
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Hybrid Sine Cosine and Fitness Dependent
Optimizer for global optimization

Po Chan Chiu1,2, Ali Selamat1, 3,4, (Member, IEEE), Ondrej Krejcar4, and King Kuok Kuok5

1 School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia & MagicX (Media and Games

Center of Excellence), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
2 Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
3 Malaysia Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, 54100,

Kuala Lumpur, Malaysia
4 Faculty of Informatics and Management, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic
5 Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, 93350 Kuching, Sarawak, Malaysia

Corresponding author: Po Chan Chiu (e-mail: pcchiu@unimas.my), Ali Selamat (e-mail: aselamat@utm.my).

“This work was supported by Universiti Teknologi Malaysia (UTM) under Research University Grant Vot-20H04; Malaysia Research University Network

(MRUN) Vot 4L876 and Fundamental Research Grant Scheme (FRGS) Vot FRGS/1/2018/ICT04/UTM/01/1. This work was also partly funded by SPEV

project (ID: 2103-2020), University of Hradec Kralove and SLAI scholarship from Ministry of Higher Education Malaysia.”

ABSTRACT The fitness-dependent optimizer (FDO), a newly proposed swarm intelligent algorithm, is

focused on the reproductive mechanism of bee swarming and collective decision-making. To optimize the

performance, FDO calculates velocity (pace) differently. FDO calculates weight using the fitness function

values to update the search agent position during the exploration and exploitation phases. However, the FDO

encounters slow convergence and unbalanced exploitation and exploration. Hence, this study proposes a

novel hybrid of the sine cosine algorithm and fitness-dependent optimizer (SC-FDO) for updating the velocity

(pace) using the sine cosine scheme. This proposed algorithm, SC-FDO, has been tested over 19 classical and

10 IEEE Congress of Evolutionary Computation (CEC-C06 2019) benchmark test functions. The findings

revealed that SC-FDO achieved better performances in most cases than the original FDO and well-known

optimization algorithms. The proposed SC-FDO improved the original FDO by achieving a better exploit-

explore tradeoff with a faster convergence speed. Additionally, the SC-FDO was applied to the missing data

estimation cases and refined the missingness as optimization problems. This is the first time, to our

knowledge, that nature-inspired algorithms have been considered for handling time series datasets with low

and high missingness problems (10%-90%). The impacts of missing data on the predictive ability of the

proposed SC-FDO were evaluated using a large weather dataset from the year 1985 until 2020. The results

revealed that the imputation sensitivity depends on the percentages of missingness and the imputation models.

The findings demonstrated that the SC-FDO based multilayer perceptron (MLP) trainer outperformed the

other three optimizer trainers with the highest average accuracy of 90% when treating the high-low

missingness in the dataset.

INDEX TERMS Fitness dependent optimizer, high missing rates, imputation, meta-heuristic algorithms,

missing data, optimization, sine cosine algorithm.

I. INTRODUCTION

Nature-inspired algorithms, also known as meta-heuristic

algorithms, have received a great deal of attention from

technology, engineering, management, and different areas of

study to solve problems with optimization. Nature-inspired

algorithms include particle swarm optimization (PSO) [1],

differential evaluation (DE) [2] and genetic algorithm (GA)

[3]. Some of the recent nature-inspired algorithms are sine

cosine algorithm (SCA) [4][5], fitness dependent optimizer

(FDO) [6], wingsuit flying search (WFS) [7], whale

optimization algorithm (WOA) [8][9], butterfly optimization

algorithm (BOA) [10][11], dragonfly algorithm (DA)

[12][13], grey wolf optimizer (GWO) [14], moth-flame

optimization algorithm (MFO) [15]-[18], root-based

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

optimization algorithm [19], coot algorithm [20] and colony

predation algorithm [21].

This paper focuses on the fitness-dependent optimizer

(FDO) proposed by Abdullah and Rashid [6]. The FDO is

inspired by the reproductive mechanism of bee swarming

and collective decision-making. The FDO has been

evaluated with well-known benchmark test functions and

achieved good performance than other nature-inspired

algorithms, namely DA, PSO, GA and WOA. The FDO has

been effectively optimized the controller of a multi-source

interconnected power system [22][23]. Meanwhile, an

adaptive FDO (AFDO) algorithm based on the first fit (FF)

heuristic approach is proposed to handle the problem of one-

dimensional bin packing [24]. The AFDO has effectively

explored the search space with the lowest fitness values

within an acceptable time for the discrete optimization

problems.

Furthermore, Muhammed [25] developed an improved

fitness-dependent optimizer (IFDO) algorithm based on

alignment and cohesion strategy to update the scout bees’

location. The introduction of a random weight factor (𝑤𝑓),

alignment and cohesion features in the IFDO improved the

convergence speed of the FDO, but the enhancement features

increased the algorithm's space complexity and led to slower

exploitations in some cases. Additionally, Daraz et al. [26]

has successfully adopted the IFDO to optimize the automatic

generation controller of a multi-source interconnected power

system in the restructured environment. Next, Mohammed

[27] embedded chaos theory into the original FDO. The

chaotic fitness-dependent optimizer (CFDO) has

successfully improved the search capability and prevented

the algorithm from falling into local optima; however, it is

not always accurate in some cases when the problem is

highly complex. The comparison of the FDO and its

variations is discussed in Table I.

Recently, many researchers have proposed several

improved fitness-dependent optimizers from different

perspectives to improve the original FDO. According to the

No Free Lunch (NFL) theorem [28], a single optimization

approach is impossible to manage all optimization problems

adequately. Although the FDO and FDO variants

outperformed several optimization algorithms, in some

cases, they encounter slow convergence, poor exploitation

and exploration, and memory wastage as a result of

inefficient memory allocation.

TABLE I

THE COMPARISON OF THE FDO AND ITS VARIATIONS
Variants of FDO Author Real-world applications Strengths Limitation

Fitness
dependent

optimizer (FDO)

Abdullah
and Rashid

(2019) [6]

❖ Aperiodic antenna
array designs [6]

❖ Multi-source

interconnected power
system [22][23]

❖ Uses fitness function to
generate suitable fitness

weights for guiding the

search agents during
exploitation and exploration

phases.

❖ Good at exploration.

❖ Poor exploitation.
❖ Imbalance of exploration

and exploitation ability.

❖ Slow convergence.

Adaptive fitness

dependent
optimizer

(AFDO)

Abdul-

Minaam et
al. (2020)

[24]

❖ One-dimensional bin

packing [24]

❖ Adapted first-fit heuristic.

❖ Effectively explored the
search space with the

lowest fitness values within

an acceptable time.
❖ To solve discrete

optimization problems.

❖ Inefficient memory

allocation leads to memory
wastage.

❖ Not able to solve continuous

optimization problems.

Improved fitness

dependent

optimizer
(IFDO)

Muhammed

et al. (2020)

[25]

❖ Aperiodic antenna

array designs [25]

❖ Pedestrian evacuation
model [25]

❖ Multi-source

interconnected power
system in the

restructured
environment [26]

❖ Uses alignment and

cohesion to update the

scout bees’ location.

❖ Perform weight factor (𝑤𝑓)

randomization.

❖ Increase space complexity

of the algorithm.

❖ Take longer execution time.
❖ Poor exploitation.

Chaotic fitness
dependent

optimizer

(CFDO)

Mohammed
and Rashid

(2021) [27]

❖ Pressure vessel design
[27]

❖ Task assignment

problem [27]

❖ Embedded chaotic maps.
❖ Local optima avoidance due

to the dynamic and

superlative way of
generating random

numbers.

❖ Enhanced the search
capability of the original

FDO.

❖ In some instances, it is
highly complex and not

consistently accurate.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

In addition, the FDO lacked exploitability and suffered

from slow convergence. Nevertheless, the most significant

advantages of the FDO are its power of exploration and

simplicity. The FDO's exploration and exploitation are

mainly influenced by the fitness weight mechanism that

guides scout bee decision-making. The fitness weight

mechanism increased the diversity of solutions and

strengthened the exploration ability of the FDO. For simple

optimization problems, the fitness weight mechanism

increased the exploration level of the FDO and escaped the

search from local optima. However, the convergence speed

of the FDO would increase and it is easily trapped into local

optima if the optimization problems are complex. Therefore,

the motivation of this work was to propose a balanced and

straightforward way of gaining a better exploit-explore

tradeoff algorithm with a faster convergence speed.

Based on the shortcomings of the FDO and its variants, we

introduce an enhanced version of the FDO and hybrid it with

SCA, a recent efficient population-based optimization

algorithm. The enhancement of FDO is called a sine cosine

fitness-dependent optimizer (SC-FDO). The key benefit of

SCA is its high exploitation potential in the search solution

[4]. Hence, the exploitation ability of the FDO is enhanced

by incorporating SCA features to refine the best neighboring

search and the FDO to explore the entire search space for

promising solutions.

Additionally, in the related literature, a comprehensive

position-updating strategy is commonly valuable to boost the

efficiency of the swarm intelligent algorithms in the search

space [29]-[34]. Inspired by this, a modified pace-updating

equation is introduced to substitute the pace equation in the

FDO. Another improvement is the proposed SC-FDO

employs a global fitness weight (𝑓𝑤∗) that is best in earlier

iterations to tune the random weight factors (𝑤𝑓) adaptively

during the search process. Moreover, a conversion parameter

is suggested for balancing the exploration and exploitation of

the search spaces. The proposed SC-FDO also uses the best

solution-updating strategy for reducing the computational

time of the original FDO. The proposed SC-FDO is tested

over well-known benchmark test functions and evaluated

with existing nature-inspired optimization algorithms to

verify the algorithm's efficiency. The numerical results and

statistical analysis indicated that the proposed SC-FDO

obtained the global best solution with higher accuracy than

the compared optimization algorithms. Furthermore, the

proposed SC-FDO has been extended to handle the problems

of high missing values in datasets. The results revealed that

the proposed SC-FDO achieved higher imputation accuracy

and lowered computational time compared to the FDO and

IFDO imputation.

The contributions of this paper are:

1. A modified pace-updating equation, random weight

factor (𝑤𝑓)and global fitness weight (𝑓𝑤∗) strategy,

conversion parameter strategy and the best solution-

updating strategy are introduced to boost the

performances of the original FDO.

2. The numerical experiments and statistical analysis have

shown the superior capability of the proposed SC-FDO

on the benchmark test function, compared with well-

known nature-inspired algorithms.

3. The missing data estimation experiments demonstrated

that the SC-FDO based multilayer perceptron (MLP)

trainer is capable of imputing missing data for a low and

large proportion of missingness with higher prediction

accuracy while consuming lower computational time

compared to the original FDO and IFDO.

The remainder of this paper is described as follows:

Section II reviews the fundamentals of the FDO. The

proposed SC-FDO is presented in Section III. Section IV

discusses the numerical experiments and analysis of the SC-

FDO on the benchmark test function. Section V provides the

missing data imputation technique based on SC-FDO in

solving high missing rates datasets. Section VI concludes the

findings of this study, and Section VII describes the

limitation and future works.

II. FITNESS DEPENDENT OPTIMIZER

The FDO is a newly designed swarm intelligent algorithm

presented by Abdullah and Rashid [6], which was inspired

by bee swarming characteristics during reproduction. The

FDO is a PSO-based algorithm that imitates the position

updating mechanism of the PSO. However, the FDO

calculates velocity (pace) in a different strategy. It employs

a fitness function to produce appropriate weights, and these

weights will facilitate the search agents to balance

exploration and exploitation.

In nature, bees live in groups (colonies) called hives,

containing queen bee, worker bee, and scout bee. The queen

bee is a decision-maker to keep the hive under control and

lays all the eggs to maintain the hive population. The worker

bees are responsible for all the works in the hive except

reproducing. Meanwhile, the scout bees are responsible for

finding a new home for future swarms. When a bee colony

grows massively, the available space becomes smaller. Thus,

the colony tries to solve the space problem by swarming, in

which one colony becomes two colonies. The scout bees will

find a nearby location for the swarm during swarming,

approximately a few meters from the hive. The bees will

leave the hive and temporarily cluster around their queen in

the new place for one to few days. Then, the scout bees will

travel in a small group, about 20 to 50 bees, to search for new

hives. After finding the new hives, the scout bees

communicate by moving their legs and wings to determine

the most suitable hive. When the decision is taken, the rest

of the bees fly off and move to the hive, where it begins its

new colony life.

Inspired by the bee collective decision-making process,

the FDO uses fitness weight (𝑓𝑤) to guide the search agents

in identifying the best solution. Each hive represents a

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

possible solution exploited by a search agent (artificial scout

bee), and the best hive is defined as the global optimum

solution. The hive specifications include volume, location,

and size, represent the fitness function of the solution.

The FDO algorithm starts by assigning the scout bees

population with random solutions, using the upper and lower

boundaries. The scout bees search for hives using a

combination of a random walk and fitness weight

mechanism. The scout bees change their position by adding

pace to the current position. The movement of the scout bees

is calculated as:

 𝑥𝑖,𝑡+1 = 𝑥𝑖,𝑡 + 𝑝𝑎𝑐𝑒 (1)

where 𝑖 is the current search scout bee (search agent), 𝑡 is

the current iteration, 𝑥 is the scout bee, and 𝑝𝑎𝑐𝑒 is the

movement rate and direction of the scout bee. The 𝑝𝑎𝑐𝑒 is

dependent on the value of fitness weight 𝑓𝑤 . The 𝑓𝑤 is

calculated according to (2).

 𝑓𝑤 = ⌊
𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

∗

𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠
⌋ − 𝑤𝑓 (2)

where 𝑤𝑓 is the weight factor (either 0 or 1), 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠
∗ is

the fitness function of the global best solution and 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

is the fitness function of the current solution. Further, the

conditions for 𝑓𝑤 are expressed as below:

 𝑓𝑤 = 1 𝑜𝑟 𝑓𝑤 = 0 𝑜𝑟 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 0, 𝑝𝑎𝑐𝑒 = 𝑥𝑖,𝑡 ∗ 𝑟 (3)

 𝑓𝑤 > 0 𝑎𝑛𝑑 𝑓𝑤 < 1

 {
𝑟 < 0, 𝑝𝑎𝑐𝑒 = (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡

∗) ∗ 𝑓𝑤 ∗ −1 (4)

𝑟 ≥ 0, 𝑝𝑎𝑐𝑒 = (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡
∗) ∗ 𝑓𝑤 (5)

 where 𝑟 ∊ [-1, 1] is Levy random number, the Levy flight

from [35] has been employed due to its good distribution

curve. The pseudocode of FDO is presented in Fig. 1 [6].

III. THE HYBRID SINE COSINE FITNESS DEPENDENT

OPTIMIZER (SC-FDO)

In this section, the proposed hybrid sine cosine fitness-

dependent optimizer (SC-FDO) is presented. The sine cosine

algorithm is partially embedded into the FDO algorithm to

improve the performance of the original FDO in terms of

convergence speed, searching accuracy and balance of

exploitation and exploration ability in the search space. The

framework of the proposed SC-FDO is illustrated in Fig. 2.

In this approach, four modifications are applied: (1) the

modified pace-updating equation in search phase, (2)

random weight factor (𝑤𝑓) and global fitness weight (𝑓𝑤∗)

strategy, (3) the conversion parameter strategy, and (4) the

best solution-updating strategy.

A. MODIFIED PACE-UPDATING EQUATION

The use of the fitness weight (𝑓𝑤) mechanism in the FDO

inevitably leads to slow convergence. Due to the strong

exploration ability of the FDO, the pace-updating strategy in

(3)-(5) may increase the diversity of solutions that cause

difficulty in finding the global optimum solution. Thus, the

concept of modified pace-updating is introduced in this

section to improve the convergence speed and balance of

exploitation and exploration ability of the original FDO.
Initialize scout bee population, 𝑥𝑖,𝑡 (i = 1,2,3,…,n)

While iteration (t) limit not reached

 For each artificial scout bee, 𝑥𝑖,𝑡

 Find best artificial scout bee, 𝑥𝑖,𝑡
∗

 Generate random walk r in [-1,1] range

 If (𝑥𝑖,𝑡 fitness = 0) (avoid divide by zero)

 fitness weight = 0

 Else
 calculate fitness weight, equation (2)

 End if

 If (fitness weight = 1 or fitness weight = 0)
 calculate pace using equation (3)

 Else

 If (random number >=0)
 calculate pace using equation (5)

 Else

 calculate pace using equation (4)
 End if

 End if

 Calculate 𝑥𝑖,𝑡+1 using equation (1)

 If (𝑥𝑖,𝑡+1 fitness < 𝑥𝑖,𝑡 fitness)

 move accepted and pace saved

 Else

 calculate 𝑥𝑖,𝑡+1 using equation (1) with previous pace

 If (𝑥𝑖,𝑡+1 fitness < 𝑥𝑖,𝑡 fitness)

 move accepted and pace saved

 Else

 maintain current position (don’t move)
 End if

 End if

 End for
End while

FIGURE 1. The pseudocode of FDO [6]

FIGURE 2. The framework of the proposed SC-FDO

Conversion

parameters

strategy

Random

weight

factor and
global

fitness

weight

strategy

Modified pace-updating

strategy

Best solution-updating

strategy

Optimal solution

Fine tune weight

factor adaptively for

stable search

Enhancing balance of

exploitation &

exploration

capabilities

Improving converge

speed and accuracy

Reducing

computational time

Obtained

theoretically or

approximately

optimal solution

Problem

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

In [4], the work shows that the sine cosine algorithm

(SCA) has high exploitation of the search space. SCA is a

population-based algorithm introduced by Mirjalili [4]. We

introduce a sine cosine scheme into the pace-updating

mechanism of the original FDO. First, the modified pace-

updating mechanism starts the search process to explore

different promising solutions and foster the search to exploit

the prominent regions. In addition, the modified pace-

updating mechanism guides the search agents to achieve

exploration and exploitation balancing. The modified pace-

updating equation is calculated based on the following

equations:

 𝑓𝑤 = 1, 𝑝𝑎𝑐𝑒 = 𝑥𝑖,𝑡 ∗ 𝑟 (6)

 𝑓𝑤 = 0, 𝑝𝑎𝑐𝑒 = 𝑥𝑖,𝑡 + 𝑟1 ∗ 𝑐𝑜𝑠(𝑟2) ∗ (𝑟3 ∗ 𝑥𝑖,𝑡
∗ − 𝑥𝑖,𝑡) ∗ 𝑟 (7)

 𝑓𝑤 > 0 𝑎𝑛𝑑 𝑓𝑤 < 1

 𝑟 < 0,

 𝑝𝑎𝑐𝑒 = (𝑥𝑖,𝑡 + 𝑟1 ∗ 𝑠𝑖𝑛(𝑟2) ∗ (𝑟3 ∗ 𝑥𝑖,𝑡
∗ − 𝑥𝑖,𝑡) ∗ 𝑓𝑤) ∗ −1 (8)

 𝑟 ≥ 0, 𝑝𝑎𝑐𝑒 = 𝑥𝑖,𝑡 + 𝑟1 ∗ 𝑠𝑖𝑛(𝑟2) ∗ (𝑟3 ∗ 𝑥𝑖,𝑡
∗ − 𝑥𝑖,𝑡) ∗ 𝑓𝑤 (9)

where 𝑟 is Levy random number, 𝑟1, 𝑟2 and 𝑟3 are random

variables , 𝑥𝑖,𝑡
∗ is the global best solution that has been

discovered (up until now), 𝑥𝑖,𝑡 is the current solution, and

𝑓𝑤 ∊ [0, 1] is the fitness weight of the scout bees.

If the current solution and the global best solution have the

same fitness value, the pace is calculated as expressed in (6).

In (7)-(9), 𝑟1 ∗ 𝑐𝑜𝑠(𝑟2) or 𝑟1 ∗ 𝑠𝑖𝑛(𝑟2) guides the scout bees

toward exploration or exploitation. If the value of 𝑐𝑜𝑠(𝑟2) or

𝑠𝑖𝑛(𝑟2) is greater than 1 or less than -1; the scout bees

explore the diversity of solutions. However, if the value of

𝑟1 ∗ 𝑐𝑜𝑠(𝑟2) or 𝑟1 ∗ 𝑠𝑖𝑛(𝑟2) is in the [-1, 1] range, the scout

bees exploit the search solution.

In terms of mathematical complexity, the proposed SC-

FDO has the same time complexity as the original FDO. For

each iteration, the time complexity of the SC-FDO is

𝑂(𝑝 ∗ 𝑑𝑖𝑚 + 𝑝 ∗ 𝐶𝑂𝐹), where 𝑑𝑖𝑚 is the optimization

problem’s dimension, 𝑝 is the population size, and 𝐶𝑂𝐹 is
the cost of the objective function. For all iterations, the space

complexity of SC-FDO is 𝑂(𝑝 ∗ 𝐶𝑂𝐹 + 𝑝 ∗
𝑝𝑎𝑐𝑒 (𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑠𝑖𝑛𝑒 𝑐𝑜𝑠𝑖𝑛𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠)). Meanwhile, the

original FDO’s space complexity is 𝑂(𝑝 ∗ 𝐶𝑂𝐹 + 𝑝 ∗ 𝑝𝑎𝑐𝑒)

for all iterations. Another FDO’s variant, the IFDO’s space

complexity is 𝑂(𝑝 ∗ 𝐶𝑂𝐹 + 𝑝 ∗ 𝑝𝑎𝑐𝑒 + (𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ∗ 1/
𝑐𝑜ℎ𝑒𝑛𝑠𝑖𝑜𝑛)). Thus, the space complexity of the SC-FDO is

slightly increased compared to FDO but lower than the

IFDO’s space complexity.

B. RANDOM WEIGHT FACTOR AND GLOBAL FITNESS

WEIGHT STRATEGY

To further improve the search performance of the proposed

SC-FDO, a random weight factor (𝑤𝑓) and global fitness

weight parameter (𝑓𝑤∗) are embedded into the searching

process. The proposed SC-FDO also incorporates an

improved fitness weight (𝑓𝑤) calculation to increase the

convergence and quality of the solutions. The calculation of

the improved fitness weight (𝑓𝑤) follows this formula [25].

 𝑓𝑤 = ⌊
𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

∗

𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠
⌋ (10)

where 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠
∗ is the fitness function of the global best

solution and 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 is the fitness function of the current

solution. The 𝑓𝑤 value is calculated according to the

following equations:

 𝑓𝑤𝑡 > 𝑤𝑓𝑡 , 𝑛𝑓𝑤𝑡 = 𝑓𝑤𝑡 − 𝑤𝑓𝑡 (11)

 𝑓𝑤𝑡 ≤ 𝑤𝑓𝑡 , 𝑛𝑓𝑤𝑡 = 𝑓𝑤𝑡 (12)

where 𝑓𝑤 𝑡 is the current fitness weight, 𝑛𝑓𝑤𝑡 is the new

fitness weight at the 𝑡𝑡ℎ iteration and 𝑤𝑓𝑡 is the current

weight factor in the [0, 1] range. The work of [6]

recommended that the values of weight factor parameter,

𝑤𝑓 in (2) be fine-tuned manually for each optimization

problem. If 𝑤𝑓 is equal to 1, it represents a high level of

convergence and a low chance of converge. If 𝑤𝑓 is equal to

0, the search is more stable, and it is not affecting the value

of fitness weight (𝑓𝑤). However, this may cause bias with

respect to unknown optimization problems.

Therefore, the proposed SC-FDO introduces a random

weight factor (𝑤𝑓) that permits the 𝑤𝑓 value to be

uniformly distributed across the scout bee population. To

further optimize the random weight factor (𝑤𝑓), this study

proposes a global fitness weight parameter (𝑓𝑤∗). The 𝑓𝑤∗

represents the value of fitness weight for the global best

solution obtained so far by any search agents over all the

iterations. The 𝑓𝑤∗ is used to fine-tuning the random weight

factors (𝑤𝑓) adaptively during the search process. For

example, if the current fitness weight is greater than the

global fitness weight, then a new weight factor is generated.

The mathematical calculation is according to the following

(13).

 𝑓𝑤∗ < 𝑓𝑤𝑡 , 𝑤𝑓𝑡 = 𝑤𝑓𝑡−1 ∗ 𝑟0 (13)

where 𝑓𝑤∗ is the global fitness weight of the global best

solution, 𝑤𝑓𝑡 is the current weight factor in the [0, 𝑤𝑓𝑡−1]

range, 𝑡 is the iteration and 𝑟0 ∊ [0, 1] is the uniformly

distributed random number. It implies that each iteration has

a different weight factor parameter in the [0, 1] range. The

values of random 𝑤𝑓 decreased from 𝑤𝑓 to 0 throughout

iterations to obtain a stable search.

C. CONVERSION PARAMETER STRATEGY

In the modified pace-updating equation, parameter 𝑟1, 𝑟2 and

𝑟3 are used to convert search from exploration to exploitation

at the promising areas. The parameter 𝑟1, as expressed in (14)

determines the region of the next solution. A large 𝑟1 value

encourages global exploration, meanwhile a smaller 𝑟1 value

encourages local exploitation towards the destination. To

achieve a balanced exploration and exploitation, 𝑟1 is

linearly decreased from 𝑎 to 0 and expressed as follow:

 𝑟1(𝑡) = 𝑎 ∗ (1 −
𝑡

𝑡𝑚𝑎𝑥
) (14)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

sin 𝑥

cos 𝑥

Solution

Destination

Next position region when 𝑟1 < 1

Next position region when 𝑟1 > 1

FIGURE 3. Sine and cosine in [-2, 2] range

where 𝑡 is the current iteration, 𝑡𝑚𝑎𝑥 is the maximum

iteration and 𝑎 is a constant. In this study, the constant 𝑎 has

the same value as the several previous studies [4][16][32]-

[34], in which 𝑎 is equal to 2.

Furthermore, the parameter 𝑟2 ∊ [0, 2π] in (7)-(9) defines

the direction of the movement, either towards or outwards

the destination and 𝑟3 ∊ [0, 2] is the random weight of the

global best solution (𝑥𝑖,𝑡
∗) with the uniform probability

distribution, either stochastically emphasize (𝑟3 > 1) or

deemphasize (𝑟3 < 1) the impact of distance on the

movement. In addition, the movement of the scout bees is

defined as follow:

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑏𝑒𝑒 𝑠𝑐𝑜𝑢𝑡 = 𝑟3 ∗ 𝑥𝑖,𝑡
∗ − 𝑥𝑖,𝑡 (15)

The impacts of sine, cosine and the parameters in (7)-(9)

are presented in Fig. 3. If the value of 𝑟1 is greater than 1, the

solutions allow the search agents to explore the outside

spaces between their corresponding destinations.

Meanwhile, the sine and cosine functions enable a solution

to be repositioned relative to another solution by exploiting

the neighboring space if the value of 𝑟1 is less than 1. Hence,

the conversion parameter strategy is employed to enhance

the scout bees’ exploration and exploitation balancing.

D. BEST SOLUTION-UPDATING STRATEGY

Another improvement is the best solution-updating strategy

used in the proposed SC-FDO. The existing FDO finds the

best solution at the beginning of each iteration, consuming

more computational time when searching for the global best

solution. In contrast, the SC-FDO improves FDO by

periodically updating the position around the global best

solution (up until now) to obtain the best search region

during exploration while exploiting and updating the global

best solutions found by each iteration. Consequently, the

search moves towards the global best solution over all

previous iterations.

For example, if the current search agent position is

superior to the previous position, the search agent will be

updated with the current position as the global best solution.

Hence, the SC-FDO takes less time to achieve better results

than the original FDO and finally reduces the execution time

of the proposed SC-FDO.

In conclusion, we introduce the modified pace-updating

equation, the random weight factor (𝑤𝑓) and global fitness

weight parameter (𝑓𝑤∗), the conversion parameter strategy,

and the best solution-updating strategy in the proposed SC-

FDO algorithm. By integrating the strength of SCA to

exploit the refine search area for the best solutions, the

efficiency of the SC-FDO is improved. The pseudocode of

SC-FDO is presented in Fig. 4, while the flowchart of SC-

FDO is illustrated in Fig. 5.

Initialize the parameters and hive positions for scout bee

population, 𝑥𝑖,𝑡 (i = 1,2,3,…,n)

Calculate the objective function value for each scout bee and

update global best solution, 𝑥𝑖,𝑡
∗

While (t <= tmax)

 Calculate the parameter r1 using equation (14)

 For each scout bee, 𝑥𝑖,𝑡

 Update the best scout bee, 𝑥𝑖,𝑡
∗

 Update the parameters r2 and r3

 Calculate fitness weight, 𝑓𝑤𝑡 using equation (10)

 Calculate random weight factor, 𝑤𝑓𝑡 using equation (13)

 Update fitness weight, 𝑓𝑤𝑡 using equation (11)-(12)

 Create random walk r using Levy flight

 If (𝑥𝑖,𝑡 fitness = 0) (avoid divide by zero)

 fitness weight = 0

 Else

 Calculate fitness weight using equation (2)

 End if

 If (fitness weight = 1)

 Calculate pace using equation (6)

 Else if (fitness weight = 0)

 Calculate pace using equation (7)

 Else

If (random number >=0)

 Calculate pace using equation (9)

Else

 Calculate pace using equation (8)

End if

 End if

 Calculate 𝑥𝑖,𝑡+1 using equation (1)

 If (𝑥𝑖,𝑡+1 fitness < 𝑥𝑖,𝑡 fitness)

 Move accepted and pace saved

 Else

 Update the parameters r3

 Calculate pace using equation (15)

 If (𝑥𝑖,𝑡+1 fitness < 𝑥𝑖,𝑡 fitness)

 Move accepted and pace saved

 Else

 Remain current position

 End if

 End if

 Update the global best solution

 Update the global fitness weight, 𝑓𝑤∗

 End for

 End while
FIGURE 4. The pseudocode of the proposed sine cosine fitness

dependent optimizer (SC-FDO)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

FIGURE 5. The flowchart of the proposed SC-FDO.

Yes

No

No

Yes

Yes

No

No

Yes

Start

Evaluate the objective function of each scout bee and update global best solution, 𝑥𝑖,𝑡
∗

Calculate value of conversion parameter 𝑟1 using Eq (14)

Search for hives using random walk (Levy)

Calculate pace based on fitness weight, 𝑓𝑤 mechanism

𝑓𝑤 = 1

Calculate 𝑝𝑎𝑐𝑒, Eq (6)
𝑓𝑤 = 0

Calculate 𝑝𝑎𝑐𝑒, Eq (7)

Calculate 𝑝𝑎𝑐𝑒, Eq (8) Calculate 𝑝𝑎𝑐𝑒, Eq (9)

if t <= 𝑡𝑚𝑎𝑥

Update 𝑥𝑖,𝑡+1 = 𝑥𝑖,𝑡 + 𝑝𝑎𝑐𝑒

if 𝑓𝑤 > 0 or 𝑓𝑤 <1

Update 𝑥𝑖,𝑡+1, Eq (15)

Initialize the parameters and the hive positions for artificial scout bee (solutions), 𝑥𝑖,𝑡

Update parameter 𝑟2 and 𝑟3

Update the best artificial scout bee, 𝑥𝑖,𝑡
∗

End

if 𝑥𝑖,𝑡+1 fitness

< 𝑥𝑖,𝑡 fitness

Maintain current position

Calculate fitness weight, 𝑓𝑤 and random weight factor, 𝑤𝑓 using equation (10)-(13)

Which 𝑓𝑤?

if 𝑟 < 0

if 𝑥𝑖,𝑡+1 fitness < 𝑥𝑖,𝑡 fitness

Update best solution, 𝑥𝑖,𝑡
∗ and global fitness weight, 𝑓𝑤∗

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

TABLE II

BENCHMARK TEST FUNCTION [4][6]

Function Dim Range Shift position 𝒇𝒎𝒊𝒏

𝐵𝐹1(𝑥) = ∑ 𝑥1
2

𝑛

𝑖=1

10 [-100, 100] [-30, -30, … -30] 0

𝐵𝐹2 (𝑥) = ∑|𝑥𝑖| + ∏|𝑥𝑖|

𝑛

𝑖=1

𝑛

𝑖=1

10 [-10,10] [-3, -3, … -3] 0

𝐵𝐹3 (𝑥) = ∑ (∑ 𝑥𝑗

𝑖

𝑗−1

)

2
𝑁

𝑖=1

 10 [-100, 100] [-30, -30, … -30] 0

𝐵𝐹4 = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛}

10 [-100, 100]
[-30, -30, … -30]

0

𝐵𝐹5 = ∑[100(𝑥𝑖+1 − 𝑥1
2)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

30 [-30,30] [-15, -15, … -15] 0

𝐵𝐹6 = ∑([𝑥𝑖 + 0.5])2

𝑛

𝑖=1

10 [-100, 100] [-750, … -750] 0

𝐵𝐹7 = ∑ 𝑖𝑥1
4

𝑛

𝑖=1

+ 𝑟𝑎𝑛𝑑𝑜𝑚 [0,1]

10 [-1.28,1.28] [-0.25, …-0.25] 0

𝐵𝐹8 = ∑ −𝑥𝑖
2 𝑠𝑖𝑛 (√|𝑥𝑖|)

𝑛

𝑖=1

10 [-500, 500] [-300, … -300] -418.9829

𝐵𝐹9 = ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1

10 [-5.12,5.12] [-2, -2, …-2] 0

𝐵𝐹10 = −20 exp (−0.2√∑ 𝑥𝑖
2

𝑛

𝑖=1

) − exp (
1

𝑛
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑛

𝑖=1

) + 20 + 𝑒

10 [-32, 32] 0

𝐵𝐹11 =
1

4000
∑ 𝑥𝑖

2 − ∏ 𝑐𝑜𝑠

𝑛

𝑖=1

(
𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1

10 [-600, 600] [-400, … -400] 0

𝐵𝐹12 =
𝜋

𝑛
 {10 𝑠𝑖𝑛(𝜋𝑦1) + ∑(𝑦𝑖 − 1)2 [1 + 10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)2

𝑛−1

𝑖=1

}

+ ∑ 𝑢(𝑥𝑖 , 10,100,4)

𝑛

𝑖=1

𝑦𝑖 = 1 +
𝑥 + 1

4
 , 𝑢(𝑥𝑖 , 𝑎, 𝑘, 𝑚) = {

𝑘(𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 > 𝑎
0 − 𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 < −𝑎

10 [-50,50] [-30, 30, … 30] 0

𝐵𝐹13 = 0.1 {𝑠𝑖𝑛2(3𝜋𝑥1)

+ ∑(𝑥𝑖 − 1)2[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)]

𝑛

𝑖=1

+ (𝑥𝑛 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]} + ∑ 𝑢(𝑥𝑖 , 5,100,4)

𝑛

𝑖=1

10 [-50,50] [-100, … -100] 0

𝐵𝐹14(𝐶𝐹1):
𝑓1, 𝑓2, 𝑓3, . . . , 𝑓10 = Sphere function
𝛿1, 𝛿2, 𝛿3 … 𝛿10 = [1,1,1, … ,1]

𝜆1, 𝜆2, 𝜆3 … 𝜆10 = [
5

100
,

5

100
,

5

100
, … ,

5

100
]

10

[-5, 5]

 0

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

TABLE II (CONTINUED) BENCHMARK TEST FUNCTION[4][6]

𝐵𝐹15(𝐶𝐹2):
𝑓1, 𝑓2, 𝑓3 … 𝑓10 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝛿1, 𝛿2, 𝛿3 … 𝛿10 = [1,1,1, … ,1]

𝜆1, 𝜆2, 𝜆3 … 𝜆10 = [
5

100
,

5

100
,

5

100
, … ,

5

100
]

10

[-5, 5]

 0

𝐵𝐹16(𝐶𝐹3):
𝑓1, 𝑓2, 𝑓3 … 𝑓10 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝛿1, 𝛿2, 𝛿3 … 𝛿10 = [1,1,1, … ,1]
𝜆1, 𝜆2, 𝜆3 … 𝜆10 = [1,1,1, … ,1]

10

[-5, 5]

 0

𝐵𝐹17(𝐶𝐹4):
𝑓1, 𝑓2 = 𝐴𝑐𝑘𝑙𝑒𝑦’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓3, 𝑓4 = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓5, 𝑓6 = 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓7, 𝑓8 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

 𝑓9, 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝛿1, 𝛿2, 𝛿3 … 𝛿10 = [1,1,1, … ,1]

𝜆1, 𝜆2, 𝜆3 … 𝜆10 = [
5

32
,

5

32
, 1,1,

5

0.5
,

5

0.5
,

5

100
,

5

100
,

5

100
,

5

100
]

10

[-5, 5]

 0

𝐵𝐹18(𝐶𝐹5):
𝑓1, 𝑓2 = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑓3, 𝑓4 = 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓5, 𝑓6 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑓7, 𝑓8 = 𝐴𝑐𝑘𝑙𝑒𝑦’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

 𝑓9, 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝛿1, 𝛿2, 𝛿3 … 𝛿10 = [1,1,1, … ,1]

𝜆1, 𝜆2, 𝜆3 … 𝜆10 = [
1

5
,
1

5
,

5

0.5
,

5

0.5
,

5

100
,

5

100
,

5

32
,

5

32
,

5

100
,

5

100
]

10

[-5, 5]

 0

𝐵𝐹19(𝐶𝐹6):
𝑓1, 𝑓2 = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑓3, 𝑓4 = 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓5, 𝑓6 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑓7, 𝑓8 = 𝐴𝑐𝑘𝑙𝑒𝑦’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

 𝑓9, 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝛿1, 𝛿2, 𝛿3 … 𝛿10 = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]

𝜆1, 𝜆2, 𝜆3 … 𝜆10 = [0.1 ∗
1

5
, 0.2 ∗

1

5
, 0.3 ∗

5

0.5
, 0.4 ∗

5

0.5
, 0.5 ∗

5

100
, 0.6

∗
5

100
, 0.7 ∗

5

32
, 0.8 ∗

5

32
, 0.9 ∗

5

100
, 1 ∗

5

100
]

10

[-5, 5]

 0

TABLE III

THE 100-DIGIT CHALLENGE: CEC-06 2019 BENCHMARK[6][35]
Function Dim Range 𝒇𝒎𝒊𝒏

𝐵𝐹20: 𝑆𝑡𝑜𝑟𝑛′𝑠 𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑓𝑖𝑡𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

9 [-8192, 8192] 1

𝐵𝐹21: 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

16 [-16384, 16384] 1

𝐵𝐹22: 𝐿𝑒𝑛𝑛𝑎𝑟𝑑 − 𝐽𝑜𝑛𝑒𝑠 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

18 [-4,4] 1

𝐵𝐹23: 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

10 [-100, 100] 1

𝐵𝐹24: 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑔𝑘′𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

10 [-100, 100] 1

𝐵𝐹25: 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

10 [-100, 100] 1

𝐵𝐹26: 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑐ℎ𝑤𝑒𝑓𝑒𝑙′𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

10 [-100, 100] 1

𝐵𝐹27: 𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑 𝑆𝑐ℎ𝑎𝑓𝑓𝑒𝑟′𝑠 𝐹6 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

10 [-100, 100] 1

𝐵𝐹28: 𝐻𝑎𝑝𝑝𝑦 𝐶𝑎𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

10 [-100, 100] 1

𝐵𝐹29: 𝐴𝑐𝑘𝑙𝑒𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

10 [-100, 100] 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

IV. NUMERICAL EXPERIMENT AND RESULTS

The proposed SC-FDO is implemented and evaluated over a

group of 29 benchmark test functions, as listed in Table II

[4][6] and Table III [6][36].

A. EVALUATION CRITERIA

The following measures are applied to access the results of

the benchmark test functions.

1) STATISTICAL MEAN

The statistical mean is the average values of the optimal

solution that are obtained by executing the optimization

algorithm for 𝑁 number of times, and it is computed

according to (16).

 𝑚𝑒𝑎𝑛 =
1

𝑁
∑ 𝐴𝑖

𝑁
𝑖=1 (16)

where 𝐴𝑖 is the optimal solution of the run time 𝑖.

2) STATISTICAL STANDARD DEVIATION (STD)

Statistical standard deviation (𝑠𝑡𝑑) measures the differences

of each optimal solution from the mean, as defined in (17).

It computes the stability and robustness of the optimization

algorithm.

 𝑠𝑡𝑑 = √
1

𝑁−1
∑ (𝐴𝑖 − 𝑚𝑒𝑎𝑛)2𝑁

𝑖=1 (17)

3) STATISTICAL MEAN EXECUTION TIME

Statistical mean execution time is the average computational

time taken by the optimization algorithm executing each

benchmark test function.

4) WILCOXON RANK SUM TEST

Wilcoxon rank-sum test is a non-parametric test for two

independent groups [37], and it is used to assess whether the

distributions of observations obtained between the proposed

algorithm and benchmark algorithm are systematically

different.

B. BENCHMARK TEST FUNCTIONS

The proposed SC-FDO was compared with six well-

known nature-inspired algorithms, namely FDO [6], IFDO

[25], SCA [4], WOA [8], PSO [1], and BOA [10]. The test

functions for the benchmark can be categorized into

unimodal functions (BF1-BF7), multimodal functions (BF8–

BF13), and composite functions (BF14-BF19), listed in

Table II. The remaining BF20-BF29 test functions from

CEC-C06 2019 [6][36] are employed to evaluate the

proposed SC-FDO further, as shown in Table III.

For each benchmark test function, all the algorithms were

tested with 30 runs. In the work of [4][6][25], a total of 30

search agents and a maximum number of 500 iterations were

used in the experiments. Thus, the population size was fixed

to 30, and the maximum number of iterations was 500. The

experiments were conducted in a test environment, equipped

with a Windows 10 operating system, an Intel (R) Core (TM)

i7 processor with 16 GB RAM, and a programming tool of

MATLAB R2018a.

The algorithm parameter settings are set the same as the

original compared algorithms. For the parameter settings in

the FDO [6], the 𝑤𝑓 parameter was equal to 0 for all the test

functions except BF2 and BF6, in which 𝑤𝑓 was equal to 1.

The other parameters settings are as the followings: SC-

FDO: a = 2, 𝑤𝑓 ∊ [0, 1] and IFDO 𝑤𝑓 ∊ [0, 1].

Each algorithm was evaluated by three indexes: average

value, standard deviation, and execution time. Tables IV, V,

and VI show the comparison results in average values,

standard deviation, and execution time of each algorithm for

all the test functions.

TABLE IV

THE AVERAGE VALUES OF THE PROPOSED SC-FDO AND OTHER ALGORITHMS FOR THE 29 BENCHMARK TEST FUNCTIONS.

Function SC-FDO FDO IFDO SCA WOA PSO BOA

BF1 0.00E+00 1.87E-34 4.60E-27 2.05E-12 1.06E-76 5.65E-10 1.01E-17

BF2 0.00E+00 5.52E-04 1.33E-05 1.58E-09 1.79E-52 1.00E+00 9.58E-11

BF3 0.00E+00 5.28E-14 7.98E-07 1.30E-01 1.18E+02 3.34E+02 7.67E-19

BF4 0.00E+00 1.39E-12 9.05E-13 2.85E-03 2.87E+00 1.08E-02 6.48E-11

BF5 2.69E+01 4.85E+01 6.37E+01 4.32E+04 2.80E+01 3.15E+04 2.89E+01

BF6 2.02E-02 1.06E-06 1.33E-16 4.45E-01 1.04E-03 3.76E-10 1.15E+00

BF7 4.49E-02 5.96E-01 5.41E-01 2.16E-03 2.44E-03 1.04E-02 1.85E-03

BF8 -1.02E+04 -2.93E+03 -7.02E+03 -2.14E+03 -3.35E+03 -3.29E+03 -1.97E+03

BF9 0.00E+00 2.45E+00 2.17E+00 1.35E+00 1.40E+00 9.90E+00 3.85E+01

BF10 3.26E-15 2.20E-14 6.57E-15 8.80E-02 4.80E-15 6.64E-01 8.40E-11

BF11 0.00E+00 7.81E-02 6.70E-02 7.05E-02 4.95E-02 1.04E-01 1.59E-02

BF12 4.54E-02 1.04E-02 3.88E+00 1.07E-01 6.23E-03 4.35E-08 1.98E-01

BF13 1.73E-01 3.67E-03 1.83E+00 3.24E-01 3.85E-02 2.28E-09 5.56E-01

BF14 6.36E+01 7.00E+01 6.80E+01 1.32E+02 1.17E+02 1.76E+02 2.37E+02

BF15 2.28E+02 1.41E+02 1.58E+02 1.24E+02 2.00E+02 2.24E+02 3.17E+02

BF16 3.55E+02 2.00E+02 2.51E+02 3.91E+02 5.05E+02 3.09E+02 5.61E+02

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

TABLE IV (CONTINUED) THE AVERAGE VALUES OF THE PROPOSED SC-FDO AND OTHER ALGORITHMS FOR THE 29 BENCHMARK TEST

FUNCTIONS.

BF17 5.17E+02 4.13E+02 3.75E+02 4.53E+02 5.73E+02 5.42E+02 7.31E+02

BF18 1.56E+02 1.01E+02 6.46E+01 1.33E+02 2.29E+02 2.08E+02 2.36E+02

BF19 7.09E+02 8.05E+02 7.95E+02 5.67E+02 8.04E+02 8.24E+02 8.55E+02

BF20 4.25E+04 6.69E+07 4.99E+08 6.41E+09 3.16E+10 3.22E+10 1.37E+05

BF21 1.73E+01 1.73E+01 1.73E+01 1.75E+01 1.74E+01 1.73E+01 1.85E+01

BF22 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01

BF23 1.59E+03 3.10E+01 2.83E+01 1.63E+03 3.69E+02 2.02E+03 5.81E+03

BF24 1.69E+00 1.13E+00 1.10E+00 2.23E+00 1.99E+00 1.79E+00 2.87E+00

BF25 8.27E+00 8.96E+00 8.89E+00 1.12E+01 9.82E+00 9.32E+00 1.14E+01

BF26 5.93E+01 4.74E+01 3.94E+01 8.55E+02 6.46E+02 4.28E+02 1.18E+03

BF27 4.50E+00 4.22E+00 4.17E+00 6.17E+00 5.87E+00 5.96E+00 6.58E+00

BF28 4.85E+00 2.41E+00 2.48E+00 1.15E+02 5.25E+00 1.85E+02 8.98E+02

BF29 1.81E+01 2.00E+01 1.82E+01 2.04E+01 2.03E+01 2.03E+01 2.05E+01

Rank 1 3 2 5 4 6 7

TABLE V

THE AVERAGE STANDARD DEVIATION OF THE PROPOSED SC-FDO AND OTHER ALGORITHMS FOR THE 29 BENCHMARK TEST FUNCTIONS.

Function SC-FDO FDO IFDO SCA WOA PSO BOA

BF1 0.00E+00 6.94E-34 1.82E-26 5.87E-12 3.13E-76 1.93E-09 1.85E-17

BF2 0.00E+00 7.32E-04 6.44E-05 2.72E-09 9.52E-52 3.16E+00 1.03E-10

BF3 0.00E+00 1.41E-13 4.36E-06 5.60E-01 1.61E+02 1.29E+03 1.58E-18

BF4 0.00E+00 3.95E-12 2.53E-12 1.05E-02 4.81E+00 1.26E-02 7.00E-11

BF5 2.69E+01 5.77E+01 7.89E+01 1.03E+05 2.80E+01 5.15E+04 2.89E+01

BF6 5.53E-02 1.59E-06 7.29E-16 4.75E-01 1.35E-03 5.97E-10 1.21E+00

BF7 5.98E-02 6.85E-01 6.07E-01 2.72E-03 3.66E-03 1.14E-02 2.04E-03

BF8 2.90E+04 2.97E+03 8.75E+03 2.15E+03 3.40E+03 3.30E+03 1.97E+03

BF9 0.00E+00 2.97E+00 2.39E+00 5.29E+00 5.66E+00 1.29E+01 4.43E+01

BF10 3.66E-15 7.99E-14 6.80E-15 4.82E-01 5.32E-15 3.64E+00 8.92E-11

BF11 0.00E+00 9.14E-02 7.25E-02 1.56E-01 1.47E-01 1.22E-01 8.72E-02

BF12 5.61E-02 5.68E-02 5.25E+00 1.16E-01 1.12E-02 2.32E-07 2.26E-01

BF13 1.90E-01 1.82E-02 3.99E+00 3.34E-01 6.43E-02 1.04E-08 5.84E-01

BF14 9.01E+01 1.05E+02 1.17E+02 1.35E+02 1.71E+02 1.95E+02 2.55E+02

BF15 2.37E+02 1.73E+02 1.95E+02 1.33E+02 2.18E+02 2.47E+02 3.41E+02

BF16 3.61E+02 2.34E+02 2.72E+02 3.96E+02 5.29E+02 3.36E+02 5.70E+02

BF17 5.25E+02 4.31E+02 3.95E+02 4.55E+02 5.86E+02 5.69E+02 7.41E+02

BF18 1.68E+02 1.40E+02 1.17E+02 1.46E+02 2.77E+02 2.52E+02 2.76E+02

BF19 7.31E+02 8.23E+02 8.15E+02 5.79E+02 8.19E+02 8.38E+02 8.61E+02

BF20 4.26E+04 9.12E+07 7.16E+08 1.18E+10 4.93E+10 6.06E+10 1.48E+05

BF21 1.73E+01 1.73E+01 1.73E+01 1.75E+01 1.74E+01 1.73E+01 1.85E+01

BF22 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01

BF23 2.05E+03 3.28E+01 2.98E+01 1.74E+03 4.24E+02 3.00E+03 6.61E+03

BF24 1.71E+00 1.13E+00 1.11E+00 2.23E+00 2.03E+00 1.90E+00 2.92E+00

BF25 8.33E+00 8.99E+00 8.94E+00 1.13E+01 9.87E+00 9.44E+00 1.14E+01

BF26 8.99E+01 1.02E+02 1.01E+02 8.75E+02 7.28E+02 4.85E+02 1.19E+03

BF27 4.53E+00 4.26E+00 4.21E+00 6.18E+00 5.89E+00 5.98E+00 6.59E+00

BF28 4.92E+00 2.41E+00 2.48E+00 1.48E+02 6.09E+00 5.37E+02 9.81E+02

BF29 1.84E+01 2.00E+01 1.91E+01 2.04E+01 2.03E+01 2.03E+01 2.05E+01

Rank 1 2.5 2.5 5 4 6 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

TABLE VI

THE AVERAGE EXECUTION TIME IN SECONDS OBTAINED BY THE PROPOSED SC-FDO AND OTHER ALGORITHMS FOR THE 29 BENCHMARK TEST FUNCTIONS.

Function SC-FDO FDO IFDO SCA WOA PSO BOA

BF1 0.8153 1.3415 51.5708 0.0318 0.0233 0.0174 0.0236

BF2 0.7554 1.5623 51.7337 0.0332 0.0247 0.0189 0.0254

BF3 1.0626 3.5154 56.0892 0.0610 0.0524 0.0466 0.0533

BF4 0.8266 1.4799 52.8787 0.0321 0.0232 0.0176 0.0242

BF5 2.1478 3.3919 454.5471 0.0722 0.0414 0.0419 0.0365

BF6 0.8502 1.4505 52.1921 0.0331 0.0234 0.0177 0.0237

BF7 0.9941 3.1662 54.9211 0.0520 0.0433 0.0372 0.0433

BF8 1.1244 2.2013 53.4520 0.0407 0.0318 0.0259 0.0325

BF9 0.8425 1.7409 54.0513 0.0342 0.0257 0.0211 0.0271

BF10 0.8580 1.6959 52.1359 0.0372 0.0274 0.0227 0.0281

BF11 0.9524 2.4860 53.0158 0.0454 0.0353 0.0313 0.0382

BF12 1.8225 7.1087 57.6510 0.1116 0.1029 0.0957 0.1047

BF13 1.8167 7.1394 57.4141 0.1118 0.1026 0.0955 0.1049

BF14 216.1311 1659.1242 1709.7733 24.4809 24.4376 24.5960 24.5465

BF15 219.1252 1696.5576 1738.1238 24.8657 24.7778 24.4432 24.8073

BF16 218.9035 1507.4357 1744.7410 24.6945 24.6758 24.8351 24.7862

BF17 239.4499 1913.1311 1897.7324 27.1037 26.9636 27.2118 27.0615

BF18 239.5473 1958.1535 1893.1001 27.1184 26.9986 27.2815 27.0858

BF19 236.5180 1880.2623 1901.5558 27.1572 27.2272 27.2814 27.1841

BF20 39.2986 233.2854 270.2622 3.2628 3.2461 3.2560 3.2514

BF21 1.2271 1.7830 160.5939 0.0409 0.0257 0.0226 0.0233

BF22 1.6639 3.6787 200.4955 0.0687 0.0513 0.0489 0.0482

BF23 1.0426 2.2694 53.1968 0.0450 0.0360 0.0284 0.0335

BF24 1.0790 2.3763 64.5387 0.0466 0.0372 0.0306 0.0348

BF25 12.8990 73.8102 124.4422 1.0471 1.0345 1.0320 1.0290

BF26 1.0419 2.3825 53.2395 0.0445 0.0364 0.0295 0.0347

BF27 1.0525 2.4033 53.2941 0.0465 0.0374 0.0303 0.0358

BF28 0.9737 2.0934 52.2668 0.0404 0.0299 0.0244 0.0310

BF29 1.0766 2.5715 53.5268 0.0486 0.0384 0.0329 0.0388

Rank 5 6 7 4 2 1 3

** Bold font denotes the best result.

C. COMPARISON OF SC-FDO WITH EXISTING

OPTIMIZATION ALGORITHMS

This section evaluates the proposed SC-FDO with six

existing nature-inspired algorithms, such as FDO, IFDO,

SCA, WOA, PSO, and BOA.

As seen in Table IV, the proposed SC-FDO has the first

rank as it outperformed well in 15 test functions compared to

the other six optimization algorithms in BF1, BF2, BF3,

BF4, BF5, BF8, BF9, BF10, BF11, BF14, BF20, BF21,

BF22, BF25, and BF29. The IFDO, FDO, and WOA have

the second, third, and fourth ranks, respectively in average

value. However, the BOA recorded the lowest ranking in the

performance comparison. The following is the rank of

algorithms for generating values that are close to the

theoretical optimal average values: (1) SC-FDO (2) IFDO

(3) FDO (4) SCA (5) WOA (6) PSO (7) BOA.

For the evaluation of exploitation (BF1-BF7), the results

indicated that the proposed SC-FDO achieved the

theoretically optimal average values of 0 in the test

functions: BF1, BF2, BF3, and BF4. The study proved that

the proposed SC-FDO is effective in exploitation and

convergence because it has high searching precision of

unimodal test functions in BF1, BF2, BF3, BF4, and BF5 test

functions than the IFDO, FDO, WOA, SCA, PSO, and BOA.

Hence, the modified pace-updating strategy is beneficial for

enhancing the existing FDO and IFDO’s exploitation ability

and subsequently improved the exploitation and

convergence speed of the proposed SC-FDO.

For the evaluation of exploration (BF8-BF19), the

proposed SC-FDO outperformed the other six optimization

algorithms in most test functions (BF8, BF9, BF10, BF11,

and BF14). Specifically, the proposed SC-FDO could obtain

the theoretically optimal average value of 0 for the BF9 and

BF11 test functions. In addition, the SC-FDO has

comparative results with the other algorithms in BF15,

BF16, BF17, BF18, and BF19. The results also evinced that

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

 SC-FDO IFDO WOA BOA

 FDO SCA PSO

the proposed SC-FDO has significantly improved the

original FDO and IFDO. Hence, the modified pace-updating

and conversion parameters enhancements greatly eliminated

local optima problems and optimized the balance of

exploitation and exploration in the proposed SC-FDO.

For CEC-C06 2019 (BF20-BF29) evaluation, the

proposed SC-FDO performed better than the other

algorithms in BF20, BF21, BF22, BF25, and BF29 tests

functions. The results also revealed that the proposed SC-

FDO has significantly improved the original FDO, in which

the proposed improvements in SC-FDO have successfully

enhanced the ability to avoid local optima and converge

towards the global optimum during optimization.

Furthermore, Table V indicates that the SC-FDO topped

the standard deviation ranking among all the optimization

algorithms. The IFDO and FDO shared the second-ranking,

followed by WOA and SCA. The SC-FDO outperformed

well in 15 functions (BF1, BF2, BF3, BF4, BF5, BF9, BF10,

BF11, BF14, BF20, BF21, BF22, BF25, BF26 and BF29).

For BF1, BF2, BF3, BF4, BF9, and BF11 test functions, the

SC-FDO achieved the theoretical optimal standard deviation,

in which the values were 0. In addition, the standard

deviation values of the proposed SC-FDO on most test

functions are within small ranges and ranked first in standard

deviation, indicating that the SC-FDO algorithm has better

stability and is able to search optimal solutions in a smaller

range than the original FDO and IFDO. The reason is that the

adaptation of the global fitness weight (𝑓𝑤∗) , random

weight factor (𝑤𝑓) and conversion parameter strategies,

which balance exploration and exploitation of the search

space, have led to a convergence on the global

optimum. However, the PSO and BOA did not perform well

in standard deviation. The BSO is at the bottom of the

ranking, while PSO is the lowest standard deviation in the

test cases.

For all the test functions, the average execution time used

by each algorithm over 30 runs is shown in Table VI. The

PSO has the minimum execution time, followed by the

WOA, BOA, SCA, SC-FDO, FDO and IFDO. The average

execution time used by the SC-FDO is higher than the PSO,

WOA, BOA, and SCA; however, it revealed that the

proposed SC-FDO has lower average execution time than the

original FDO and IFDO. Although the space complexity of

the SC-FDO is slightly higher than the original FDO’s space

complexity, the introduction of the best solution-updating

approach has significantly decreased the computing time of

the proposed SC-FDO. Specifically, there is a significant

reduction of the average execution time in the SC-FDO,

approximately 87% and 89% of the original FDO and IFDO,

respectively. Hence, the findings proved that the proposed

SC-FDO has successfully reduced the original FDO and

IFDO's computational time and substantially enhanced the

efficiency of the original FDO and IFDO.

Furthermore, a comparison between the convergence

curve of the SC-FDO and other algorithms on twelve

representative test functions is presented in Fig. 6. For the

BF1, BF2, BF3, BF4, BF5, BF9, BF11, BF20, and BF25 test

functions, the SC-FDO converged faster than the other

algorithms, consequently reduced the exploration and

exploitation time when finding the optimal global solution.

This finding shows that the effect of the proposed conversion

parameter and adaptive sine and cosine functions can

significantly optimize the exploration and exploitation

ability of the SC-FDO.

However, the SC-FDO converged less quickly than other

algorithms at the beginning of the iteration for BF10, BF14,

and BF29 in Fig. 6. Interestingly, the SC-FDO significantly

increased the convergence rate and accuracy as the iterations

approached 80, 466 and 220 iterations. The SC-FDO

eventually converged closer to the optimal global solution.

Therefore, this study concluded that the SC-FDO achieved

better results than the existing FDO, IFDO, SCA, WOA,

PSO, and BOA in terms of convergence precision and speed.

Therefore, it can be concluded that the proposed SC-FDO

is superior to the other optimization algorithms as it ranked

first among all the compared optimization algorithms in

terms of average values and standard deviation for the

benchmark test function.

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200

A
v
er

ag
e

fi
tn

es
s

v
al

u
e

Iterations

BF1

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100110120

A
v
er

ag
e

fi
tn

es
s

v
al

u
e

Iterations

BF2

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200 250 300

A
v
er

ag
e

fi
tn

es
s

v
al

u
e

Iterations

BF3

0

10

20

30

40

50

60

70

0 50 100 150 200

A
v
er

ag
e

fi
tn

es
s

v
al

u
e

Iterations

BF4

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0 50 100 150 200 250

A
v

er
ag

e
fi

tn
es

s
v

a
lu

e

Iterations

BF5

0

20

40

60

80

100

120

0 50 100 150 200 250 300

A
v
er

ag
e

fi
tn

es
s

v
al

u
e

Iterations

BF9

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100 120 140

A
v
er

ag
e

fi
tn

es
s

v
al

u
e

Iterations

BF10

0

20

40

60

80

100

120

140

0 20 40 60 80 100

A
v
er

ag
e

fi
tn

es
s

v
al

u
e

Iterations

BF11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

 SC-FDO IFDO WOA BOA

 FDO SCA PSO

FIGURE 6. Convergence curves of the SC-FDO and other algorithms on ten representative test functions.

D. WILCOXON RANK SUM TEST

In the Wilcoxon rank-sum test, it is assumed that there is no

difference among the compared algorithms in the null

hypothesis, Ho. The alternative hypothesis, H1 assumes that

there is a difference between the compared algorithms for the

average values of the test functions in Table IV. The

Wilcoxon rank-sum tests indicated that the null hypothesis

Ho is rejected, and the results of SC-FDO are different from

those compared algorithms, at the 0.05 significance level.

Therefore, the SC-FDO results are statistically significant

compared with the benchmark algorithms, as presented in

Table VII.

TABLE VII

THE P-VALUE OF WILCOXON RANK SUM TEST BETWEEN THE PROPOSED SC-FDO AND OTHER ALGORITHMS

Function
SC-FDO vs.

FDO IFDO SCA WOA PSO BOA

BF1 7.69E-12 7.69E-12 7.69E-12 7.69E-12 7.68E-12 7.69E-12

BF2 7.687e-12 7.687e-12 7.69E-12 7.69E-12 7.69E-12 7.68E-12

BF3 1.54E-11 1.54E-11 1.54E-11 1.54E-11 1.54E-11 1.54E-11

BF4 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

fi
tn

es
s

v
al

u
e

Iterations

BF14

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

0 50 100 150 200

A
v
er

ag
e

fi
tn

es
s

v
al

u
e

Iterations

BF20

8

9

10

11

12

13

14

15

16

17

18

0 50 100 150 200 250 300

A
v
er

ag
e

fi
tn

es
s

v
al

u
e

Iterations

BF25

18

18.5

19

19.5

20

20.5

21

21.5

22

0 50 100 150 200 250 300 350 400 450 500

A
v
er

ag
e

fi
tn

es
s

v
al

u
e

Iterations

BF29

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

TABLE VII (CONTINUED) THE P-VALUE OF WILCOXON RANK SUM TEST BETWEEN THE PROPOSED SC-FDO AND OTHER

ALGORITHMS

BF5 0.1453 9.05E-02 3.02E-11 4.222e-9, 3.02E-11 3.02E-11

BF6 3.02E-11 3.02E-11 3.34E-11 1.34E-05 3.02E-11 3.02E-11

BF7 7.39E-11 4.97E-11 1.09E-10 2.15E-10 1.29E-06 4.08E-11

BF8 8.24E-02 4.13E-02 8.99E-11 9.23E-01 9.94E-01 4.08E-11

BF9 7.69E-12 7.52E-12 7.69E-12 4.32E-13 7.69E-12 7.69E-12

BF10 8.19E-08 7.95E-08 1.29E-11 1.29E-01 1.29E-11 1.29E-11

BF11 7.69E-12 7.68E-12 7.69E-12 1.69E-12 7.69E-12 7.68E-12

BF12 5.55E-10 6.05E-07 3.52E-07 3.20E-09 3.02E-11 3.83E-09

BF13 5.49E-11 5.49E-01 2.57E-07 2.57E-07 3.02E-11 1.78E-10

BF14 0.09202 2.15E-02 3.56E-04 2.34E-01 1.71E-05 1.29E-09

BF15 1.67E-04 2.26E-03 2.20E-08 2.12E-01 6.31E-01 4.43E-03

BF16 2.01E-07 5.46E-06 1.19E-01 1.33E-04 3.15E-02 8.99E-11

BF17 2.14E-03 1.17E-05 7.20E-05 1.12E-01 9.12E-01 9.75E-08

BF18 4.46E-04 3.32E-06 8.32E-03 3.40E-01 1.62E-01 4.68E-02

BF19 1.60E-03 2.55E-03 6.92E-03 4.38E-03 4.76E-06 1.53E-03

BF20 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

BF21 7.58E-12 5.21E-12 3.02E-11 6.72E-10 1.21E-12 3.02E-11

BF22 1.19E-12 1.19E-12 2.99E-11 6.68E-01 8.64E-02 2.99E-11

BF23 3.02E-11 3.02E-11 3.56E-01 8.15E-05 9.35E-01 3.65E-08

BF24 3.34E-11 3.02E-11 1.17E-09 2.16E-03 9.94E-01 3.34E-11

BF25 7.29E-03 1.63E-02 3.02E-11 4.42E-06 5.56E-04 7.39E-11

BF26 4.46E-01 6.95E-01 3.02E-11 3.34E-11 7.38E-10 3.02E-11

BF27 6.15E-02 1.91E-02 3.69E-11 1.33E-10 1.46E-10 3.02E-11

BF28 3.02E-11 3.02E-11 3.02E-11 6.41E-01 1.11E-06 3.02E-11

BF29 2.06E-01 1.15E-01 2.37E-10 1.20E-08 4.20E-10 3.02E-11

V. SC-FDO BASED MULTILAYER PERCEPTRON

TRAINER

The SC-FDO is employed as a trainer to train and optimize

multilayer perceptron (MLP) network, abbreviated as SC-

FDO based MLP trainer.

FIGURE 7. Multilayer perceptron (MLP) neural network

Fig. 7 shows the structure of the multilayer perceptron

(MLP) neural network. This network is also called a

feedforward neural network (FFNN). It is the most

frequently applied learning technique in MLP due to its

stability and ease of use [38]-[39].

The weighted sums of inputs are computed according to

(18).

 𝑝𝑗 = ∑ (𝑤𝑖𝑗 ∗ 𝑥𝑖) + 𝑏𝑗 , j = 1, 2, … , h𝑛
𝑖=1 (18)

where 𝑛 is the number of the input nodes, 𝑤𝑖𝑗 is the

connection weight from the 𝑖𝑡ℎ input node to the 𝑗𝑡ℎ hidden

node, 𝑥𝑖 is the ith input and 𝑏𝑗 is the bias of the 𝑗𝑡ℎ hidden

node.

The output of each hidden layer is defined as follows:

 𝑃𝑗 = 𝑡𝑎𝑛𝑠𝑖𝑔 (𝑝𝑗) =
2

(1+exp(−2∗𝑝𝑗))−1
, j = 1, 2, … , h (19)

The final output of the output layer is calculated using

(20).

 𝑦𝑘 =
2

(1+exp(−2∗(∑ (𝑤𝑗𝑘∗𝑝𝑗)+𝑏𝑘 ℎ
𝑗=1)))−1

, k = 1, 2, 3, … , m (20)

where 𝑦𝑘 is the 𝑘𝑡ℎ output, 𝑤𝑗𝑘 is the connection weight

from the 𝑗𝑡ℎ hidden node to the 𝑘𝑡ℎ output node and 𝑏𝑘 is the

bias of the 𝑘𝑡ℎ output node.

 Furthermore, the SC-FDO based MLP trainer will

optimize the neural network with a set of optimal values for

the weights and biases as described in (18)-(20). In the SC-

Input layer Hidden layer Output layer

𝑥1

𝑥2

𝑥𝑛

𝑝1

𝑝2

𝑝ℎ

𝑦𝑚

:
:

:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

FDO trainer, each variable indicates the total of weights and

biases and defined as follows [39]:

 𝑣 = {𝑊, 𝑏}={𝑤1,1, 𝑤1,2, … , 𝑤𝑛,ℎ , 𝑏1, … , 𝑏ℎ, 𝑤1, 𝑤ℎ, 𝑏𝑖} (21)

All the weights and biases variables need to converge until

the optimum solution is reached that provides the highest

prediction accuracy. The evaluation metric of the neural

network is the mean square error (MSE), as indicated in (22).

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦 − ỹ)2𝑁

𝑖=1 (22)

where 𝑁 is the number of outputs, 𝑦 is the actual value,

and ỹ is the predicted value by the SC-FDO based MLP

trainer.

A. CASE STUDY: MISSING WEATHER DATA

IMPUTATION

This section further verifies the performance of the proposed

SC-FDO based MLP trainer by solving real-world

application problems. Rainfall data are essential components

of the hydrological cycle to assess flood risk [40] and predict

rainfall forecasting [41]. However, missing rainfall values in

the weather dataset reduces the accuracy and robustness of

the hydrological data analysis. In the real-world, the data

could go missing on more than 50% missing rates of the

variable (s) in the dataset due to the equipment

malfunctioned and measurement errors. Therefore, this

section attempts to compare the predictive ability of the

proposed SC-FDO based MLP trainer in handling high

missing rates on the time series dataset with benchmark

approaches. In addition, the results of the proposed SC-FDO

based MLP with random weight factor, abbreviated as SC-

FDO and SC-FDO with fixed weight factor, abbreviated as

SC-FDO (fixed 𝑤𝑓) were compared to evaluate the effect of

the proposed random weight factor in imputation.

1) DATASET

The dataset used in this study was historical weather data for

Basel, Switzerland and downloaded from meteoblue website

[42]. This study analyzed the daily historical weather data

from January 1985 to September 2020 with no missing

attribute values. We performed the principal component

analysis method to find the most important features. The

results showed that the most important features are the

rainfall, average soil moisture, minimum soil moisture, max

soil moisture, minimum temperature, maximum wind speed,

low cloud cover low, medium cloud cover, high cloud cover,

total cloud cover, relative humidity, maximum relative

humidity, and minimum relative humidity. Furthermore, the

daily weather data were split into training and testing

datasets. The size of each training and testing dataset is 80%

and 20% of the daily weather dataset, respectively. The data

were randomly removed from the testing dataset in nine

missing rates: 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%

and 90% [43][44]. The missing values were categorized as

missing completely at random (MCAR) [45][46] because the

presence of missing values is not affected by the other

variable values in the dataset.

2) EXPERIMENT SETTINGS

The experiments were conducted using MATLAB R2018a.

The computer settings were set the same as the sub-section

of Benchmark Test Function settings at Section IV

Numerical Experiment and Results. All the experiments

were executed for 30 independent runs over each missing

rate. The population size was fixed to 30, the number of

hidden neurons was 15, the maximum number of iterations

(𝑡𝑚𝑎𝑥) was 500, and the maximum number of epochs was

1100 on all simulations. The parameter settings of the

algorithms were presented in Table VIII.

TABLE VIII

PARAMETER SETTINGS FOR ALGORITHMS

Algorithms Parameter Value of the parameter

SC-FDO 𝑎 2

 𝑤𝑓 [0,1]

SC-FDO (fixed 𝑤𝑓) 𝑎 2

 𝑤𝑓 1

FDO 𝑤𝑓 1

IFDO 𝑤𝑓 [0,1]

3) PERFORMANCE MEASURES

The performances of the SC-FDO and the benchmark

approaches were measured as follows:

• Mean absolute error (MAE)

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑂𝑖 − 𝑇𝑖|𝑁

𝑖=1 (23)

• Root mean square error (RMSE)

 𝑅𝑀𝑆𝐸 = √
∑ (𝑂𝑖−𝑇𝑖)2𝑁

𝑖=1

𝑁
 (24)

• Correlation coefficient (R)

 𝑅 =
∑ (𝑇𝑖−𝑇̅)(𝑂𝑖− 𝑂̅)𝑁

𝑖=1

√∑ (𝑇𝑖−𝑇̅)2(𝑂𝑖− 𝑂̅)2𝑁
𝑖=1

 (25)

where 𝑁 is the total number of observations, 0 is the actual

values of observations and 𝑇 is the imputed values.

4) RESULTS AND DISCUSSIONS

The effects of missing data on the imputation ability of the

SC-FDO based MLP trainer and the benchmark approaches,

SC-FDO (fixed 𝑤𝑓), FDO, IFDO based MLP trainers are

shown in Fig. 8. The boxplots in Fig. 8 show a summary of

the distribution of imputation results based on minimum,

first quartile (Q1), median, third quartile (Q3) and maximum

values. First, the missing data imputation methods were

evaluated for the low proportion of missing values, from

10% until 40% missing rates, as depicted in Fig. 8(a)-8(c).

The FDO imputation method was the most sensitive to the

percentage of missing rates. The results indicated that FDO

has the lowest performance in the presence of low missing

values. The highest median of MAE in mm (10%: 0.179,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

20%: 0.3904, 30%: 0.6324 and 40%: 0.8731) and the highest

median of RMSE in mm (10%: 0.7715, 20%: 1.3814, 30%:

1.6969 and 40%: 2.3070) but the lowest median of R (10%:

0.9889, 20%: 0.9630, 30%: 0.9442 and 40%: 0.8946) were

observed for the FDO imputation.

The IFDO imputation slightly performed better than the

FDO imputation. The MAE results indicated that IFDO was

less sensitive to the amount of low missingness than the FDO

imputation, in which the IFDO has the second-highest

median of MAE and RMSE. For the SC-FDO (fixed 𝑤𝑓)

method, the MAE, RMSE, and R results show better model

performance than IFDO and FDO for all the low missing

cases.

In addition, the results showed that the SC-FDO

imputation achieved the lowest median of MAE (10%:

0.1149 mm, 20%: 0.3098 mm, 30%: 0.5253 mm and 40%:

0.7324 mm), the lowest median of RMSE (10%: 0.6130 mm,

20%: 1.2784 mm, 30%: 1.5685 mm and 40%: 2.1431 mm),

however the highest median of R (10%: 0.9929, 20%:

0.9691, 30%: 0.9527 and 40%: 0.9105) for the low

proportion of missingness cases. With the implementation of

the random weight factor (𝑤𝑓) and global fitness weight

parameter (𝑓𝑤∗), the imputation results of SC-FDO showed

improvements in the three performance measures compared

to the SC-FDO (fixed 𝑤𝑓), FDO, and IFDO imputation. The

shorter distributions of MAE, RMSE, and R in SC-FDO,

indicating that the SC-FDO is substantially better than SC-

FDO (fixed 𝑤𝑓), FDO, and IFDO imputation. Thus, the SC-

FDO imputation is the preferred method in the presence of

low missingness compared to the SC-FDO (fixed 𝑤𝑓), FDO,

and IFDO.

Furthermore, this study revealed the effects of missing

data imputation for high missingness from 50% to 90%, as

shown in Fig. 8(d)-8(f). For the large proportion of missing

data, two imputation methods stood out as the median R

values of the SC-FDO and SC-FDO (fixed 𝑤𝑓) were higher

than the other two imputation methods. The SC-FDO (fixed

𝑤𝑓) was the highest median R (R = 0.8481 mm) for the

missing rates of 70%. Meanwhile, the SC-FDO obtained the

highest median of R values for the high missingness of 50%,

60%, 80%, and 90%. The median R values indicated that

overall, the SC-FDO has higher accuracy than the SC-FDO

(fixed 𝑤𝑓), IFDO, and FDO imputation. The underlying

reason is the SC-FDO enables the scout bees to converge

more accurately than the SC-FDO (fixed 𝑤𝑓), FDO, and

IFDO compared to the equations (10)-(13) with (2)

respectively.

In addition, the FDO imputation generates the highest

median of MAE and RMSE values for all the high

missingness, with the MAE values, range between 1.0737

mm to 1.9363 mm and the RMSE values range between

2.4760 mm and 3.2274 mm, respectively. On the other hand,

the SC-FDO demonstrated the best performances compared

to the FDO imputation. The median MAE and RMSE values

of the SC-FDO decreased by an average range between 0.18

mm and 0.31 mm, and an average range between 0.17 and

0.25 mm, respectively. Meanwhile, the median MAE and

RMSE of SC-FDO (fixed 𝑤𝑓) and IFDO imputation laid

between the SC-FDO and FDO imputations.

Overall, the SC-FDO imputation outperformed the three

imputation methods with the highest average accuracy of

90% when treating the low and high missingness in the

dataset.

8(a) 8(b)

10% missing 20% missing 30% missing 40% missing

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

8(c)

8(d)

8(e) 8(f)

10% missing 20% missing 30% missing 40% missing

50% missing 60% missing 70% missing 80% missing 90% missing

FIGURE 8. Missing data imputation on high-low missingness

Furthermore, a comparison of average execution time for

SC-FDO, SC-FDO (fixed 𝑤𝑓), FDO, and IFDO based MLP

trainers is plotted in Fig. 9. The proposed SC-FDO optimizer

trainer has the lowest average execution time. Meanwhile,

the IFDO optimizer trainer took the longest average

execution time to perform missing data estimation for all the

missingness. Overall, the average execution time of the

proposed SC-FDO was slightly less time than the SC-FDO

(fixed 𝑤𝑓). However, the FDO and IFDO optimizer trainers

took more computational time to perform missing data

estimation than the proposed SC-FDO. The SC-FDO

optimizer trainer reduced the computational time up to an

average of 77% and 87% compared to the original FDO and

IFDO, respectively.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

FIGURE 9. Comparison of average execution time (seconds) for SC-
FDO based MLP trainer and the benchmark approaches at different
missing rates.

5) ANALYSIS OF IMPUTATION RESULTS

The proposed SC-FDO imputation-based MLP trainer

demonstrated the best performance for most levels of

missingness than the other three optimizer trainers. This

study revealed that the proposed SC-FDO imputation

method achieved an improvement in prediction accuracy

than the SC-FDO (fixed 𝑤𝑓), FDO, and IFDO optimizer

trainers. The adaptation of the random (𝑤𝑓) and global

fitness weight (𝑓𝑤∗) strategy improved the performance of

the SC-FDO imputation. The global fitness weight (𝑓𝑤∗)

parameter helped the SC-FDO finds appropriate random 𝑤𝑓

over the iterations for stable search. Without the global

fitness weight (𝑓𝑤∗) strategy, the small value of 𝑤𝑓 results

in less exploration, whereas the high value of 𝑤𝑓 may result

in premature convergence. Additionally, the two strategies

(the modified pace-updating equation and the conversion

parameter) in the proposed SC-FDO also enhanced the

balance of exploratory and exploitative characteristics of the

original FDO. Consequently, the proposed SC-FDO

imputation produces consistently good imputation results

than the SC-FDO (fixed 𝑤𝑓), FDO, and IFDO optimizer

trainers.

In addition to that, the proposed SC-FDO also improved

the efficiency of the original FDO and IFDO imputation. The

SC-FDO has significantly shortened the computational time

of the FDO and IFDO, approximately 77% and 87%,

respectively. The main reason is the proposed best solution-

updating function in the SC-FDO could positively reduce the

time taken to find the best search region by periodically

updating the position around the global best solution during

optimization.

Furthermore, this study found that the performances of the

four imputation methods decreased as the missing rates

increased. The level of imputation sensitivity depends on the

percentages of missingness and the imputation models. The

FDO imputation was the most sensitive for the growing

ratios of missingness in the dataset among the four methods.

The accuracy of the FDO imputation was reduced to 78%

when the missing rate is 90%. Similar distributions are also

observed for the SC-FDO (fixed 𝑤𝑓) and IFDO imputations.

However, the proposed SC-FDO imputation is less sensitive

as the fraction of missing data increased. The proposed SC-

FDO obtained an accuracy of 81% at the missing rate of

90%. Our findings are consistent with the work done by Gill

[47], Kim [48], and Chiu et al. [49] that the effect of

missingness is significant when the fraction of missing data

grows larger. Therefore, the proposed SC-FDO was the best

method for the low and high proportions of missingness.

VI. CONCLUSION

This study demonstrated the effect of the modified pace-

updating equation, the random weight factor (𝑤𝑓) and global

fitness weight (𝑓𝑤∗) strategy, the conversion parameter

strategy, and the best solution-updating strategy in the

proposed SC-FDO. The benchmark test results revealed that

the proposed SC-FDO performed better than the existing

FDO and several well-known optimization algorithms in

terms of convergence precision and speed. The SC-FDO has

significantly obtained theoretically or approximately optimal

solutions for most of the benchmarking test cases. The results

also proved that the proposed SC-FDO has successfully

balanced the FDO’s exploitation and exploration, improved

the convergence speed, avoided the local optima, and moved

towards optimality. Furthermore, the Wilcoxon rank-sum

test results proved that the proposed SC-FDO was

systematically different from the benchmark algorithms at

the 0.05 significance level. Additionally, the proposed SC-

FDO based MLP trainer demonstrated encouraging results

than the SC-FDO (fixed 𝑤𝑓), FDO and IFDO based MLP

trainers in solving the problems of low and high missingness

in the time series dataset. The missing value cases were

refined as optimization problems, where the four optimizer

trainers were used to predict missing values in the time series

datasets at different missing rates from 10% until 90%. The

SC-FDO trainer outperformed the other three optimizer

trainers with the highest average accuracy of 90% for all the

missing rates. The SC-FDO trainer also obtained a

computational time reduction of 77% and 87% in missing

data estimation compared to the FDO and IFDO optimizer

trainers, respectively. Therefore, the findings of the proposed

SC-FDO support its use to optimize the real-world missing

data problems.

VII. LIMITATION AND FUTURE WORKS

The SC-FDO requires parameter tuning for constant 𝑎 in the

conversion parameter strategy. Since parameter tuning is

typically computationally expensive, particularly for real-

world applications, an automatic parameter tuning method

needs to further explore in the future. The researchers can

also investigate multi-objective parameter tuning and cost

effectiveness on the SC-FDO. In addition, the hybridization

of the SC-FDO with other metaheuristic algorithms such as

0

500

1000

1500

2000

2500

3000

3500

10% 20% 30% 40% 50% 60% 70% 80% 90%

T
im

e
(s

ec
o
n

d
s)

Missing rates

Mean Execution Time

SC-FDO SC-FDO (fixed wf) FDO IFDO

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

coot algorithm [20] and colony predation algorithm [21]

could be of interest to the researchers.

ACKNOWLEDGMENT

This work was supported/funded by the Ministry of

Higher Education under the Fundamental Research Grant

Scheme (FRGS/1/2018/ICT04/UTM/01/1). The work was

also partially supported by the Specific Research project

(SPEV) at the Faculty of Informatics and Management,

University of Hradec Kralove, Czech Republic, under Grant

2102-2021. The authors are grateful for the support of

student Sebastien Mambou in consultations regarding

application aspects. The authors sincerely thank Universiti

Teknologi Malaysia (UTM) under Research University

Grant Vot-20H04, Malaysia Research University Network

(MRUN) Vot 4L876, for the completion of the research.

REFERENCES
[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in

Proceedings of ICNN'95-International Conference on Neural

Networks, IEEE, vol. 4, Nov 27, 1995, pp. 1942-1948.

[2] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of

global optimization, vol. 11, no. 4, pp. 341-359, 1997.

[3] J.H. Holland, “Genetic algorithms,” Scientific American, vol.267, no.
1, pp. 66-73, 1992.

[4] S. Mirjalili, “SCA: A sine cosine algorithm for solving optimization

problems,” Knowledge-Based Systems. 96, pp. 120-133, 2016.
[5] H. Huang, A.A. Heidari, Y. Xu, M. Wang, G. Liang, H. Chen and X.

Cai, “Rationalized sine cosine optimization with efficient searching

patterns,” IEEE access, vol. 8, pp.61471-61490, 2020.

[6] J.M. Abdullah and T.A Rashid, “Fitness dependent optimizer: inspired

by the bee swarming reproductive process,” IEEE Access, vol. 7, pp.
43473-86, Mar 22, 2019.

[7] N. Covic and B. Lacevic, “Wingsuit flying search: a novel global

optimization algorithm,” IEEE Access, vol. 8, pp. 53883-900, Mar 16,
2020.

[8] S. Mirjalili and A. Lewis, “The whale optimization algorithm,”

Advances in engineering software. vol. 95, pp. 51-67, 2016.
[9] J. Tu, H. Chen, J. Liu, A. A. Heidari, X. Zhang, M. Wang, R. Ruby

and Q.V. Pham, “Evolutionary biogeography-based whale

optimization methods with communication structure: towards
measuring the balance,” Knowledge-Based Systems, vol. 212,

pp.106642, 2021.

[10] S. Arora and S. Singh, “Butterfly optimization algorithm: a novel
approach for global optimization,” Soft Computing, vol. 23, no. 3, pp.

715-34, 2019.

[11] M. Tubishat, M. Alswaitti, S. Mirjalili, M.A. Al-Garadi and T.A.

Rana, “Dynamic butterfly optimization algorithm for feature

selection,” IEEE Access, vol. 8, pp.194303-194314, 2020.

[12] S. Mirjalili, “Dragonfly algorithm: a new meta-heuristic optimization
technique for solving single-objective, discrete, and multi-objective

problems”. Neural Computing and Applications, vol. 27, no. 4,

pp.1053-73, 2016.
[13] X. Cui, Y. Li, J. Fan, T. Wang and Y. Zheng, “A hybrid improved

dragonfly algorithm for feature selection,” IEEE Access, vol. 8,

pp.155619-155629, 2020.
[14] S. Mirjalili and S.M. Mirjalili and A. Lewis, “Grey wolf optimizer”,

Advances in engineering software, vol. 69, pp. 46-61, 2014.

[15] S. Mirjalili, “Moth-flame optimization algorithm: A novel nature-
inspired heuristic paradigm,'' Knowledge-Based Systems, vol. 89, pp.

228-249, 2015.

[16] C. Chen, X. Wang, H. Yu, M. Wang and H. Chen, “Dealing with
multi-modality using synthesis of Moth-flame optimizer with sine

cosine mechanisms,” Mathematics and Computers in Simulation, vol.

188, pp. 291-318, 2021.

[17] D. Oliva, S. Esquivel-Torres, S. Hinojosa, M. Pérez-Cisneros, V.
Osuna-Enciso, N. Ortega-Sánchez, G. Dhiman and A.A. Heidari, “An

opposition-based moth swarm algorithm for global

optimization,” Expert Systems with Applications, pp.115481, 2021.
[18] W. Shan, Z. Qiao, A.A. Heidari, H. Chen, H. Turabieh, and Y. Teng,

“Double adaptive weights for stabilization of moth flame optimizer:

balance analysis, engineering cases, and medical
diagnosis,” Knowledge-Based Systems, vol. 214, pp.106728, 2021.

[19] X. Wang, D. Cong, Z. Yang and J. Han, “Root Based Optimization

Algorithm for Task-Oriented Structural Design of a Multi-Axial Road
Test Rig,” IEEE Access, vol. 8, pp.168061-168078, 2020.

[20] I. Naruei and F. Keynia, “A New Optimization Method Based on Coot

Bird Natural Life Model,” Expert Systems with Applications,
pp.115352, 2021.

[21] J. Tu, H. Chen, M. Wang and A.H. Gandomi, “The Colony Predation

Algorithm,” Journal of Bionic Engineering, 18(3), pp.674-710, 2021.
[22] A. Daraz, S. Abdullah, H. Mokhlis, I.U. Haq, G. Fareed and N.N.

Mansor, “Fitness dependent optimizer based automatic generation

control of multi-source interconnected power system with non-
linearities,” IEEE Access, May 28, 2020.

[23] A. Daraz, S.A. Malik, I.U. Haq, K.B. Khan, G.F. Laghari and F. Zafar,

“Modified PID controller for automatic generation control of multi-
source interconnected power system using fitness dependent optimizer

algorithm,” Plos one, vol.15, no. 11, e0242428, Nov 20, 2020.
[24] D.S. Abdul-Minaam, W.M.E.S. Al-Mutairi, M.A. Awad and W.H. El-

Ashmawi, “An adaptive fitness-dependent optimizer for the one-

dimensional bin packing problem,” IEEE Access, vol. 8, pp.97959-
97974, 2020.

[25] D.A. Muhammed, S.A. Saeed and T.A. Rashid, “Improved fitness-

dependent optimizer algorithm. IEEE Access, 8, pp.19074-19088,”
2020.

[26] A. Daraz, S.A. Malik, H. Mokhlis, I.U. Haq, F. Zafar and N.N.

Mansor, “Improved-fitness dependent optimizer based FOI-PD
controller for automatic generation control of multi-source

interconnected power system in deregulated environment,” IEEE

Access, Oct 27, 2020.

[27] H.M. Mohammed and T.A. Rashid, “Chaotic Fitness Dependent

Optimizer for Planning and Engineering Design,” 2021.

[28] D. H. Wolpert, W. G. Macready, "No free lunch theorems for
optimization," IEEE Transaction on Evolutionary Computation, vol.

1, no. 1, pp. 67-82, 1997.

[29] W, Long, T. Wu, X. Liang and S. Xu, “Solving high-dimensional
global optimization problems using an improved sine cosine

algorithm,” Expert Systems with Applications, vol. 123, pp. 108-26,

2019.
[30] S. Gupta, K. Deep, H. Moayedi, L.K. Foong and A. Assad, “Sine

cosine grey wolf optimizer to solve engineering design problems,”

Engineering with Computers, pp. 1-27, 2020.
[31] H.M. Mohammed, S.U. Umar and T.A. Rashid, “A systematic and

meta-analysis survey of whale optimization algorithm,”

Computational intelligence and neuroscience, 2019.
[32] C. Qu, Z. Zeng, J. Dai, Z. Yi, W. He, “A modified sine-cosine

algorithm based on neighborhood search and greedy levy mutation,”

Computational intelligence and neuroscience, 2018.

[33] M. Issa, A.E. Hassanien, D. Oliva, A. Helmi, I. Ziedan, A. Alzohairy,

“ASCA-PSO: Adaptive sine cosine optimization algorithm integrated

with particle swarm for pairwise local sequence alignment,” Expert
Systems with Applications, vol. 99, pp. 56-70, 2018.

[34] S.N. Chegini, A. Bagheri, and F. Najafi, “PSOSCALF: A new hybrid

PSO based on Sine Cosine Algorithm and Levy flight for solving
optimization problems,” Applied Soft Computing, vol. 73, pp. 697-

726, 2018.

[35] X.-S. Yang, “Nature-inspired metaheuristic algorithms,” United
Kingdom, Luniver Press, 2010.

[36] K. V. Price, N. H. Awad, M. Z. Ali, and P. N. Suganthan, ``The 100-

digit challenge: Problem definitions and evaluation criteria for the
100-digit challenge special session and competition on single

objective numerical optimization,'' Nanyang Technol. Univ.,

Singapore, Tech. Rep., Nov. 2018.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

[37] Statistics Kingdom. “Mann Whitney U test calculator (Wilcoxon rank-

sum), Non-parametric test”. [Online]. Available:

https://www.statskingdom.com/170median_mann_whitney.html,
Accessed on: July 1, 2021.

[38] K.K. Kuok, S. Harun, S.M. Shamsuddin and P.C. Chiu, “Evaluation

of daily rainfall-runoff model using multilayer perceptron and particle
swarm optimization feed forward neural networks,” Journal of

Environmental Hydrology, vol. 18, no. 10, pp.1-6, 2010.

[39] S. Mirjalili, “How effective is the Grey wolf optimizer in training
multilayer perceptrons,” Applied Intelligence, vol. 43, no. 1, pp. 150-

61, 2015.

[40] Y. Shen, M.M. Morsy, C. Huxley, N. Tahvildari and J.L. Goodall,
“Flood risk assessment and increased resilience for coastal urban

watersheds under the combined impact of storm tide and heavy

rainfall,” Journal of Hydrology, vol. 579, pp. 124159, 2019.
[41] K.K. Kuok, S. Harun and C.P. Chan, “Hourly runoff forecast at

different leadtime for a small watershed using Artificial neural

networks,” Int. J. Advance. Soft Computing Appl, vol. 3, no. 1, pp. 68-
86, 2011.

[42] Meteoblue. Canton of Basel-City. Switzerland. “Weather history

download Basel.” [Online]. Available:
https://www.meteoblue.com/en/weather/archive/export/basel_switzer

land_2661604, Accessed on: August 1, 2020.

[43] P.C. Chiu, A. Selamat, O. Krejcar, “Infilling missing rainfall and
runoff data for Sarawak, Malaysia using Gaussian mixture model

based K-nearest neighbor imputation,” In International Conference on
Industrial, Engineering and Other Applications of Applied Intelligent

Systems, Springer, Cham, Jul 9, 2019, pp. 27-38.

[44] P. Zhu, Q. Xu, Q. Hu, C. Zhang and H. Zhao, “Multi-label feature
selection with missing labels,” Pattern Recognition, vol. 74, pp. 488-

502, 2018.

[45] R.J. Little and D.B. Rubin, “Statistical analysis with missing data,”
John Wiley & Sons; Aug 25, 2014.

[46] P.C. Chiu, A. Selamat, O. Krejcar and K.K. Kuok, “Missing rainfall

data estimation using Artificial neural network and nearest neighbor
imputation,” In Advancing Technology Industrialization Through

Intelligent Software Methodologies, Tools and Techniques:

Proceedings of the 18th International Conference on New Trends in

Intelligent Software Methodologies, Tools and Techniques

(SoMeT_19), IOS Press, vol. 318, September 2019, pp. 132-143.

[47] M.K. Gill, T.Asefa, Y. Kaheil and M. McKee, “Effect of missing data
on performance of learning algorithms for hydrologic predictions:

Implications to an imputation technique,” Water resources research,

vol. 43, no. 7, 2007.
[48] T. Kim, W. Ko and J. Kim, “Analysis and Impact Evaluation of

Missing Data Imputation in Day-ahead PV Generation Forecasting,”

Applied Sciences, vol. 9, no. 1, 204, 2019.
[49] P.C. Chiu, A. Selamat, O. Krejcar and K.K. Kuok, “Imputation of

rainfall data using improved neural network algorithm,” In Lecture

Notes in Computer Science: Proceedings of ICPR, International
Conference on Pattern Recognition (ICPR International Workshops

and Challenges), virtual/Del Bimbo A. et al.(eds) vol. 12664, January,

2021, pp. 390-406.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111033, IEEE Access

VOLUME XX, 2017 1

PO CHAN CHIU is currently pursuing a Ph.D

degree in Computer Science from Universiti

Teknologi Malaysia (UTM). She received an

M.Sc. in information technology from the
Universiti Malaysia Sarawak (UNIMAS), in

2010. She started her career as a Software

Engineer for three years. She worked on several
consultancy projects and developed software

solutions to meet the needs of the woodworking

industry. Currently, she is serving as a lecturer
at UNIMAS. Her research interests include

artificial intelligence, data analytics, optimization, and neural networks.

ALI SELAMAT is currently a Full Professor

with Universiti Teknologi Malaysia (UTM),

Malaysia. He has also been the Dean of the

Malaysia Japan International Institute of

Technology (MJIIT), UTM, since 2018. An
academic institution established under the

cooperation of the Japanese International

Cooperation Agency (JICA) and the Ministry of
Education Malaysia (MOE) to provide the

Japanese style of education in Malaysia. He is

also a Professor with the Software Engineering
Department, School of Computing, UTM. He has published more than 60

IF research papers. His h-index is 32, and his number of citations in WoS is

over 800. His research interests include software engineering, software
process improvement, software agents, web engineering, information

retrievals, pattern recognition, genetic algorithms, neural networks, soft

computing, computational collective intelligence, strategic management,
key performance indicator, and knowledge management. He has also been

the Chair of the IEEE Computer Society Malaysia Section since 2018. He

is on the Editorial Board of the Journal Knowledge-Based Systems
(Elsevier).

ONDREJ KREJCAR is currently a Full

Professor of systems engineering and

informatics with the University of Hradec
Kralove, Czech Republic. He is also the Vice-

Dean for science and research at the Faculty of

Informatics and Management, UHK. He is also
the Director of the Center for Basic and

Applied Research, University of Hradec

Kralove. At the University of Hradec Kralove,
he is a Guarantee of the Doctoral Study

Programme in Applied Informatics, where he

is focusing on lecturing on smart approaches to the development of
information systems and applications in ubiquitous computing

environments. His h-index is 28, with more than 850 citations received in

the Web of Science. He has published more than 40 IF research papers. He

has a number of collaborations throughout the world (e.g., Malaysia, Spain,

U.K., Ireland, Ethiopia, Latvia, and Brazil). His research interests include
control systems, smart sensors, ubiquitous computing, manufacturing,

wireless technology, portable devices, biomedicine, image segmentation

and recognition, biometrics, technical cybernetics, and ubiquitous
computing. His second area of interest is in biomedicine (image analysis),

as well as biotelemetric system architecture (portable device architecture

and wireless biosensors), and the development of applications for mobile
devices with use of remote or embedded biomedical sensors.

 Dr. Krejcar has also been a Management Committee Member substitute

of the project COST CA16226, since 2017. In 2018, he was the 14th Top-
Peer Reviewer in Multidisciplinary in the world according to Publons. He is

on the Editorial Board of Sensors (MDPI) with JCR Index and several other

ESCI indexed journals. He has been the Vice-Leader and a Management
Committee Member at WG4 of the project COST CA17136, since 2018.

Since 2019, he has been the Chairman of the Program Committee of the

KAPPA Program, Technological Agency of the Czech Republic, as a

Regulator of the EEA/Norwegian Financial Mechanism in the Czech

Republic (2019–2024). Since 2014, he has been the Deputy Chairman of the
Panel 7 (Processing Industry, Robotics and Electrical Engineering) of the

Epsilon Program, Technological Agency of the Czech Republic.

KING KUOK KUOK is a senior lecturer at
Swinburne University of Technology Sarawak

Campus. He received his MEng from the

UNIMAS in 2004 and Ph.D. from the UTM in
2010. He was the Field Engineer for Hydrological

and Water Resources Branch, Department of

Irrigation and Drainage, State of Sarawak,
Malaysia from 2002 to 2009 and the Road, Civil

and Structural Design Engineer at private

companies for more than ten years. His research

interests include water resources, water supply,

hydrology, artificial intelligence, and building information modeling.

