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ABSTRACT The fitness-dependent optimizer (FDO), a newly proposed swarm intelligent algorithm, is 

focused on the reproductive mechanism of bee swarming and collective decision-making. To optimize the 

performance, FDO calculates velocity (pace) differently. FDO calculates weight using the fitness function 

values to update the search agent position during the exploration and exploitation phases. However, the FDO 

encounters slow convergence and unbalanced exploitation and exploration. Hence, this study proposes a 

novel hybrid of the sine cosine algorithm and fitness-dependent optimizer (SC-FDO) for updating the velocity 

(pace) using the sine cosine scheme. This proposed algorithm, SC-FDO, has been tested over 19 classical and 

10 IEEE Congress of Evolutionary Computation (CEC-C06 2019) benchmark test functions. The findings 

revealed that SC-FDO achieved better performances in most cases than the original FDO and well-known 

optimization algorithms. The proposed SC-FDO improved the original FDO by achieving a better exploit-

explore tradeoff with a faster convergence speed. Additionally, the SC-FDO was applied to the missing data 

estimation cases and refined the missingness as optimization problems. This is the first time, to our 

knowledge, that nature-inspired algorithms have been considered for handling time series datasets with low 

and high missingness problems (10%-90%). The impacts of missing data on the predictive ability of the 

proposed SC-FDO were evaluated using a large weather dataset from the year 1985 until 2020. The results 

revealed that the imputation sensitivity depends on the percentages of missingness and the imputation models. 

The findings demonstrated that the SC-FDO based multilayer perceptron (MLP) trainer outperformed the 

other three optimizer trainers with the highest average accuracy of 90% when treating the high-low 

missingness in the dataset.  

INDEX TERMS Fitness dependent optimizer, high missing rates, imputation, meta-heuristic algorithms, 

missing data, optimization, sine cosine algorithm. 

I.  INTRODUCTION 

Nature-inspired algorithms, also known as meta-heuristic 

algorithms, have received a great deal of attention from 

technology, engineering, management, and different areas of 

study to solve problems with optimization. Nature-inspired 

algorithms include particle swarm optimization (PSO) [1], 

differential evaluation (DE) [2] and genetic algorithm (GA) 

[3]. Some of the recent nature-inspired algorithms are sine 

cosine algorithm (SCA) [4][5], fitness dependent optimizer 

(FDO) [6], wingsuit flying search (WFS) [7], whale 

optimization algorithm (WOA) [8][9], butterfly optimization 

algorithm (BOA) [10][11], dragonfly algorithm (DA) 

[12][13], grey wolf optimizer (GWO) [14], moth-flame 

optimization algorithm (MFO) [15]-[18], root-based 
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optimization algorithm [19], coot algorithm [20] and colony 

predation algorithm [21].  

This paper focuses on the fitness-dependent optimizer 

(FDO) proposed by Abdullah and Rashid [6]. The FDO is 

inspired by the reproductive mechanism of bee swarming 

and collective decision-making. The FDO has been 

evaluated with well-known benchmark test functions and 

achieved good performance than other nature-inspired 

algorithms, namely DA, PSO, GA and WOA. The FDO has 

been effectively optimized the controller of a multi-source 

interconnected power system [22][23]. Meanwhile, an 

adaptive FDO (AFDO) algorithm based on the first fit (FF) 

heuristic approach is proposed to handle the problem of one-

dimensional bin packing [24]. The AFDO has effectively 

explored the search space with the lowest fitness values 

within an acceptable time for the discrete optimization 

problems. 

Furthermore, Muhammed [25] developed an improved 

fitness-dependent optimizer (IFDO) algorithm based on 

alignment and cohesion strategy to update the scout bees’ 

location. The introduction of a random weight factor (𝑤𝑓), 

alignment and cohesion features in the IFDO improved the 

convergence speed of the FDO, but the enhancement features 

increased the algorithm's space complexity and led to slower 

exploitations in some cases. Additionally, Daraz et al. [26] 

has successfully adopted the IFDO to optimize the automatic 

generation controller of a multi-source interconnected power 

system in the restructured environment. Next, Mohammed 

[27] embedded chaos theory into the original FDO. The 

chaotic fitness-dependent optimizer (CFDO) has 

successfully improved the search capability and prevented 

the algorithm from falling into local optima; however, it is 

not always accurate in some cases when the problem is 

highly complex. The comparison of the FDO and its 

variations is discussed in Table I.  

Recently, many researchers have proposed several 

improved fitness-dependent optimizers from different 

perspectives to improve the original FDO.  According to the 

No Free Lunch (NFL) theorem [28], a single optimization 

approach is impossible to manage all optimization problems 

adequately. Although the FDO and FDO variants 

outperformed several optimization algorithms, in some 

cases, they encounter slow convergence, poor exploitation 

and exploration, and memory wastage as a result of 

inefficient memory allocation. 

 
TABLE I 

THE COMPARISON OF THE FDO AND ITS VARIATIONS 
Variants of FDO Author Real-world applications Strengths Limitation 

Fitness 
dependent 

optimizer (FDO) 

Abdullah 
and Rashid 

(2019) [6] 

❖ Aperiodic antenna 
array designs [6] 

❖ Multi-source 

interconnected power 
system [22][23] 

❖ Uses fitness function to 
generate suitable fitness 

weights for guiding the 

search agents during 
exploitation and exploration 

phases. 

❖ Good at exploration. 
 

❖ Poor exploitation. 
❖ Imbalance of exploration 

and exploitation ability. 

❖ Slow convergence. 

Adaptive fitness 

dependent 
optimizer 

(AFDO) 

Abdul-

Minaam et 
al. (2020) 

[24] 

❖ One-dimensional bin 

packing [24] 
 

❖ Adapted first-fit heuristic. 

❖ Effectively explored the 
search space with the 

lowest fitness values within 

an acceptable time. 
❖ To solve discrete 

optimization problems. 

 

❖ Inefficient memory 

allocation leads to memory 
wastage. 

❖ Not able to solve continuous 

optimization problems. 
 

Improved fitness 

dependent 

optimizer 
(IFDO) 

Muhammed 

et al. (2020) 

[25] 

❖ Aperiodic antenna 

array designs [25] 

❖ Pedestrian evacuation 
model [25] 

❖ Multi-source 

interconnected power 
system in the 

restructured 
environment [26] 

 

❖ Uses alignment and 

cohesion to update the 

scout bees’ location. 

❖ Perform weight factor (𝑤𝑓) 

randomization. 

 

❖ Increase space complexity 

of the algorithm. 

❖ Take longer execution time. 
❖ Poor exploitation. 

Chaotic fitness 
dependent 

optimizer 

(CFDO) 

Mohammed 
and Rashid 

(2021) [27] 

❖ Pressure vessel design 
[27] 

❖ Task assignment 

problem [27] 

❖ Embedded chaotic maps. 
❖ Local optima avoidance due 

to the dynamic and 

superlative way of 
generating random 

numbers. 

❖ Enhanced the search 
capability of the original 

FDO. 

❖ In some instances, it is 
highly complex and not 

consistently accurate. 
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In addition, the FDO lacked exploitability and suffered 

from slow convergence. Nevertheless, the most significant 

advantages of the FDO are its power of exploration and 

simplicity. The FDO's exploration and exploitation are 

mainly influenced by the fitness weight mechanism that 

guides scout bee decision-making. The fitness weight 

mechanism increased the diversity of solutions and 

strengthened the exploration ability of the FDO. For simple 

optimization problems, the fitness weight mechanism 

increased the exploration level of the FDO and escaped the 

search from local optima. However, the convergence speed 

of the FDO would increase and it is easily trapped into local 

optima if the optimization problems are complex. Therefore, 

the motivation of this work was to propose a balanced and 

straightforward way of gaining a better exploit-explore 

tradeoff algorithm with a faster convergence speed. 

Based on the shortcomings of the FDO and its variants, we 

introduce an enhanced version of the FDO and hybrid it with 

SCA, a recent efficient population-based optimization 

algorithm. The enhancement of FDO is called a sine cosine 

fitness-dependent optimizer (SC-FDO). The key benefit of 

SCA is its high exploitation potential in the search solution 

[4]. Hence, the exploitation ability of the FDO is enhanced 

by incorporating SCA features to refine the best neighboring 

search and the FDO to explore the entire search space for 

promising solutions.  

Additionally, in the related literature, a comprehensive 

position-updating strategy is commonly valuable to boost the 

efficiency of the swarm intelligent algorithms in the search 

space [29]-[34]. Inspired by this, a modified pace-updating 

equation is introduced to substitute the pace equation in the 

FDO. Another improvement is the proposed SC-FDO 

employs a global fitness weight (𝑓𝑤∗) that is best in earlier 

iterations to tune the random weight factors (𝑤𝑓) adaptively 

during the search process. Moreover, a conversion parameter 

is suggested for balancing the exploration and exploitation of 

the search spaces. The proposed SC-FDO also uses the best 

solution-updating strategy for reducing the computational 

time of the original FDO. The proposed SC-FDO is tested 

over well-known benchmark test functions and evaluated 

with existing nature-inspired optimization algorithms to 

verify the algorithm's efficiency. The numerical results and 

statistical analysis indicated that the proposed SC-FDO 

obtained the global best solution with higher accuracy than 

the compared optimization algorithms. Furthermore, the 

proposed SC-FDO has been extended to handle the problems 

of high missing values in datasets. The results revealed that 

the proposed SC-FDO achieved higher imputation accuracy 

and lowered computational time compared to the FDO and 

IFDO imputation. 

The contributions of this paper are:  

1. A modified pace-updating equation, random weight 

factor (𝑤𝑓)and global fitness weight (𝑓𝑤∗)  strategy, 

conversion parameter strategy and the best solution-

updating strategy are introduced to boost the 

performances of the original FDO. 

2. The numerical experiments and statistical analysis have 

shown the superior capability of the proposed SC-FDO 

on the benchmark test function, compared with well-

known nature-inspired algorithms. 

3. The missing data estimation experiments demonstrated 

that the SC-FDO based multilayer perceptron (MLP) 

trainer is capable of imputing missing data for a low and 

large proportion of missingness with higher prediction 

accuracy while consuming lower computational time 

compared to the original FDO and IFDO. 

The remainder of this paper is described as follows: 

Section II reviews the fundamentals of the FDO. The 

proposed SC-FDO is presented in Section III. Section IV 

discusses the numerical experiments and analysis of the SC-

FDO on the benchmark test function. Section V provides the 

missing data imputation technique based on SC-FDO in 

solving high missing rates datasets. Section VI concludes the 

findings of this study, and Section VII describes the 

limitation and future works. 

 

II.  FITNESS DEPENDENT OPTIMIZER 

The FDO is a newly designed swarm intelligent algorithm 

presented by Abdullah and Rashid [6], which was inspired 

by bee swarming characteristics during reproduction. The 

FDO is a PSO-based algorithm that imitates the position 

updating mechanism of the PSO. However, the FDO 

calculates velocity (pace) in a different strategy. It employs 

a fitness function to produce appropriate weights, and these 

weights will facilitate the search agents to balance 

exploration and exploitation. 

In nature, bees live in groups (colonies) called hives, 

containing queen bee, worker bee, and scout bee. The queen 

bee is a decision-maker to keep the hive under control and 

lays all the eggs to maintain the hive population. The worker 

bees are responsible for all the works in the hive except 

reproducing. Meanwhile, the scout bees are responsible for 

finding a new home for future swarms. When a bee colony 

grows massively, the available space becomes smaller. Thus, 

the colony tries to solve the space problem by swarming, in 

which one colony becomes two colonies. The scout bees will 

find a nearby location for the swarm during swarming, 

approximately a few meters from the hive. The bees will 

leave the hive and temporarily cluster around their queen in 

the new place for one to few days. Then, the scout bees will 

travel in a small group, about 20 to 50 bees, to search for new 

hives. After finding the new hives, the scout bees 

communicate by moving their legs and wings to determine 

the most suitable hive. When the decision is taken, the rest 

of the bees fly off and move to the hive, where it begins its 

new colony life.  

Inspired by the bee collective decision-making process, 

the FDO uses fitness weight (𝑓𝑤) to guide the search agents 

in identifying the best solution. Each hive represents a 
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possible solution exploited by a search agent (artificial scout 

bee), and the best hive is defined as the global optimum 

solution. The hive specifications include volume, location, 

and size, represent the fitness function of the solution.  

The FDO algorithm starts by assigning the scout bees 

population with random solutions, using the upper and lower 

boundaries. The scout bees search for hives using a 

combination of a random walk and fitness weight 

mechanism. The scout bees change their position by adding 

pace to the current position. The movement of the scout bees 

is calculated as: 

                           𝑥𝑖,𝑡+1 =  𝑥𝑖,𝑡 + 𝑝𝑎𝑐𝑒                                 (1) 

where 𝑖 is the current search scout bee (search agent), 𝑡 is 

the current iteration, 𝑥  is the scout bee, and 𝑝𝑎𝑐𝑒  is the 

movement rate and direction of the scout bee. The 𝑝𝑎𝑐𝑒 is 

dependent on the value of fitness weight 𝑓𝑤 . The 𝑓𝑤  is 

calculated according to (2). 

                         𝑓𝑤 =  ⌊
𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

∗

𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠
⌋ − 𝑤𝑓                             (2) 

where 𝑤𝑓 is the weight factor (either 0 or 1), 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠
∗  is 

the fitness function of the global best solution and 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠  

is the fitness function of the current solution. Further, the 

conditions for 𝑓𝑤 are expressed as below: 

     𝑓𝑤 = 1 𝑜𝑟 𝑓𝑤 = 0 𝑜𝑟 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 0, 𝑝𝑎𝑐𝑒 =  𝑥𝑖,𝑡 ∗ 𝑟        (3) 

   𝑓𝑤 > 0 𝑎𝑛𝑑 𝑓𝑤 < 1 

            {
𝑟 < 0, 𝑝𝑎𝑐𝑒 =  (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡

∗ ) ∗ 𝑓𝑤 ∗ −1                           (4)

𝑟 ≥ 0, 𝑝𝑎𝑐𝑒 =  (𝑥𝑖,𝑡 − 𝑥𝑖,𝑡
∗ ) ∗ 𝑓𝑤                                     (5)

                       

    where 𝑟 ∊ [-1, 1] is Levy random number, the Levy flight 

from [35] has been employed due to its good distribution 

curve. The pseudocode of FDO is presented in Fig. 1 [6]. 

 

III. THE HYBRID SINE COSINE FITNESS DEPENDENT 

OPTIMIZER (SC-FDO) 

In this section, the proposed hybrid sine cosine fitness-

dependent optimizer (SC-FDO) is presented. The sine cosine 

algorithm is partially embedded into the FDO algorithm to 

improve the performance of the original FDO in terms of 

convergence speed, searching accuracy and balance of 

exploitation and exploration ability in the search space. The 

framework of the proposed SC-FDO is illustrated in Fig. 2. 

In this approach, four modifications are applied: (1) the 

modified pace-updating equation in search phase, (2) 

random weight factor (𝑤𝑓) and global fitness weight (𝑓𝑤∗) 

strategy, (3) the conversion parameter strategy, and (4) the 

best solution-updating strategy. 

A. MODIFIED PACE-UPDATING EQUATION 

The use of the fitness weight (𝑓𝑤) mechanism in the FDO 

inevitably leads to slow convergence. Due to the strong 

exploration ability of the FDO, the pace-updating strategy in 

(3)-(5) may increase the diversity of solutions that cause 

difficulty in finding the global optimum solution. Thus, the 

concept of modified pace-updating is introduced in this 

section to improve the convergence speed and balance of 

exploitation and exploration ability of the original FDO.  
Initialize scout bee population, 𝑥𝑖,𝑡 (i = 1,2,3,…,n) 

While iteration (t) limit not reached 

 For each artificial scout bee, 𝑥𝑖,𝑡 

        Find best artificial scout bee, 𝑥𝑖,𝑡
∗  

        Generate random walk r in [-1,1] range 

        If (𝑥𝑖,𝑡 fitness = 0) (avoid divide by zero) 

                  fitness weight = 0 

        Else  
                  calculate fitness weight, equation (2) 

        End if 

        If (fitness weight = 1 or fitness weight = 0) 
       calculate pace using equation (3) 

        Else 

                   If (random number >=0) 
                             calculate pace using equation (5) 

                   Else 

                              calculate pace using equation (4) 
                   End if 

        End if 

        Calculate 𝑥𝑖,𝑡+1 using equation (1) 

        If (𝑥𝑖,𝑡+1 fitness < 𝑥𝑖,𝑡 fitness) 

       move accepted and pace saved 

        Else 

       calculate 𝑥𝑖,𝑡+1 using equation (1) with previous pace 

                   If (𝑥𝑖,𝑡+1 fitness < 𝑥𝑖,𝑡 fitness) 

                  move accepted and pace saved 

                   Else 

                              maintain current position (don’t move) 
                   End if 

        End if 

  End for  
End while 

FIGURE 1.  The pseudocode of FDO [6] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2.  The framework of the proposed SC-FDO 
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In [4], the work shows that the sine cosine algorithm 

(SCA) has high exploitation of the search space. SCA is a 

population-based algorithm introduced by Mirjalili [4]. We 

introduce a sine cosine scheme into the pace-updating 

mechanism of the original FDO. First, the modified pace-

updating mechanism starts the search process to explore 

different promising solutions and foster the search to exploit 

the prominent regions. In addition, the modified pace-

updating mechanism guides the search agents to achieve 

exploration and exploitation balancing. The modified pace-

updating equation is calculated based on the following 

equations: 

 𝑓𝑤 = 1, 𝑝𝑎𝑐𝑒 =  𝑥𝑖,𝑡 ∗ 𝑟                                                            (6)       

 𝑓𝑤 = 0, 𝑝𝑎𝑐𝑒 =  𝑥𝑖,𝑡 + 𝑟1 ∗ 𝑐𝑜𝑠(𝑟2) ∗ (𝑟3 ∗ 𝑥𝑖,𝑡
∗ − 𝑥𝑖,𝑡) ∗ 𝑟     (7) 

 𝑓𝑤 > 0 𝑎𝑛𝑑 𝑓𝑤 < 1 

    𝑟 < 0, 

       𝑝𝑎𝑐𝑒 = (𝑥𝑖,𝑡 + 𝑟1 ∗ 𝑠𝑖𝑛(𝑟2) ∗ (𝑟3 ∗ 𝑥𝑖,𝑡
∗ −  𝑥𝑖,𝑡) ∗ 𝑓𝑤) ∗ −1 (8) 

    𝑟 ≥ 0, 𝑝𝑎𝑐𝑒 = 𝑥𝑖,𝑡 + 𝑟1 ∗ 𝑠𝑖𝑛(𝑟2) ∗ (𝑟3 ∗ 𝑥𝑖,𝑡
∗ − 𝑥𝑖,𝑡) ∗ 𝑓𝑤      (9) 

where 𝑟 is Levy random number, 𝑟1, 𝑟2 and 𝑟3 are random 

variables , 𝑥𝑖,𝑡
∗  is the global best solution that has been 

discovered (up until now), 𝑥𝑖,𝑡 is the current solution, and 

𝑓𝑤 ∊ [0, 1]  is the fitness weight of the scout bees.  

If the current solution and the global best solution have the 

same fitness value, the pace is calculated as expressed in (6). 

In (7)-(9), 𝑟1 ∗ 𝑐𝑜𝑠(𝑟2) or 𝑟1 ∗ 𝑠𝑖𝑛(𝑟2) guides the scout bees 

toward exploration or exploitation. If the value of 𝑐𝑜𝑠(𝑟2) or 

𝑠𝑖𝑛(𝑟2)  is greater than 1 or less than -1; the scout bees 

explore the diversity of solutions. However, if the value of  

𝑟1 ∗ 𝑐𝑜𝑠(𝑟2) or 𝑟1 ∗ 𝑠𝑖𝑛(𝑟2) is in the [-1, 1] range, the scout 

bees exploit the search solution.   

In terms of mathematical complexity, the proposed SC-

FDO has the same time complexity as the original FDO. For 

each iteration, the time complexity of the SC-FDO is 

𝑂(𝑝 ∗ 𝑑𝑖𝑚 + 𝑝 ∗ 𝐶𝑂𝐹), where 𝑑𝑖𝑚  is the optimization 

problem’s dimension, 𝑝 is the population size, and 𝐶𝑂𝐹 is 
the cost of the objective function. For all iterations, the space 

complexity of SC-FDO is 𝑂(𝑝 ∗ 𝐶𝑂𝐹 + 𝑝 ∗
𝑝𝑎𝑐𝑒 (𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑠𝑖𝑛𝑒 𝑐𝑜𝑠𝑖𝑛𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠)).  Meanwhile, the 

original FDO’s space complexity is 𝑂(𝑝 ∗ 𝐶𝑂𝐹 + 𝑝 ∗ 𝑝𝑎𝑐𝑒) 

for all iterations. Another FDO’s variant, the IFDO’s space 

complexity is 𝑂(𝑝 ∗ 𝐶𝑂𝐹 + 𝑝 ∗ 𝑝𝑎𝑐𝑒 + (𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ∗ 1/
𝑐𝑜ℎ𝑒𝑛𝑠𝑖𝑜𝑛)). Thus, the space complexity of the SC-FDO is 

slightly increased compared to FDO but lower than the 

IFDO’s space complexity.  

B. RANDOM WEIGHT FACTOR AND GLOBAL FITNESS 

WEIGHT STRATEGY 

To further improve the search performance of the proposed 

SC-FDO, a random weight factor (𝑤𝑓) and global fitness 

weight parameter (𝑓𝑤∗)  are embedded into the searching 

process. The proposed SC-FDO also incorporates an 

improved fitness weight (𝑓𝑤) calculation to increase the 

convergence and quality of the solutions. The calculation of 

the improved fitness weight (𝑓𝑤) follows this formula [25].  

                         𝑓𝑤 =  ⌊
𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

∗

𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠
⌋                                         (10) 

where 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠
∗  is the fitness function of the global best 

solution and 𝑥𝑖,𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠  is the fitness function of the current 

solution. The 𝑓𝑤  value is calculated according to the 

following equations:                

    𝑓𝑤𝑡 >  𝑤𝑓𝑡  , 𝑛𝑓𝑤𝑡 = 𝑓𝑤𝑡 − 𝑤𝑓𝑡                                                 (11) 
 

   𝑓𝑤𝑡 ≤ 𝑤𝑓𝑡 , 𝑛𝑓𝑤𝑡 =  𝑓𝑤𝑡                                                                (12) 

where 𝑓𝑤 𝑡 is the current fitness weight, 𝑛𝑓𝑤𝑡   is the new 

fitness weight at the 𝑡𝑡ℎ  iteration and 𝑤𝑓𝑡   is the current 

weight factor in the [0, 1 ] range. The work of [6] 

recommended that the values of weight factor parameter, 

𝑤𝑓 in (2) be fine-tuned manually for each optimization 

problem. If 𝑤𝑓  is equal to 1, it represents a high level of 

convergence and a low chance of converge. If 𝑤𝑓 is equal to 

0, the search is more stable, and it is not affecting the value 

of fitness weight (𝑓𝑤). However, this may cause bias with 

respect to unknown optimization problems.  

Therefore, the proposed SC-FDO introduces a random 

weight factor ( 𝑤𝑓)  that permits the 𝑤𝑓  value to be 

uniformly distributed across the scout bee population. To 

further optimize the random weight factor (𝑤𝑓), this study 

proposes a global fitness weight parameter (𝑓𝑤∗). The 𝑓𝑤∗ 

represents the value of fitness weight for the global best 

solution obtained so far by any search agents over all the 

iterations. The 𝑓𝑤∗ is used to fine-tuning the random weight 

factors ( 𝑤𝑓 ) adaptively during the search process. For 

example, if the current fitness weight is greater than the 

global fitness weight, then a new weight factor is generated. 

The mathematical calculation is according to the following 

(13). 

          𝑓𝑤∗ < 𝑓𝑤𝑡 , 𝑤𝑓𝑡 =  𝑤𝑓𝑡−1 ∗ 𝑟0                                        (13) 

where 𝑓𝑤∗ is the global fitness weight of the global best 

solution, 𝑤𝑓𝑡  is the current weight factor in the [0, 𝑤𝑓𝑡−1] 

range, 𝑡  is the iteration and 𝑟0  ∊  [0, 1]  is the uniformly 

distributed random number. It implies that each iteration has 

a different weight factor parameter in the [0, 1] range. The 

values of random 𝑤𝑓  decreased from 𝑤𝑓  to 0 throughout 

iterations to obtain a stable search.  

C. CONVERSION PARAMETER STRATEGY 

In the modified pace-updating equation, parameter 𝑟1, 𝑟2 and 

𝑟3 are used to convert search from exploration to exploitation 

at the promising areas. The parameter 𝑟1, as expressed in (14) 

determines the region of the next solution. A large 𝑟1 value 

encourages global exploration, meanwhile a smaller 𝑟1 value 

encourages local exploitation towards the destination. To 

achieve a balanced exploration and exploitation, 𝑟1  is 

linearly decreased from 𝑎 to 0 and expressed as follow: 

                       𝑟1(𝑡) = 𝑎 ∗  (1 −  
𝑡

𝑡𝑚𝑎𝑥
)                                  (14) 
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FIGURE 3. Sine and cosine in [-2, 2] range 
 

where 𝑡  is the current iteration, 𝑡𝑚𝑎𝑥  is the maximum 

iteration and 𝑎 is a constant. In this study, the constant 𝑎 has 

the same value as the several previous studies [4][16][32]-

[34], in which 𝑎 is equal to 2.   

Furthermore, the parameter 𝑟2 ∊ [0, 2π] in (7)-(9) defines 

the direction of the movement, either towards or outwards 

the destination and 𝑟3 ∊ [0, 2] is the random weight of the 

global best solution ( 𝑥𝑖,𝑡
∗ )  with the uniform probability 

distribution, either stochastically emphasize ( 𝑟3  > 1) or 

deemphasize ( 𝑟3  < 1) the impact of distance on the 

movement. In addition, the movement of the scout bees is 

defined as follow: 

             𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑏𝑒𝑒 𝑠𝑐𝑜𝑢𝑡 = 𝑟3 ∗ 𝑥𝑖,𝑡
∗ − 𝑥𝑖,𝑡             (15)  

The impacts of sine, cosine and the parameters in (7)-(9) 

are presented in Fig. 3. If the value of 𝑟1 is greater than 1, the 

solutions allow the search agents to explore the outside 

spaces between their corresponding destinations. 

Meanwhile, the sine and cosine functions enable a solution 

to be repositioned relative to another solution by exploiting 

the neighboring space if the value of 𝑟1 is less than 1. Hence, 

the conversion parameter strategy is employed to enhance 

the scout bees’ exploration and exploitation balancing.   

D. BEST SOLUTION-UPDATING STRATEGY 

Another improvement is the best solution-updating strategy 

used in the proposed SC-FDO. The existing FDO finds the 

best solution at the beginning of each iteration, consuming 

more computational time when searching for the global best 

solution. In contrast, the SC-FDO improves FDO by 

periodically updating the position around the global best 

solution (up until now) to obtain the best search region 

during exploration while exploiting and updating the global 

best solutions found by each iteration. Consequently, the 

search moves towards the global best solution over all 

previous iterations. 

For example, if the current search agent position is 

superior to the previous position, the search agent will be 

updated with the current position as the global best solution. 

Hence, the SC-FDO takes less time to achieve better results 

than the original FDO and finally reduces the execution time 

of the proposed SC-FDO.  

In conclusion, we introduce the modified pace-updating 

equation, the random weight factor (𝑤𝑓) and global fitness 

weight parameter (𝑓𝑤∗), the conversion parameter strategy, 

and the best solution-updating strategy in the proposed SC-

FDO algorithm. By integrating the strength of SCA to 

exploit the refine search area for the best solutions, the 

efficiency of the SC-FDO is improved. The pseudocode of 

SC-FDO is presented in Fig. 4, while the flowchart of SC-

FDO is illustrated in Fig. 5. 

 
Initialize the parameters and hive positions for scout bee 

population, 𝑥𝑖,𝑡 (i = 1,2,3,…,n) 

Calculate the objective function value for each scout bee and 

update global best solution, 𝑥𝑖,𝑡
∗  

While (t <= tmax) 

 Calculate the parameter r1 using equation (14) 

 For each scout bee, 𝑥𝑖,𝑡 

            Update the best scout bee, 𝑥𝑖,𝑡
∗  

        Update the parameters r2 and r3 

        Calculate fitness weight, 𝑓𝑤𝑡 using equation (10)         

        Calculate random weight factor, 𝑤𝑓𝑡 using equation (13) 

        Update fitness weight, 𝑓𝑤𝑡 using equation (11)-(12) 

        Create random walk r using Levy flight 

             If (𝑥𝑖,𝑡 fitness = 0) (avoid divide by zero) 

                  fitness weight = 0 

             Else  

                   Calculate fitness weight using equation (2) 

             End if 

 If (fitness weight = 1) 

    Calculate pace using equation (6) 

 Else if (fitness weight = 0) 

    Calculate pace using equation (7) 

 Else 

If (random number >=0) 

                            Calculate pace using equation (9) 

Else 

                            Calculate pace using equation (8) 

End if 

         End if 

         Calculate 𝑥𝑖,𝑡+1 using equation (1) 

         If (𝑥𝑖,𝑡+1 fitness < 𝑥𝑖,𝑡 fitness) 

   Move accepted and pace saved 

         Else 

                   Update the parameters r3 

    Calculate pace using equation (15) 

                    If (𝑥𝑖,𝑡+1 fitness < 𝑥𝑖,𝑡 fitness) 

                            Move accepted and pace saved 

               Else 

          Remain current position  

                    End if 

               End if 

               Update the global best solution 

               Update the global fitness weight, 𝑓𝑤∗ 

   End for  

 End while 
FIGURE 4.  The pseudocode of the proposed sine cosine fitness 

dependent optimizer (SC-FDO)
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FIGURE 5.  The flowchart of the proposed SC-FDO. 

Yes 

No 

No 

Yes 

Yes 

No 

No 

Yes 

Start 

Evaluate the objective function of each scout bee and update global best solution, 𝑥𝑖,𝑡
∗  

Calculate value of conversion parameter 𝑟1 using Eq (14)  

Search for hives using random walk (Levy)  

Calculate pace based on fitness weight, 𝑓𝑤 mechanism  

𝑓𝑤 = 1  

Calculate 𝑝𝑎𝑐𝑒, Eq (6) 
𝑓𝑤 = 0 

Calculate 𝑝𝑎𝑐𝑒, Eq (7) 

Calculate 𝑝𝑎𝑐𝑒, Eq (8) Calculate 𝑝𝑎𝑐𝑒, Eq (9) 

if t <= 𝑡𝑚𝑎𝑥 

Update 𝑥𝑖,𝑡+1 =  𝑥𝑖,𝑡 + 𝑝𝑎𝑐𝑒 

if 𝑓𝑤 > 0 or 𝑓𝑤 <1 

Update 𝑥𝑖,𝑡+1, Eq (15) 

Initialize the parameters and the hive positions for artificial scout bee (solutions), 𝑥𝑖,𝑡 

Update parameter 𝑟2 and 𝑟3  

Update the best artificial scout bee,  𝑥𝑖,𝑡
∗  

End 

if 𝑥𝑖,𝑡+1 fitness 

< 𝑥𝑖,𝑡 fitness 

 

Maintain current position 

Calculate fitness weight, 𝑓𝑤 and random weight factor, 𝑤𝑓 using equation (10)-(13)         

Which 𝑓𝑤? 

if 𝑟 < 0 

if 𝑥𝑖,𝑡+1 fitness < 𝑥𝑖,𝑡 fitness 

Update best solution, 𝑥𝑖,𝑡
∗  and global fitness weight, 𝑓𝑤∗ 
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TABLE II 

BENCHMARK TEST FUNCTION [4][6]

Function Dim Range Shift position 𝒇𝒎𝒊𝒏 

𝐵𝐹1(𝑥) = ∑ 𝑥1
2

𝑛

𝑖=1

 

 

10 [-100, 100] [-30, -30, … -30] 0 

𝐵𝐹2 (𝑥) = ∑|𝑥𝑖| +  ∏|𝑥𝑖|

𝑛

𝑖=1

 

𝑛

𝑖=1

 

   

10 [-10,10] [-3, -3, … -3] 0 

𝐵𝐹3 (𝑥) = ∑ (∑ 𝑥𝑗

𝑖

𝑗−1

)

2
𝑁

𝑖=1

 10 [-100, 100] [-30, -30, … -30] 0 

 

𝐵𝐹4 = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} 

 

10 [-100, 100] 
[-30, -30, … -30] 

 
0 

𝐵𝐹5 = ∑[100(𝑥𝑖+1 − 𝑥1
2)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

 

 

30 [-30,30] [-15, -15, … -15] 0 

𝐵𝐹6 = ∑([𝑥𝑖 + 0.5])2

𝑛

𝑖=1

 

 

10 [-100, 100] [-750, … -750] 0 

𝐵𝐹7 = ∑ 𝑖𝑥1
4

𝑛

𝑖=1

+ 𝑟𝑎𝑛𝑑𝑜𝑚 [0,1] 

 

10 [-1.28,1.28] [-0.25, …-0.25] 0 

𝐵𝐹8 = ∑ −𝑥𝑖
2 𝑠𝑖𝑛 (√|𝑥𝑖|)

𝑛

𝑖=1

 

 

10 [-500, 500] [-300, … -300] -418.9829 

𝐵𝐹9 = ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1

 

 

10 [-5.12,5.12] [-2, -2, …-2] 0 

𝐵𝐹10 = −20 exp (−0.2√∑ 𝑥𝑖
2

𝑛

𝑖=1

) − exp (
1

𝑛
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑛

𝑖=1

) + 20 + 𝑒 

 

10 [-32, 32]  0 

𝐵𝐹11 =
1

4000
∑ 𝑥𝑖

2 − ∏ 𝑐𝑜𝑠

𝑛

𝑖=1

(
𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1

 

 

10 [-600, 600] [-400, … -400] 0 

𝐵𝐹12 =
𝜋

𝑛
 {10 𝑠𝑖𝑛(𝜋𝑦1) + ∑(𝑦𝑖 − 1)2 [1 + 10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)2

𝑛−1

𝑖=1

}

+ ∑ 𝑢(𝑥𝑖 , 10,100,4)

𝑛

𝑖=1

 

 

𝑦𝑖 = 1 + 
𝑥 + 1

4
 ,   𝑢(𝑥𝑖 , 𝑎, 𝑘, 𝑚) = {

𝑘(𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 > 𝑎
0 − 𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 < −𝑎
 

 

10 [-50,50] [-30, 30, … 30] 0 

𝐵𝐹13 = 0.1 {𝑠𝑖𝑛2(3𝜋𝑥1)

+ ∑(𝑥𝑖 − 1)2[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)]

𝑛

𝑖=1

+ (𝑥𝑛 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]} + ∑ 𝑢(𝑥𝑖 , 5,100,4)

𝑛

𝑖=1

 

 

10 [-50,50] [-100, … -100] 0 

𝐵𝐹14(𝐶𝐹1): 
𝑓1, 𝑓2, 𝑓3, . . . , 𝑓10 =  Sphere function  
𝛿1, 𝛿2, 𝛿3 … 𝛿10 = [1,1,1, … ,1] 

𝜆1, 𝜆2, 𝜆3 … 𝜆10 = [
5

100
,

5

100
,

5

100
, … ,

5

100
] 

 

10 

 

[-5, 5] 
 

 0 
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TABLE II (CONTINUED) BENCHMARK TEST FUNCTION[4][6] 

     
𝐵𝐹15(𝐶𝐹2): 
𝑓1, 𝑓2, 𝑓3 … 𝑓10 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  
𝛿1, 𝛿2, 𝛿3 … 𝛿10 = [1,1,1, … ,1]  

𝜆1, 𝜆2, 𝜆3 … 𝜆10 = [
5

100
,

5

100
,

5

100
, … ,

5

100
] 

 

10 
 

[-5, 5] 

 

 0 

𝐵𝐹16(𝐶𝐹3): 
𝑓1, 𝑓2, 𝑓3 … 𝑓10 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  
𝛿1, 𝛿2, 𝛿3 … 𝛿10 = [1,1,1, … ,1]  
𝜆1, 𝜆2, 𝜆3 … 𝜆10 = [1,1,1, … ,1]  
 

10 
 

[-5, 5] 

 

 0 

𝐵𝐹17(𝐶𝐹4): 
𝑓1, 𝑓2 = 𝐴𝑐𝑘𝑙𝑒𝑦’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  
𝑓3, 𝑓4 = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  
𝑓5, 𝑓6 = 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  
𝑓7, 𝑓8 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 𝑓9, 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝛿1, 𝛿2, 𝛿3 … 𝛿10 = [1,1,1, … ,1]  

𝜆1, 𝜆2, 𝜆3 … 𝜆10 = [
5

32
,

5

32
, 1,1,

5

0.5
,

5

0.5
,

5

100
,

5

100
,

5

100
,

5

100
] 

 

10 

 

[-5, 5] 

 

 0 

𝐵𝐹18(𝐶𝐹5): 
𝑓1, 𝑓2 = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑓3, 𝑓4 = 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛   
𝑓5, 𝑓6 =  𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑓7, 𝑓8 = 𝐴𝑐𝑘𝑙𝑒𝑦’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 𝑓9, 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝛿1, 𝛿2, 𝛿3 … 𝛿10 = [1,1,1, … ,1]  

𝜆1, 𝜆2, 𝜆3 … 𝜆10 = [
1

5
,
1

5
,

5

0.5
,

5

0.5
,

5

100
,

5

100
,

5

32
,

5

32
,

5

100
,

5

100
] 

 

10 

 

[-5, 5] 

 

 0 

𝐵𝐹19(𝐶𝐹6): 
𝑓1, 𝑓2 = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑓3, 𝑓4 = 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛   
𝑓5, 𝑓6 =  𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑓7, 𝑓8 = 𝐴𝑐𝑘𝑙𝑒𝑦’𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 𝑓9, 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝛿1, 𝛿2, 𝛿3 … 𝛿10 = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]  

𝜆1, 𝜆2, 𝜆3 … 𝜆10 = [0.1 ∗
1

5
, 0.2 ∗

1

5
, 0.3 ∗

5

0.5
, 0.4 ∗

5

0.5
, 0.5 ∗

5

100
, 0.6

∗
5

100
, 0.7 ∗

5

32
, 0.8 ∗

5

32
, 0.9 ∗

5

100
, 1 ∗

5

100
] 

 

10 

 

[-5, 5] 
 

 0 

 
TABLE III 

THE 100-DIGIT CHALLENGE: CEC-06 2019 BENCHMARK[6][35] 
Function Dim Range 𝒇𝒎𝒊𝒏 

𝐵𝐹20: 𝑆𝑡𝑜𝑟𝑛′𝑠 𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑓𝑖𝑡𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 

 
9 [-8192, 8192] 1 

𝐵𝐹21: 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 

 
16 [-16384, 16384] 1 

𝐵𝐹22: 𝐿𝑒𝑛𝑛𝑎𝑟𝑑 − 𝐽𝑜𝑛𝑒𝑠 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 

 
18 [-4,4] 1 

𝐵𝐹23: 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 
10 [-100, 100] 1 

𝐵𝐹24: 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑔𝑘′𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 
10 [-100, 100] 1 

𝐵𝐹25: 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 
10 [-100, 100] 1 

𝐵𝐹26: 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑐ℎ𝑤𝑒𝑓𝑒𝑙′𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 
10 [-100, 100] 1 

𝐵𝐹27: 𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑 𝑆𝑐ℎ𝑎𝑓𝑓𝑒𝑟′𝑠 𝐹6 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 
10 [-100, 100] 1 

𝐵𝐹28: 𝐻𝑎𝑝𝑝𝑦 𝐶𝑎𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 
10 [-100, 100] 1 

𝐵𝐹29: 𝐴𝑐𝑘𝑙𝑒𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 
10 [-100, 100] 1 
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IV. NUMERICAL EXPERIMENT AND RESULTS 

The proposed SC-FDO is implemented and evaluated over a 

group of 29 benchmark test functions, as listed in Table II 

[4][6] and Table III [6][36]. 

A. EVALUATION CRITERIA 

The following measures are applied to access the results of 

the benchmark test functions.  

1) STATISTICAL MEAN 

The statistical mean is the average values of the optimal 

solution that are obtained by executing the optimization 

algorithm for 𝑁  number of times, and it is computed 

according to (16).    

                                  𝑚𝑒𝑎𝑛 =  
1

𝑁
∑ 𝐴𝑖

𝑁
𝑖=1                                 (16) 

where 𝐴𝑖 is the optimal solution of the run time 𝑖.  

2) STATISTICAL STANDARD DEVIATION (STD) 

Statistical standard deviation (𝑠𝑡𝑑) measures the differences 

of each optimal solution from the mean, as defined in (17). 

It computes the stability and robustness of the optimization 

algorithm. 

                𝑠𝑡𝑑 =  √
1

𝑁−1
∑ (𝐴𝑖 − 𝑚𝑒𝑎𝑛)2𝑁

𝑖=1                       (17)  

3) STATISTICAL MEAN EXECUTION TIME 

Statistical mean execution time is the average computational 

time taken by the optimization algorithm executing each 

benchmark test function. 

4) WILCOXON RANK SUM TEST 

Wilcoxon rank-sum test is a non-parametric test for two 

independent groups [37], and it is used to assess whether the 

distributions of observations obtained between the proposed 

algorithm and benchmark algorithm are systematically 

different.   

B. BENCHMARK TEST FUNCTIONS 

The proposed SC-FDO was compared with six well-

known nature-inspired algorithms, namely FDO [6], IFDO 

[25], SCA [4], WOA [8], PSO [1], and BOA [10]. The test 

functions for the benchmark can be categorized into 

unimodal functions (BF1-BF7), multimodal functions (BF8–

BF13), and composite functions (BF14-BF19), listed in 

Table II. The remaining BF20-BF29 test functions from 

CEC-C06 2019 [6][36] are employed to evaluate the 

proposed SC-FDO further, as shown in Table III.  

For each benchmark test function, all the algorithms were 

tested with 30 runs. In the work of [4][6][25], a total of 30 

search agents and a maximum number of 500 iterations were 

used in the experiments. Thus, the population size was fixed 

to 30, and the maximum number of iterations was 500. The 

experiments were conducted in a test environment, equipped 

with a Windows 10 operating system, an Intel (R) Core (TM) 

i7 processor with 16 GB RAM, and a programming tool of 

MATLAB R2018a.  

The algorithm parameter settings are set the same as the 

original compared algorithms. For the parameter settings in 

the FDO [6], the 𝑤𝑓 parameter was equal to 0 for all the test 

functions except BF2 and BF6, in which 𝑤𝑓 was equal to 1. 

The other parameters settings are as the followings: SC-

FDO: a = 2, 𝑤𝑓  ∊ [0, 1] and IFDO 𝑤𝑓  ∊ [0, 1]. 

Each algorithm was evaluated by three indexes: average 

value, standard deviation, and execution time. Tables IV, V, 

and VI show the comparison results in average values, 

standard deviation, and execution time of each algorithm for 

all the test functions. 

 
 

TABLE IV 

THE AVERAGE VALUES OF THE PROPOSED SC-FDO AND OTHER ALGORITHMS FOR THE 29 BENCHMARK TEST FUNCTIONS. 

Function SC-FDO FDO IFDO SCA WOA PSO BOA 

BF1 0.00E+00 1.87E-34 4.60E-27 2.05E-12 1.06E-76 5.65E-10 1.01E-17 

BF2 0.00E+00 5.52E-04 1.33E-05 1.58E-09 1.79E-52 1.00E+00 9.58E-11 

BF3 0.00E+00 5.28E-14 7.98E-07 1.30E-01 1.18E+02 3.34E+02 7.67E-19 

BF4 0.00E+00 1.39E-12 9.05E-13 2.85E-03 2.87E+00 1.08E-02 6.48E-11 

BF5 2.69E+01 4.85E+01 6.37E+01 4.32E+04 2.80E+01 3.15E+04 2.89E+01 

BF6 2.02E-02 1.06E-06 1.33E-16 4.45E-01 1.04E-03 3.76E-10 1.15E+00 

BF7 4.49E-02 5.96E-01 5.41E-01 2.16E-03 2.44E-03 1.04E-02 1.85E-03 

BF8 -1.02E+04 -2.93E+03 -7.02E+03 -2.14E+03 -3.35E+03 -3.29E+03 -1.97E+03 

BF9 0.00E+00 2.45E+00 2.17E+00 1.35E+00 1.40E+00 9.90E+00 3.85E+01 

BF10 3.26E-15 2.20E-14 6.57E-15 8.80E-02 4.80E-15 6.64E-01 8.40E-11 

BF11 0.00E+00 7.81E-02 6.70E-02 7.05E-02 4.95E-02 1.04E-01 1.59E-02 

BF12 4.54E-02 1.04E-02 3.88E+00 1.07E-01 6.23E-03 4.35E-08 1.98E-01 

BF13 1.73E-01 3.67E-03 1.83E+00 3.24E-01 3.85E-02 2.28E-09 5.56E-01 

BF14 6.36E+01 7.00E+01 6.80E+01 1.32E+02 1.17E+02 1.76E+02 2.37E+02 

BF15 2.28E+02 1.41E+02 1.58E+02 1.24E+02 2.00E+02 2.24E+02 3.17E+02 

BF16 3.55E+02 2.00E+02 2.51E+02 3.91E+02 5.05E+02 3.09E+02 5.61E+02 
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TABLE IV (CONTINUED) THE AVERAGE VALUES OF THE PROPOSED SC-FDO AND OTHER ALGORITHMS FOR THE 29 BENCHMARK TEST 

FUNCTIONS. 

 

BF17 5.17E+02 4.13E+02 3.75E+02 4.53E+02 5.73E+02 5.42E+02 7.31E+02 

BF18 1.56E+02 1.01E+02 6.46E+01 1.33E+02 2.29E+02 2.08E+02 2.36E+02 

BF19 7.09E+02 8.05E+02 7.95E+02 5.67E+02 8.04E+02 8.24E+02 8.55E+02 

BF20 4.25E+04 6.69E+07 4.99E+08 6.41E+09 3.16E+10 3.22E+10 1.37E+05 

BF21 1.73E+01 1.73E+01 1.73E+01 1.75E+01 1.74E+01 1.73E+01 1.85E+01 

BF22 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 

BF23 1.59E+03 3.10E+01 2.83E+01 1.63E+03 3.69E+02 2.02E+03 5.81E+03 

BF24 1.69E+00 1.13E+00 1.10E+00 2.23E+00 1.99E+00 1.79E+00 2.87E+00 

BF25 8.27E+00 8.96E+00 8.89E+00 1.12E+01 9.82E+00 9.32E+00 1.14E+01 

BF26 5.93E+01 4.74E+01 3.94E+01 8.55E+02 6.46E+02 4.28E+02 1.18E+03 

BF27 4.50E+00 4.22E+00 4.17E+00 6.17E+00 5.87E+00 5.96E+00 6.58E+00 

BF28 4.85E+00 2.41E+00 2.48E+00 1.15E+02 5.25E+00 1.85E+02 8.98E+02 

BF29 1.81E+01 2.00E+01 1.82E+01 2.04E+01 2.03E+01 2.03E+01 2.05E+01 

Rank 1 3 2 5 4 6 7 

 

TABLE V 

THE AVERAGE STANDARD DEVIATION OF THE PROPOSED SC-FDO AND OTHER ALGORITHMS FOR THE 29 BENCHMARK TEST FUNCTIONS. 

Function SC-FDO FDO IFDO SCA WOA PSO BOA 

BF1 0.00E+00 6.94E-34 1.82E-26 5.87E-12 3.13E-76 1.93E-09 1.85E-17 

BF2 0.00E+00 7.32E-04 6.44E-05 2.72E-09 9.52E-52 3.16E+00 1.03E-10 

BF3 0.00E+00 1.41E-13 4.36E-06 5.60E-01 1.61E+02 1.29E+03 1.58E-18 

BF4 0.00E+00 3.95E-12 2.53E-12 1.05E-02 4.81E+00 1.26E-02 7.00E-11 

BF5 2.69E+01 5.77E+01 7.89E+01 1.03E+05 2.80E+01 5.15E+04 2.89E+01 

BF6 5.53E-02 1.59E-06 7.29E-16 4.75E-01 1.35E-03 5.97E-10 1.21E+00 

BF7 5.98E-02 6.85E-01 6.07E-01 2.72E-03 3.66E-03 1.14E-02 2.04E-03 

BF8 2.90E+04 2.97E+03 8.75E+03 2.15E+03 3.40E+03 3.30E+03 1.97E+03 

BF9 0.00E+00 2.97E+00 2.39E+00 5.29E+00 5.66E+00 1.29E+01 4.43E+01 

BF10 3.66E-15 7.99E-14 6.80E-15 4.82E-01 5.32E-15 3.64E+00 8.92E-11 

BF11 0.00E+00 9.14E-02 7.25E-02 1.56E-01 1.47E-01 1.22E-01 8.72E-02 

BF12 5.61E-02 5.68E-02 5.25E+00 1.16E-01 1.12E-02 2.32E-07 2.26E-01 

BF13 1.90E-01 1.82E-02 3.99E+00 3.34E-01 6.43E-02 1.04E-08 5.84E-01 

BF14 9.01E+01 1.05E+02 1.17E+02 1.35E+02 1.71E+02 1.95E+02 2.55E+02 

BF15 2.37E+02 1.73E+02 1.95E+02 1.33E+02 2.18E+02 2.47E+02 3.41E+02 

BF16 3.61E+02 2.34E+02 2.72E+02 3.96E+02 5.29E+02 3.36E+02 5.70E+02 

BF17 5.25E+02 4.31E+02 3.95E+02 4.55E+02 5.86E+02 5.69E+02 7.41E+02 

BF18 1.68E+02 1.40E+02 1.17E+02 1.46E+02 2.77E+02 2.52E+02 2.76E+02 

BF19 7.31E+02 8.23E+02 8.15E+02 5.79E+02 8.19E+02 8.38E+02 8.61E+02 

BF20 4.26E+04 9.12E+07 7.16E+08 1.18E+10 4.93E+10 6.06E+10 1.48E+05 

BF21 1.73E+01 1.73E+01 1.73E+01 1.75E+01 1.74E+01 1.73E+01 1.85E+01 

BF22 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 

BF23 2.05E+03 3.28E+01 2.98E+01 1.74E+03 4.24E+02 3.00E+03 6.61E+03 

BF24 1.71E+00 1.13E+00 1.11E+00 2.23E+00 2.03E+00 1.90E+00 2.92E+00 

BF25 8.33E+00 8.99E+00 8.94E+00 1.13E+01 9.87E+00 9.44E+00 1.14E+01 

BF26 8.99E+01 1.02E+02 1.01E+02 8.75E+02 7.28E+02 4.85E+02 1.19E+03 

BF27 4.53E+00 4.26E+00 4.21E+00 6.18E+00 5.89E+00 5.98E+00 6.59E+00 

BF28 4.92E+00 2.41E+00 2.48E+00 1.48E+02 6.09E+00 5.37E+02 9.81E+02 

BF29 1.84E+01 2.00E+01 1.91E+01 2.04E+01 2.03E+01 2.03E+01 2.05E+01 

Rank 1 2.5 2.5 5 4 6 7 
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TABLE VI 

THE AVERAGE EXECUTION TIME IN SECONDS OBTAINED BY THE PROPOSED SC-FDO AND OTHER ALGORITHMS FOR THE 29 BENCHMARK TEST FUNCTIONS. 

Function SC-FDO FDO IFDO SCA WOA PSO BOA 

BF1 0.8153 1.3415 51.5708 0.0318 0.0233 0.0174 0.0236 

BF2 0.7554 1.5623 51.7337 0.0332 0.0247 0.0189 0.0254 

BF3 1.0626 3.5154 56.0892 0.0610 0.0524 0.0466 0.0533 

BF4 0.8266 1.4799 52.8787 0.0321 0.0232 0.0176 0.0242 

BF5 2.1478 3.3919 454.5471 0.0722 0.0414 0.0419 0.0365 

BF6 0.8502 1.4505 52.1921 0.0331 0.0234 0.0177 0.0237 

BF7 0.9941 3.1662 54.9211 0.0520 0.0433 0.0372 0.0433 

BF8 1.1244 2.2013 53.4520 0.0407 0.0318 0.0259 0.0325 

BF9 0.8425 1.7409 54.0513 0.0342 0.0257 0.0211 0.0271 

BF10 0.8580 1.6959 52.1359 0.0372 0.0274 0.0227 0.0281 

BF11 0.9524 2.4860 53.0158 0.0454 0.0353 0.0313 0.0382 

BF12 1.8225 7.1087 57.6510 0.1116 0.1029 0.0957 0.1047 

BF13 1.8167 7.1394 57.4141 0.1118 0.1026 0.0955 0.1049 

BF14 216.1311 1659.1242 1709.7733 24.4809 24.4376 24.5960 24.5465 

BF15 219.1252 1696.5576 1738.1238 24.8657 24.7778 24.4432 24.8073 

BF16 218.9035 1507.4357 1744.7410 24.6945 24.6758 24.8351 24.7862 

BF17 239.4499 1913.1311 1897.7324 27.1037 26.9636 27.2118 27.0615 

BF18 239.5473 1958.1535 1893.1001 27.1184 26.9986 27.2815 27.0858 

BF19 236.5180 1880.2623 1901.5558 27.1572 27.2272 27.2814 27.1841 

BF20 39.2986 233.2854 270.2622 3.2628 3.2461 3.2560 3.2514 

BF21 1.2271 1.7830 160.5939 0.0409 0.0257 0.0226 0.0233 

BF22 1.6639 3.6787 200.4955 0.0687 0.0513 0.0489 0.0482 

BF23 1.0426 2.2694 53.1968 0.0450 0.0360 0.0284 0.0335 

BF24 1.0790 2.3763 64.5387 0.0466 0.0372 0.0306 0.0348 

BF25 12.8990 73.8102 124.4422 1.0471 1.0345 1.0320 1.0290 

BF26 1.0419 2.3825 53.2395 0.0445 0.0364 0.0295 0.0347 

BF27 1.0525 2.4033 53.2941 0.0465 0.0374 0.0303 0.0358 

BF28 0.9737 2.0934 52.2668 0.0404 0.0299 0.0244 0.0310 

BF29 1.0766 2.5715 53.5268 0.0486 0.0384 0.0329 0.0388 

Rank 5 6 7 4 2 1 3 

** Bold font denotes the best result. 

C. COMPARISON OF SC-FDO WITH EXISTING 

OPTIMIZATION ALGORITHMS 

This section evaluates the proposed SC-FDO with six 

existing nature-inspired algorithms, such as FDO, IFDO, 

SCA, WOA, PSO, and BOA.  

As seen in Table IV, the proposed SC-FDO has the first 

rank as it outperformed well in 15 test functions compared to 

the other six optimization algorithms in BF1, BF2, BF3, 

BF4, BF5, BF8, BF9, BF10, BF11, BF14, BF20, BF21, 

BF22, BF25, and BF29. The IFDO, FDO, and WOA have 

the second, third, and fourth ranks, respectively in average 

value. However, the BOA recorded the lowest ranking in the 

performance comparison. The following is the rank of 

algorithms for generating values that are close to the 

theoretical optimal average values: (1) SC-FDO (2) IFDO 

(3) FDO (4) SCA (5) WOA (6) PSO (7) BOA. 

For the evaluation of exploitation (BF1-BF7), the results 

indicated that the proposed SC-FDO achieved the 

theoretically optimal average values of 0 in the test 

functions: BF1, BF2, BF3, and BF4. The study proved that 

the proposed SC-FDO is effective in exploitation and 

convergence because it has high searching precision of 

unimodal test functions in BF1, BF2, BF3, BF4, and BF5 test 

functions than the IFDO, FDO, WOA, SCA, PSO, and BOA. 

Hence, the modified pace-updating strategy is beneficial for 

enhancing the existing FDO and IFDO’s exploitation ability 

and subsequently improved the exploitation and 

convergence speed of the proposed SC-FDO. 

For the evaluation of exploration (BF8-BF19), the 

proposed SC-FDO outperformed the other six optimization 

algorithms in most test functions (BF8, BF9, BF10, BF11, 

and BF14). Specifically, the proposed SC-FDO could obtain 

the theoretically optimal average value of 0 for the BF9 and 

BF11 test functions. In addition, the SC-FDO has 

comparative results with the other algorithms in BF15, 

BF16, BF17, BF18, and BF19. The results also evinced that 
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 SC-FDO  IFDO  WOA  BOA 
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the proposed SC-FDO has significantly improved the 

original FDO and IFDO. Hence, the modified pace-updating 

and conversion parameters enhancements greatly eliminated 

local optima problems and optimized the balance of 

exploitation and exploration in the proposed SC-FDO. 

For CEC-C06 2019 (BF20-BF29) evaluation, the 

proposed SC-FDO performed better than the other 

algorithms in BF20, BF21, BF22, BF25, and BF29 tests 

functions. The results also revealed that the proposed SC-

FDO has significantly improved the original FDO, in which 

the proposed improvements in SC-FDO have successfully 

enhanced the ability to avoid local optima and converge 

towards the global optimum during optimization. 

Furthermore, Table V indicates that the SC-FDO topped 

the standard deviation ranking among all the optimization 

algorithms. The IFDO and FDO shared the second-ranking, 

followed by WOA and SCA. The SC-FDO outperformed 

well in 15 functions (BF1, BF2, BF3, BF4, BF5, BF9, BF10, 

BF11, BF14, BF20, BF21, BF22, BF25, BF26 and BF29). 

For BF1, BF2, BF3, BF4, BF9, and BF11 test functions, the 

SC-FDO achieved the theoretical optimal standard deviation, 

in which the values were 0. In addition, the standard 

deviation values of the proposed SC-FDO on most test 

functions are within small ranges and ranked first in standard 

deviation, indicating that the SC-FDO algorithm has better 

stability and is able to search optimal solutions in a smaller 

range than the original FDO and IFDO. The reason is that the 

adaptation of the global fitness weight  (𝑓𝑤∗) , random 

weight factor ( 𝑤𝑓) and conversion parameter strategies, 

which balance exploration and exploitation of the search 

space, have led to a convergence on the global 

optimum. However, the PSO and BOA did not perform well 

in standard deviation. The BSO is at the bottom of the 

ranking, while PSO is the lowest standard deviation in the 

test cases.  

For all the test functions, the average execution time used 

by each algorithm over 30 runs is shown in Table VI. The 

PSO has the minimum execution time, followed by the 

WOA, BOA, SCA, SC-FDO, FDO and IFDO. The average 

execution time used by the SC-FDO is higher than the PSO, 

WOA, BOA, and SCA; however, it revealed that the 

proposed SC-FDO has lower average execution time than the 

original FDO and IFDO. Although the space complexity of 

the SC-FDO is slightly higher than the original FDO’s space 

complexity, the introduction of the best solution-updating 

approach has significantly decreased the computing time of 

the proposed SC-FDO. Specifically, there is a significant 

reduction of the average execution time in the SC-FDO, 

approximately 87% and 89% of the original FDO and IFDO, 

respectively. Hence, the findings proved that the proposed 

SC-FDO has successfully reduced the original FDO and 

IFDO's computational time and substantially enhanced the 

efficiency of the original FDO and IFDO.  

Furthermore, a comparison between the convergence 

curve of the SC-FDO and other algorithms on twelve 

representative test functions is presented in Fig. 6. For the 

BF1, BF2, BF3, BF4, BF5, BF9, BF11, BF20, and BF25 test 

functions, the SC-FDO converged faster than the other 

algorithms, consequently reduced the exploration and 

exploitation time when finding the optimal global solution. 

This finding shows that the effect of the proposed conversion 

parameter and adaptive sine and cosine functions can 

significantly optimize the exploration and exploitation 

ability of the SC-FDO.  

However, the SC-FDO converged less quickly than other 

algorithms at the beginning of the iteration for BF10, BF14, 

and BF29 in Fig. 6. Interestingly, the SC-FDO significantly 

increased the convergence rate and accuracy as the iterations 

approached 80, 466 and 220 iterations. The SC-FDO 

eventually converged closer to the optimal global solution. 

Therefore, this study concluded that the SC-FDO achieved 

better results than the existing FDO, IFDO, SCA, WOA, 

PSO, and BOA in terms of convergence precision and speed. 

Therefore, it can be concluded that the proposed SC-FDO 

is superior to the other optimization algorithms as it ranked 

first among all the compared optimization algorithms in 

terms of average values and standard deviation for the 

benchmark test function.  
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FIGURE 6.  Convergence curves of the SC-FDO and other algorithms on ten representative test functions. 

 

D. WILCOXON RANK SUM TEST 

In the Wilcoxon rank-sum test, it is assumed that there is no 

difference among the compared algorithms in the null 

hypothesis, Ho. The alternative hypothesis, H1 assumes that 

there is a difference between the compared algorithms for the 

average values of the test functions in Table IV. The 

Wilcoxon rank-sum tests indicated that the null hypothesis 

Ho is rejected, and the results of SC-FDO are different from 

those compared algorithms, at the 0.05 significance level. 

Therefore, the SC-FDO results are statistically significant 

compared with the benchmark algorithms, as presented in 

Table VII.    

 
TABLE VII 

THE P-VALUE OF WILCOXON RANK SUM TEST BETWEEN THE PROPOSED SC-FDO AND OTHER ALGORITHMS 

Function 
SC-FDO vs.        

FDO IFDO SCA WOA PSO BOA 

BF1 7.69E-12 7.69E-12 7.69E-12 7.69E-12 7.68E-12 7.69E-12 

BF2  7.687e-12  7.687e-12 7.69E-12 7.69E-12 7.69E-12 7.68E-12 

BF3 1.54E-11 1.54E-11 1.54E-11 1.54E-11 1.54E-11 1.54E-11 

BF4 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 
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TABLE VII (CONTINUED) THE P-VALUE OF WILCOXON RANK SUM TEST BETWEEN THE PROPOSED SC-FDO AND OTHER 

ALGORITHMS 
 

BF5  0.1453 9.05E-02 3.02E-11 4.222e-9, 3.02E-11 3.02E-11 

BF6 3.02E-11 3.02E-11 3.34E-11 1.34E-05 3.02E-11 3.02E-11 

BF7 7.39E-11 4.97E-11 1.09E-10 2.15E-10 1.29E-06 4.08E-11 

BF8 8.24E-02 4.13E-02 8.99E-11 9.23E-01 9.94E-01 4.08E-11 

BF9 7.69E-12 7.52E-12 7.69E-12 4.32E-13 7.69E-12 7.69E-12 

BF10 8.19E-08 7.95E-08 1.29E-11 1.29E-01 1.29E-11 1.29E-11 

BF11 7.69E-12 7.68E-12 7.69E-12 1.69E-12 7.69E-12 7.68E-12 

BF12 5.55E-10 6.05E-07 3.52E-07 3.20E-09 3.02E-11 3.83E-09 

BF13 5.49E-11 5.49E-01 2.57E-07 2.57E-07 3.02E-11 1.78E-10 

BF14  0.09202 2.15E-02 3.56E-04 2.34E-01 1.71E-05 1.29E-09 

BF15 1.67E-04 2.26E-03 2.20E-08 2.12E-01 6.31E-01 4.43E-03 

BF16 2.01E-07 5.46E-06 1.19E-01 1.33E-04 3.15E-02 8.99E-11 

BF17 2.14E-03 1.17E-05 7.20E-05 1.12E-01 9.12E-01 9.75E-08 

BF18 4.46E-04 3.32E-06 8.32E-03 3.40E-01 1.62E-01 4.68E-02 

BF19 1.60E-03 2.55E-03 6.92E-03 4.38E-03 4.76E-06 1.53E-03 

BF20 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 

BF21 7.58E-12 5.21E-12 3.02E-11 6.72E-10 1.21E-12 3.02E-11 

BF22 1.19E-12 1.19E-12 2.99E-11 6.68E-01 8.64E-02 2.99E-11 

BF23 3.02E-11 3.02E-11 3.56E-01 8.15E-05 9.35E-01 3.65E-08 

BF24 3.34E-11 3.02E-11 1.17E-09 2.16E-03 9.94E-01 3.34E-11 

BF25 7.29E-03 1.63E-02 3.02E-11 4.42E-06 5.56E-04 7.39E-11 

BF26 4.46E-01 6.95E-01 3.02E-11 3.34E-11 7.38E-10 3.02E-11 

BF27 6.15E-02 1.91E-02 3.69E-11 1.33E-10 1.46E-10 3.02E-11 

BF28 3.02E-11 3.02E-11 3.02E-11 6.41E-01 1.11E-06 3.02E-11 

BF29 2.06E-01 1.15E-01 2.37E-10 1.20E-08 4.20E-10 3.02E-11 

 

 

V. SC-FDO BASED MULTILAYER PERCEPTRON 

TRAINER 

The SC-FDO is employed as a trainer to train and optimize 

multilayer perceptron (MLP) network, abbreviated as SC-

FDO based MLP trainer. 

          
FIGURE 7.  Multilayer perceptron (MLP) neural network 

 

Fig. 7 shows the structure of the multilayer perceptron 

(MLP) neural network. This network is also called a 

feedforward neural network (FFNN). It is the most 

frequently applied learning technique in MLP due to its 

stability and ease of use [38]-[39]. 

The weighted sums of inputs are computed according to 

(18).   

              𝑝𝑗 =  ∑ (𝑤𝑖𝑗 ∗ 𝑥𝑖) + 𝑏𝑗 , j =  1, 2, … , h𝑛
𝑖=1                (18) 

where 𝑛  is the number of the input nodes, 𝑤𝑖𝑗  is the 

connection weight from the  𝑖𝑡ℎ input node to the 𝑗𝑡ℎ hidden 

node, 𝑥𝑖 is the ith input and 𝑏𝑗  is the bias of the 𝑗𝑡ℎ  hidden 

node.   

The output of each hidden layer is defined as follows: 

     𝑃𝑗 = 𝑡𝑎𝑛𝑠𝑖𝑔 (𝑝𝑗) =  
2

(1+exp(−2∗𝑝𝑗))−1
, j =  1, 2, … , h      (19) 

The final output of the output layer is calculated using 

(20). 

   𝑦𝑘 =
2

(1+exp(−2∗(∑ (𝑤𝑗𝑘∗𝑝𝑗)+𝑏𝑘 ℎ
𝑗=1 )))−1 

, k = 1, 2, 3, … , m      (20) 

where 𝑦𝑘  is the 𝑘𝑡ℎ  output, 𝑤𝑗𝑘 is the connection weight 

from the 𝑗𝑡ℎ hidden node to the 𝑘𝑡ℎ output node and 𝑏𝑘   is the 

bias of the 𝑘𝑡ℎ output node.  

 Furthermore, the SC-FDO based MLP trainer will 

optimize the neural network with a set of optimal values for 

the weights and biases as described in (18)-(20). In the SC-
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FDO trainer, each variable indicates the total of weights and 

biases and defined as follows [39]: 

      𝑣 = {𝑊, 𝑏}={𝑤1,1, 𝑤1,2, … , 𝑤𝑛,ℎ , 𝑏1, … , 𝑏ℎ, 𝑤1, 𝑤ℎ, 𝑏𝑖}     (21) 

All the weights and biases variables need to converge until 

the optimum solution is reached that provides the highest 

prediction accuracy. The evaluation metric of the neural 

network is the mean square error (MSE), as indicated in (22). 

                          𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦 −  ỹ)2𝑁

𝑖=1                        (22) 

where 𝑁 is the number of outputs, 𝑦 is the actual value, 

and ỹ  is the predicted value by the SC-FDO based MLP 

trainer.    

A. CASE STUDY: MISSING WEATHER DATA 

IMPUTATION 

This section further verifies the performance of the proposed 

SC-FDO based MLP trainer by solving real-world 

application problems. Rainfall data are essential components 

of the hydrological cycle to assess flood risk [40] and predict 

rainfall forecasting [41]. However, missing rainfall values in 

the weather dataset reduces the accuracy and robustness of 

the hydrological data analysis. In the real-world, the data 

could go missing on more than 50% missing rates of the 

variable (s) in the dataset due to the equipment 

malfunctioned and measurement errors. Therefore, this 

section attempts to compare the predictive ability of the 

proposed SC-FDO based MLP trainer in handling high 

missing rates on the time series dataset with benchmark 

approaches. In addition, the results of the proposed SC-FDO 

based MLP with random weight factor, abbreviated as SC-

FDO and SC-FDO with fixed weight factor, abbreviated as 

SC-FDO (fixed 𝑤𝑓) were compared to evaluate the effect of 

the proposed random weight factor in imputation.  

1) DATASET 

The dataset used in this study was historical weather data for 

Basel, Switzerland and downloaded from meteoblue website 

[42]. This study analyzed the daily historical weather data 

from January 1985 to September 2020 with no missing 

attribute values. We performed the principal component 

analysis method to find the most important features. The 

results showed that the most important features are the 

rainfall, average soil moisture, minimum soil moisture, max 

soil moisture, minimum temperature, maximum wind speed, 

low cloud cover low, medium cloud cover, high cloud cover, 

total cloud cover, relative humidity, maximum relative 

humidity, and minimum relative humidity. Furthermore, the 

daily weather data were split into training and testing 

datasets. The size of each training and testing dataset is 80% 

and 20% of the daily weather dataset, respectively. The data 

were randomly removed from the testing dataset in nine 

missing rates: 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% 

and 90% [43][44]. The missing values were categorized as 

missing completely at random (MCAR) [45][46] because the 

presence of missing values is not affected by the other 

variable values in the dataset.  

2) EXPERIMENT SETTINGS 

The experiments were conducted using MATLAB R2018a. 

The computer settings were set the same as the sub-section 

of Benchmark Test Function settings at Section IV 

Numerical Experiment and Results. All the experiments 

were executed for 30 independent runs over each missing 

rate. The population size was fixed to 30, the number of 

hidden neurons was 15, the maximum number of iterations 

(𝑡𝑚𝑎𝑥) was 500, and the maximum number of epochs was 

1100 on all simulations. The parameter settings of the 

algorithms were presented in Table VIII. 

 
TABLE VIII 

PARAMETER SETTINGS FOR ALGORITHMS 

Algorithms Parameter Value of the parameter 

SC-FDO 𝑎 2 

 𝑤𝑓 [0,1] 

SC-FDO (fixed 𝑤𝑓) 𝑎 2 

 𝑤𝑓 1 

FDO 𝑤𝑓 1 

IFDO 𝑤𝑓 [0,1] 

 

3) PERFORMANCE MEASURES 

The performances of the SC-FDO and the benchmark 

approaches were measured as follows: 

• Mean absolute error (MAE) 

                             𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑂𝑖 − 𝑇𝑖|𝑁

𝑖=1                          (23) 

• Root mean square error (RMSE)  

                               𝑅𝑀𝑆𝐸 =  √
∑ (𝑂𝑖−𝑇𝑖)2𝑁

𝑖=1

𝑁
                         (24) 

• Correlation coefficient (R)  

                            𝑅 =   
∑ (𝑇𝑖−𝑇̅)(𝑂𝑖− 𝑂̅)𝑁

𝑖=1

√∑ (𝑇𝑖−𝑇̅)2(𝑂𝑖− 𝑂̅)2𝑁
𝑖=1

                              (25) 

where 𝑁 is the total number of observations, 0 is the actual 

values of observations and 𝑇 is the imputed values. 

 

4) RESULTS AND DISCUSSIONS 

The effects of missing data on the imputation ability of the 

SC-FDO based MLP trainer and the benchmark approaches, 

SC-FDO (fixed 𝑤𝑓), FDO, IFDO based MLP trainers are 

shown in Fig. 8. The boxplots in Fig. 8 show a summary of 

the distribution of imputation results based on minimum, 

first quartile (Q1), median, third quartile (Q3) and maximum 

values. First, the missing data imputation methods were 

evaluated for the low proportion of missing values, from 

10% until 40% missing rates, as depicted in Fig. 8(a)-8(c). 

The FDO imputation method was the most sensitive to the 

percentage of missing rates. The results indicated that FDO 

has the lowest performance in the presence of low missing 

values. The highest median of MAE in mm (10%: 0.179, 
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20%: 0.3904, 30%: 0.6324 and 40%: 0.8731) and the highest 

median of RMSE in mm (10%: 0.7715, 20%: 1.3814, 30%: 

1.6969 and 40%: 2.3070) but the lowest median of R (10%: 

0.9889, 20%: 0.9630, 30%: 0.9442 and 40%: 0.8946) were 

observed for the FDO imputation.  

The IFDO imputation slightly performed better than the 

FDO imputation. The MAE results indicated that IFDO was 

less sensitive to the amount of low missingness than the FDO 

imputation, in which the IFDO has the second-highest 

median of MAE and RMSE. For the SC-FDO (fixed 𝑤𝑓) 

method, the MAE, RMSE, and R results show better model 

performance than IFDO and FDO for all the low missing 

cases.  

In addition, the results showed that the SC-FDO 

imputation achieved the lowest median of MAE (10%: 

0.1149 mm, 20%:  0.3098 mm, 30%: 0.5253 mm and 40%: 

0.7324 mm), the lowest median of RMSE (10%: 0.6130 mm, 

20%: 1.2784 mm, 30%: 1.5685 mm and 40%: 2.1431 mm), 

however the highest median of R (10%: 0.9929, 20%: 

0.9691, 30%: 0.9527 and 40%: 0.9105) for the low 

proportion of missingness cases. With the implementation of 

the random weight factor (𝑤𝑓) and global fitness weight 

parameter (𝑓𝑤∗), the imputation results of SC-FDO showed 

improvements in the three performance measures compared 

to the SC-FDO (fixed 𝑤𝑓), FDO, and IFDO imputation. The 

shorter distributions of MAE, RMSE, and R in SC-FDO, 

indicating that the SC-FDO is substantially better than SC-

FDO (fixed 𝑤𝑓), FDO, and IFDO imputation. Thus, the SC-

FDO imputation is the preferred method in the presence of 

low missingness compared to the SC-FDO (fixed 𝑤𝑓), FDO, 

and IFDO. 

Furthermore, this study revealed the effects of missing 

data imputation for high missingness from 50% to 90%, as 

shown in Fig. 8(d)-8(f).  For the large proportion of missing 

data, two imputation methods stood out as the median R 

values of the SC-FDO and SC-FDO (fixed 𝑤𝑓) were higher 

than the other two imputation methods. The SC-FDO (fixed 

𝑤𝑓) was the highest median R (R = 0.8481 mm) for the 

missing rates of 70%. Meanwhile, the SC-FDO obtained the 

highest median of R values for the high missingness of 50%, 

60%, 80%, and 90%. The median R values indicated that 

overall, the SC-FDO has higher accuracy than the SC-FDO 

(fixed 𝑤𝑓 ), IFDO, and FDO imputation. The underlying 

reason is the SC-FDO enables the scout bees to converge 

more accurately than the SC-FDO (fixed 𝑤𝑓 ), FDO, and 

IFDO compared to the equations (10)-(13) with (2) 

respectively. 

In addition, the FDO imputation generates the highest 

median of MAE and RMSE values for all the high 

missingness, with the MAE values, range between 1.0737 

mm to 1.9363 mm and the RMSE values range between 

2.4760 mm and 3.2274 mm, respectively. On the other hand, 

the SC-FDO demonstrated the best performances compared 

to the FDO imputation. The median MAE and RMSE values 

of the SC-FDO decreased by an average range between 0.18 

mm and 0.31 mm, and an average range between 0.17 and 

0.25 mm, respectively. Meanwhile, the median MAE and 

RMSE of SC-FDO (fixed 𝑤𝑓 ) and IFDO imputation laid 

between the SC-FDO and FDO imputations. 

Overall, the SC-FDO imputation outperformed the three 

imputation methods with the highest average accuracy of 

90% when treating the low and high missingness in the 

dataset.  
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FIGURE 8.  Missing data imputation on high-low missingness 

 

 

Furthermore, a comparison of average execution time for 

SC-FDO, SC-FDO (fixed 𝑤𝑓), FDO, and IFDO based MLP 

trainers is plotted in Fig. 9. The proposed SC-FDO optimizer 

trainer has the lowest average execution time. Meanwhile, 

the IFDO optimizer trainer took the longest average 

execution time to perform missing data estimation for all the 

missingness. Overall, the average execution time of the 

proposed SC-FDO was slightly less time than the SC-FDO 

(fixed 𝑤𝑓). However, the FDO and IFDO optimizer trainers 

took more computational time to perform missing data 

estimation than the proposed SC-FDO. The SC-FDO 

optimizer trainer reduced the computational time up to an 

average of 77% and 87% compared to the original FDO and 

IFDO, respectively.  
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FIGURE 9.  Comparison of average execution time (seconds) for SC-
FDO based MLP trainer and the benchmark approaches at different 
missing rates. 

 

5)  ANALYSIS OF IMPUTATION RESULTS 

The proposed SC-FDO imputation-based MLP trainer 

demonstrated the best performance for most levels of 

missingness than the other three optimizer trainers. This 

study revealed that the proposed SC-FDO imputation 

method achieved an improvement in prediction accuracy 

than the SC-FDO (fixed 𝑤𝑓 ), FDO, and IFDO optimizer 

trainers. The adaptation of the random (𝑤𝑓)  and global 

fitness weight (𝑓𝑤∗) strategy improved the performance of 

the SC-FDO imputation. The global fitness weight (𝑓𝑤∗) 

parameter helped the SC-FDO finds appropriate random 𝑤𝑓  

over the iterations for stable search. Without the global 

fitness weight (𝑓𝑤∗) strategy, the small value of 𝑤𝑓 results 

in less exploration, whereas the high value of 𝑤𝑓 may result 

in premature convergence. Additionally, the two strategies 

(the modified pace-updating equation and the conversion 

parameter) in the proposed SC-FDO also enhanced the 

balance of exploratory and exploitative characteristics of the 

original FDO. Consequently, the proposed SC-FDO 

imputation produces consistently good imputation results 

than the SC-FDO (fixed 𝑤𝑓 ), FDO, and IFDO optimizer 

trainers.  

In addition to that, the proposed SC-FDO also improved 

the efficiency of the original FDO and IFDO imputation. The 

SC-FDO has significantly shortened the computational time 

of the FDO and IFDO, approximately 77% and 87%, 

respectively. The main reason is the proposed best solution-

updating function in the SC-FDO could positively reduce the 

time taken to find the best search region by periodically 

updating the position around the global best solution during 

optimization. 

Furthermore, this study found that the performances of the 

four imputation methods decreased as the missing rates 

increased. The level of imputation sensitivity depends on the 

percentages of missingness and the imputation models. The 

FDO imputation was the most sensitive for the growing 

ratios of missingness in the dataset among the four methods. 

The accuracy of the FDO imputation was reduced to 78% 

when the missing rate is 90%. Similar distributions are also 

observed for the SC-FDO (fixed 𝑤𝑓) and IFDO imputations. 

However, the proposed SC-FDO imputation is less sensitive 

as the fraction of missing data increased. The proposed SC-

FDO obtained an accuracy of 81% at the missing rate of 

90%. Our findings are consistent with the work done by Gill 

[47], Kim [48], and Chiu et al. [49] that the effect of 

missingness is significant when the fraction of missing data 

grows larger. Therefore, the proposed SC-FDO was the best 

method for the low and high proportions of missingness.  

 

VI. CONCLUSION 

This study demonstrated the effect of the modified pace-

updating equation, the random weight factor (𝑤𝑓) and global 

fitness weight (𝑓𝑤∗)  strategy, the conversion parameter 

strategy, and the best solution-updating strategy in the 

proposed SC-FDO. The benchmark test results revealed that 

the proposed SC-FDO performed better than the existing 

FDO and several well-known optimization algorithms in 

terms of convergence precision and speed. The SC-FDO has 

significantly obtained theoretically or approximately optimal 

solutions for most of the benchmarking test cases. The results 

also proved that the proposed SC-FDO has successfully 

balanced the FDO’s exploitation and exploration, improved 

the convergence speed, avoided the local optima, and moved 

towards optimality. Furthermore, the Wilcoxon rank-sum 

test results proved that the proposed SC-FDO was 

systematically different from the benchmark algorithms at 

the 0.05 significance level. Additionally, the proposed SC-

FDO based MLP trainer demonstrated encouraging results 

than the SC-FDO (fixed 𝑤𝑓), FDO and IFDO based MLP 

trainers in solving the problems of low and high missingness 

in the time series dataset. The missing value cases were 

refined as optimization problems, where the four optimizer 

trainers were used to predict missing values in the time series 

datasets at different missing rates from 10% until 90%. The 

SC-FDO trainer outperformed the other three optimizer 

trainers with the highest average accuracy of 90% for all the 

missing rates. The SC-FDO trainer also obtained a 

computational time reduction of 77% and 87% in missing 

data estimation compared to the FDO and IFDO optimizer 

trainers, respectively. Therefore, the findings of the proposed 

SC-FDO support its use to optimize the real-world missing 

data problems. 

 

VII. LIMITATION AND FUTURE WORKS 

The SC-FDO requires parameter tuning for constant 𝑎 in the 

conversion parameter strategy. Since parameter tuning is 

typically computationally expensive, particularly for real-

world applications, an automatic parameter tuning method 

needs to further explore in the future. The researchers can 

also investigate multi-objective parameter tuning and cost 

effectiveness on the SC-FDO. In addition, the hybridization 

of the SC-FDO with other metaheuristic algorithms such as 
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coot algorithm [20] and colony predation algorithm [21] 

could be of interest to the researchers. 
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