenarios. In Scenario 1, testers are being instructed to create a simple login system.
They are required to write a PHP script to handle user registration, validate user input from an HTML
form, and store the user information in a database. Additionally, they need to create an HTML login
form with fields for username and password for the login functionality. Lastly, they should write a
PHP script to validate the login credentials entered by the user. Once the testers have completed
their code, it will be evaluated using test criteria in Table 2 to assess the quality and adherence to the
given requirements. In Scenario 2, the testers are instructed to take the lessons in the prototype
which covers secure coding practices, security vulnerabilities, and mitigation techniques related to
injection vulnerability before repeating the same tasks from Scenario 1 by applying the knowledge
gained from the lessons to write a more secure code. The new set of code is evaluated using the
same test criteria to determine any improvements or changes compared to code written in Scenario
1.

 Table 2
 Test criteria to evaluate testers’ written code

Defensive technique Criteria

Whitelisting and Blacklisting (WB) Code incorporates either whitelisting or blacklisting techniques to
validate and filter user input.

Prepared Statement/Parameterized
Queries (PSPQ)

Code utilizes prepared statements or parameterized queries when
interacting with the database.

Stored Procedure (SP) Code includes the use of stored procedures as a defensive technique.
Defensive Coding Practices (DCP) Code demonstrates the implementation of defensive coding practices.
Using Built-In Function (BIF) Code utilizes built-in functions or libraries that offer security features

or protections.
Output Escaping (OE) Code implements output escaping techniques.

The evaluation results on each tester in both Scenario 1 and Scenario 2 are reported in Table 3.
This comparison helps measure the effectiveness of the lessons in enhancing the testers' abilities to
create secure login systems and identify potential security vulnerabilities. OE technique showed the
highest improvement of 80%, followed by 73% of testers showed improvement in SP and BIF
technique. Both WB and DCP techniques achieved 67% improvement while PSPQ technique achieved
lowest improvement of 47%.

For subjective usability testing, the same testers are required to fill a 10 questions SUS
questionnaire immediately after the laboratory testing to evaluate the perceived ease-of-use of the
prototype. Firstly, the internal consistency of this SUS questionnaire with Cronbach’s Alpha 0.85
indicated good reliability of the questions even with small sample size [33]. Approximately 87% of
testers score SUS that falls in the ‘ok/marginally acceptable’ range while 2 testers (~13%) with
individual SUS score in the ‘poor/unacceptable’ range. The average SUS score for the prototype is 57,
which is below average and indicated that there are issues with the prototype interface. One
possibility may be the scenario design which requires testers to perform coding tasks using other
interfaces than the prototype. However, testers are required to average their worst and best
experience in the SUS rating on the prototype interface. Another possibility is biasness of tester
subjective assessment, where testers are unable to complete the coding task but still rate the
usability questions highly. Referring to Table 3, T5 only showed ability to implement 1 out of 6
defensive techniques yet the individual SUS score is nearly the same as T1, who showed ability to
implement all 6 defensive techniques. Even though T7 managed to show ability to implement 4
defensive techniques, however, SUS score for T7 is similarly as poor as T8.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 57, Issue 1 (2026) 107-116

114

 Table 3
 Evaluation Results of Testers' written code

Tester WB PSPQ SP DCP BIF OE

Scenario
1

Scenario
2

Scenario
1

Scenario
2

Scenario
1

Scenario
2

Scenario
1

Scenario
2

Scenario
1

Scenario
2

Scenario
1

Scenario
2

T1 ✖ ✔ ✔ ✔ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✔
T2 ✖ ✔ ✖ ✖ ✖ ✔ ✖ ✔ ✖ ✖ ✖ ✔

T3 ✖ ✔ ✔ ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖

T4 ✔ ✔ ✔ ✔ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✔

T5 ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔

T5 ✔ ✔ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✔

T6 ✔ ✔ ✖ ✖ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✖

T7 ✖ ✖ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✔ ✔ ✔

T8 ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✔

T9 ✖ ✔ ✖ ✔ ✖ ✖ ✖ ✔ ✖ ✔ ✖ ✔

T10 ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✖ ✖ ✔

T11 ✖ ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✔

T12 ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✔ ✖ ✔

T13 ✔ ✔ ✖ ✔ ✖ ✔ ✖ ✖ ✖ ✔ ✖ ✔

T14 ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✖ ✖ ✔ ✖ ✔

T15 ✖ ✔ ✔ ✔ ✖ ✔ ✖ ✔ ✖ ✔ ✖ ✔

5. Conclusions

This paper presents a prototype web application designed and developed for educational

purposes to train web developers to write secure code that complied with OWASP A03 injection
vulnerability. The prototype consists of 10 lessons corresponding to the 10 defensive techniques. The
lessons aim to deliver knowledge on how each vulnerability happens with examples. The editor
module at the end of the lessons let web developer practice how the defensive technique work and
how to defend against each vulnerability. The effectiveness of the prototype in improving knowledge
on OWASP A03 Injection vulnerability is reflected by the result gained from laboratory testing where
five defensive techniques (WB, SP, DCP, BIF and OE) obtained 67% and above improvements.
However, the below average SUS score of 57 indicated that significant interface redesign and updates
are needed, which shall be the focus of further investigation.

Acknowledgement
This research was not funded by any grant. Authors wish to thank the Faculty of Computer Science
and Information Technology, Universiti Malaysia Sarawak for the support.

References
[1] Choudhury, Nupur. "World wide web and its journey from web 1.0 to web 4.0." International Journal of Computer

Science and Information Technologies 5, no. 6 (2014): 8096-8100.
[2] Gan, Wensheng, Zhenqiang Ye, Shicheng Wan, and Philip S. Yu. "Web 3.0: The future of internet." In Companion

Proceedings of the ACM Web Conference 2023, pp. 1266-1275. 2023. https://doi.org/10.1145/3543873.3587583
[3] Singh, Himanshi, and Mohit Dua. "Website attacks: Challenges and preventive methodologies." In 2018

International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 381-387. IEEE, 2018.
https://doi.org/10.1109/ICIRCA.2018.8597259

[4] Zakaria, Wira Zanoramy A., Nur Mohammad Kamil Mohammad Alta, Mohd Faizal Abdollah, Othman Abdollah, and
SM Warusia Mohamed SMM Yassin. "Early Detection of Windows Cryptographic Ransomware Based on Pre-Attack
API Calls Features and Machine Learning." Journal of Advanced Research in Applied Sciences and Engineering
Technology 39, no. 2 (2024): 110-131. https://doi.org/10.37934/araset.39.2.110131

https://doi.org/10.1145/3543873.3587583
https://doi.org/10.1109/ICIRCA.2018.8597259
https://doi.org/10.37934/araset.39.2.110131

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 57, Issue 1 (2026) 107-116

115

[5] Jalil, Masita, Noraida Hj Ali, Farizah Yunus, Fakhrul Adli Mohd Zaki, Lee Hwee Hsiung, and Mohammed Amin
Almaayah. "Cybersecurity Awareness among Secondary School Students Post Covid-19 Pandemic." Journal of
Advanced Research in Applied Sciences and Engineering Technology 37, no. 1 (2024): 115-127.
https://doi.org/10.37934/araset.37.1.115127

[6] Asmawi, Aziah, Ezzah Mawadah Saifulbahri, and Noor Afiza Mohd Ariffin. "Development of BlockScholar as an
Educational Mobile Application on Blockchain Technology." Journal of Advanced Research in Applied Sciences and
Engineering Technology 34, no. 1 (2024): 15-23. https://doi.org/10.37934/araset.34.1.1523

[7] Ismail, Nuur Ezaini Akmar, Noraida Haji Ali, Masita Abdul Jalil, Farizah Yunus, and Ahmad Dahari Jarno. "A Proposed
Framework of Vulnerability Assessment and Penetration Testing (VAPT) in Cloud Computing Environments from
Penetration Tester Perspective." Journal of Advanced Research in Applied Sciences and Engineering Technology 39,
no. 1 (2024): 1-14. https://doi.org/10.37934/araset.39.1.114

[8] OWASP, "OWASP Top 10:2021," owasp.org, (2021). https://owasp.org/Top10
[9] Gaurav, Devottam, Yash Kaushik, Santhoshi Supraja, Abhi Khandelwal, Karsheet Negi, Manmohan Prasad Gupta,

and Manmohan Chaturvedi. "Cybersecurity training for web applications through serious games." In 2021 IEEE
International Conference on Engineering, Technology & Education (TALE), pp. 390-398. IEEE, 2021.
https://doi.org/10.1109/TALE52509.2021.9678531

[10] Marashdeh, Zain, Khaled Suwais, and Mohammad Alia. "A survey on sql injection attack: Detection and challenges."
In 2021 International Conference on Information Technology (ICIT), pp. 957-962. IEEE, 2021.
https://doi.org/10.1109/ICIT52682.2021.9491117

[11] Tanakas, Petros, Aristidis Ilias, and Nineta Polemi. "A novel system for detecting and preventing SQL injection and
cross-site-script." In 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET), pp.
1-6. IEEE, 2021. https://doi.org/10.1109/ICECET52533.2021.9698688

[12] Singh, Nikhil Kumar, Prasoon Gupta, Vaibhav Singh, and Raju Ranjan. "Attacks on Vulnerable Web Applications."
In 2021 International Conference on Intelligent Technologies (CONIT), pp. 1-5. IEEE, 2021.
https://doi.org/10.1109/CONIT51480.2021.9498396

[13] Srivastava, Mayank, Animesh Raghuvanshi, and Dhruv Khandelwal. "Security and Scalability of E-Commerce
Website by OWASP threats." In 2023 6th International Conference on Information Systems and Computer Networks
(ISCON), pp. 1-8. IEEE, 2023. https://doi.org/10.1109/ISCON57294.2023.10111955

[14] Shanmugasundaram, G., S. Ravivarman, and P. Thangavellu. "A study on removal techniques of Cross-Site Scripting
from web applications." In 2015 International Conference on Computation of Power, Energy, Information and
Communication (ICCPEIC), pp. 0436-0442. IEEE, 2015. https://doi.org/10.1109/ICCPEIC.2015.7259498

[15] Petranović, Teodora, and Nikola Žarić. "Effectiveness of Using OWASP TOP 10 as AppSec Standard." In 2023 27th
International Conference on Information Technology (IT), pp. 1-4. IEEE, 2023.
https://doi.org/10.1109/IT57431.2023.10078626

[16] Lala, Shubham Kumar, Akshat Kumar, and T. Subbulakshmi. "Secure web development using owasp guidelines."
In 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 323-332. IEEE,
2021. https://doi.org/10.1109/ICICCS51141.2021.9432179

[17] Rai, Aditya, MD Mazharul Islam Miraz, Deshbandhu Das, and Harpreet Kaur. "Sql injection: Classification and
prevention." In 2021 2nd International conference on Intelligent Engineering and Management (ICIEM), pp. 367-
372. IEEE, 2021. https://doi.org/10.1109/ICIEM51511.2021.9445347

[18] Nomura, Komei, Kenji Rikitake, and Ryosuke Matsumoto. "Automatic whitelist generation for sql queries using web
application tests." In 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), vol. 2,
pp. 465-470. IEEE, 2019. https://doi.org/10.1109/COMPSAC.2019.10250

[19] Castillo, Reynaldo E., Jasmin A. Caliwag, Roxanne A. Pagaduan, and Aira Camille Nagua. "Prevention of SQL injection
attacks to login page of a website application using prepared statement technique." In Proceedings of the 2nd
International Conference on Information Science and Systems, pp. 171-175. 2019.
https://doi.org/10.1145/3322645.3322704

[20] Mavromoustakos, Stephanos, Aakash Patel, Kinjal Chaudhary, Parth Chokshi, and Shaili Patel. "Causes and
prevention of SQL injection attacks in web applications." In Proceedings of the 4th International Conference on
Information and Network Security, pp. 55-59. 2016. https://doi.org/10.1145/3026724.3026742

[21] Dovgalyuk, Pavel, Maria Klimushenkova, Natalia Fursova, Ivan Vasiliev, and Vladislav Stepanov. "Natch: Detecting
Attack Surface for Multi-Service Systems with Hybrid Introspection." In 2023 IEEE 23rd International Conference on
Software Quality, Reliability, and Security Companion (QRS-C), pp. 176-185. IEEE, 2023.
https://doi.org/10.1109/QRS-C60940.2023.00023

[22] Ping, Chen, Wang Jinshuang, Pan Lin, and Yu Han. "Research and implementation of SQL injection prevention
method based on ISR." In 2016 2nd IEEE International Conference on Computer and Communications (ICCC), pp.
1153-1156. IEEE, 2016.

https://doi.org/10.37934/araset.37.1.115127
https://doi.org/10.37934/araset.34.1.1523
https://doi.org/10.37934/araset.39.1.114
https://owasp.org/Top10
https://doi.org/10.1109/TALE52509.2021.9678531
https://doi.org/10.1109/ICIT52682.2021.9491117
https://doi.org/10.1109/ICECET52533.2021.9698688
https://doi.org/10.1109/CONIT51480.2021.9498396
https://doi.org/10.1109/ISCON57294.2023.10111955
https://doi.org/10.1109/ICCPEIC.2015.7259498
https://doi.org/10.1109/IT57431.2023.10078626
https://doi.org/10.1109/ICICCS51141.2021.9432179
https://doi.org/10.1109/ICIEM51511.2021.9445347
https://doi.org/10.1109/COMPSAC.2019.10250
https://doi.org/10.1145/3322645.3322704
https://doi.org/10.1145/3026724.3026742
https://doi.org/10.1109/QRS-C60940.2023.00023

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 57, Issue 1 (2026) 107-116

116

[23] Hadabi, Abdalla, Eltyeb Elsamani, Ali Abdallah, and Rashad Elhabob. "An efficient model to detect and prevent SQL
injection attack." Journal of Karary University for Engineering and Science (2022).
https://doi.org/10.54388/jkues.v1i2.141

[24] Achour, Medhi et al., “PHP Manual”. php.net, (2023). https://www.php.net/manual/en/index.php
[25] Christou, George, Giorgos Vasiliadis, Vassilis Papaefstathiou, Antonis Papadogiannakis, and Sotiris Ioannidis. "On

architectural support for instruction set randomization." ACM Transactions on Architecture and Code Optimization
(TACO) 17, no. 4 (2020): 1-26. https://doi.org/10.1145/3419841

[26] Wu, Haoqi, Zhengxuan Yu, Dapeng Huang, Haodong Zhang, and Weili Han. "Automated enforcement of the
principle of least privilege over data source access." In 2020 IEEE 19th International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom), pp. 510-517. IEEE, 2020.
https://doi.org/10.1109/TrustCom50675.2020.00075

[27] Mayhew, B., Baars, N., White, J. and Zubčević, "OWASP WebGoat," Owasp.org, (2020). https://owasp.org/www-
project-webgoat

[28] RandomStorm and R.Dewhurst, "Damn Vulnerable Web Application", DVMA, (2015).
https://github.com/digininja/DVWA

[29] Kimminich, B. "OWASP Juice Shop", Owasp.org, (2022). https://github.com/juice-shop/juice-shop
[30] "Hacksplaining: Web Security for Developers," Hacksplaining. https://www.hacksplaining.com
[31] Common Weakness Enumeration, “CWE VIEW: Weakness in OWASP Top Ten 2021”, cwe.mitre.org (2023).

https://cwe.mitre.org/data/definitions/1344.html
[32] Bangor, Aaron, Philip Kortum, and James Miller. "Determining what individual SUS scores mean: Adding an

adjective rating scale." Journal of usability studies 4, no. 3 (2009): 114-123.
[33] Kortum, Philip, and Claudia Ziegler Acemyan. "How low can you go? Is the system usability scale range

restricted?." Journal of Usability Studies 9, no. 1 (2013).

https://doi.org/10.54388/jkues.v1i2.141
https://www.php.net/manual/en/index.php
https://doi.org/10.1145/3419841
https://doi.org/10.1109/TrustCom50675.2020.00075
https://owasp.org/www-project-webgoat
https://owasp.org/www-project-webgoat
https://github.com/digininja/DVWA
https://github.com/juice-shop/juice-shop
https://www.hacksplaining.com/
https://cwe.mitre.org/data/definitions/1344.html

