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Abstract
Recently, opportunistic networks (OppNets) are considered as one of the most attractive
developments of mobile ad hoc networks that have emerged, thanks to the development
of intelligent devices. Owing to the harsh and dynamic topology of these networks,
attaining high delivery ratio is a challenging issue. Hence, it is imperative to select which
node's attribute must be adjusted to achieve a higher performance in such unpredictable
networks. A mutual information‐based weighting scheme (MIWS) that exploits the en-
tropy concept to assess the impact of the nodes' attributes on the network performance
was proposed. The weighting procedure aims to figure out the correlative relations be-
tween different attributes and delivery ratio performance of the network. The high weight
of certain attributes implies a correspondingly high impact in achieving efficient data
forwarding. The proposed scheme is proofed conceptually and simulated using the
Opportunistic Network Environment simulator. In contrast to previous studies con-
ducted in the context of weight resolution, the proposed approach allows us to address
this issue in real‐time stateless non‐social OppNets. Regardless of the deployed routing
protocol, experiments show that adjusting nodes' attributes based on the proposed MIWS
can improve the performance up to encouraging delivery ratios.

1 | INTRODUCTION

Opportunistic networks (OppNets) are challenging networks
in which contacts are irregular and the performance of links
varies widely. The mobility of nodes results in instability of the
paths between sources and destinations. In such networks, the
store‐carry‐and‐forward (SCF) paradigm has become the
traditional data forwarding mechanism [1, 2]. In the SCF
mechanism, each node stores data packets in the buffer. When
the node encounters another node, it forwards the duplicated
data packets. However, as each node forwards the duplicated
data packets to all nodes it encounters, network resources such
as bandwidth (BW) and packet buffer of all nodes are
consumed significantly.

Many research studies have been devoted to improve the
performance of the OppNets by means of proper routing al-
gorithms able to find routes according to some optimization
criteria and network metrics [3–6]. Delivery ratio, transmission
latency, BW and packet buffer are considered as the most
important metrics in the OppNets. The maintaining of high

delivery ratio with minimizing the end to end delay is becoming
a major challenge in OppNets. The basic methodology to
address this issue is to flood the network with message copies
in the hope that an error free message will reach the destina-
tion. However, this approach will overwhelm the network with
redundant copies of messages and drain network resources. A
more sophisticated approach is to codify messages by for-
warding them only to nodes who are more likely to meet
destination. This can be achieved through the exchange of
messages between the nodes when they meet with each other.
Currently, many researches endeavours to maximize the
probability of message delivery while minimizing the end to
end delay by means of involving node's attributes in the for-
warding metric's expression. Node's attributes represent
various characteristics of a node, such as available buffer space,
mobility speed (MobSp), BW, information about node's com-
munity. The impact of a node's attribute is generally quantified
by a specific weight.

Motivated by the above considerations, we propose
a mutual information‐based weighting scheme (MIWS).
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The proposed weighting method is achieved by using the
concept of mutual information between random variables
which allows estimating the amount of information that
knowing either variable provides about the other. The weights
are calculated by measuring the amount of information ob-
tained about the nodes' relaying effectiveness through
observing the nodes' attributes. Certain attributes are more
significant than others, or they are more semantically important
than others. We emphasize that the weight of an attribute is an
indicator of an efficient data forwarding achievement, that is,
the larger the attribute's weight is, the higher the impact of the
attribute to the forwarding efficiency is. The resulting scheme
is referred to as MIWS. To the best of our knowledge, there is
no previous work dealing with the estimation of weights using
mutual information between attributes of nodes and network
effectiveness. We also emphasize that the proposed weighting
approach makes it possible to recognize the most impactful
attribute in stateless, non‐social OppNets in real time where
the environment is characterized by a high degree of
randomness and it is difficult to reveal a meaningful statement
about the attributes that must be met in the routing protocols
to achieve high performance. This is indeed an important
contribution to this paper. Most of the previous research and
existing schemes, if not all, illustrate knowledge about weight
calculation of attributes by focusing only on stateful or social
OppNets in non‐real time. It is worth to note that stateful
OppNets require an entity to preserve and manage details for
communication partners, however, in stateless OppNets, there
is no requirement for a central entity to save and manage status
for communications among devices that are appointed to a
network. In addition, and in contrast to the forwarding in
social OppNets, no specific characteristics or user behaviours
are required to conduct the proposed weighting approach.

The proposed scheme is proofed conceptually and simu-
lated using the well‐known Opportunistic Network Environ-
ment (ONE) simulator [7]. Regardless of the applied routing
protocol, experiments show that adjusting attributes of nodes
based on the proposed MIWS can improve the performance
up to encouraging delivery ratios. This approach is very
promising for the recognition of the most impactful attribute
in OppNets where attaining high delivery ratio is a challenging
issue due to their harsh and dynamic topologies. On top of
that, the proposed scheme could be integrated as a plug‐in in
routing protocols so as to involve the estimated weights in the
message forwarding decisions.

The remainder of this paper is organised as follows: Sec-
tion 2 presents related works. Section 3 describes the proposed
MIWS. Performance evaluation is presented in Section 4. At
last we give a conclusion and point out some perspectives for
future researches.

2 | RELATED WORKS

In this section, we describe some of the existing opportunistic
forwarding methods. Furthermore, we list some routing ap-
proaches based on attributes of nodes in OppNets. Several

machine learning based approaches exploiting the attributes of
nodes are also presented. Finally, some approaches are pre-
sented that incorporate the concept of entropy into the
forwarding process in OppNets.

In OppNets, mobile nodes are not supposed to possess or
acquire any knowledge about the network topology. Routes
from the sender to the destination of a message are dynami-
cally created, and any possible node can opportunistically be
used as the next hop if the message is more likely to be brought
closer or faster to its final destination. For these reasons,
relaying data in OppNets is a challenge.

Some routers for OppNets, like the Epidemic router [8]
and the Spray and Wait (SaW) router [9], use a flooding‐based
principle of spreading copies of the messages to newly
discovered contacts. In the Epidemic routing protocol, a node
forwards a packet to all of its neighbours, and each node
receiving the packet also forwards it to its neighbours. It has
been shown that in Epidemic schemes an optimal delivery ratio
and a lower average delay could be achieved if the buffer size is
infinite. Epidemic Routing incurs significant demand on both
BW and buffer. In respect to this issue, there are many studies
to make Epidemic routing consume fewer resources such as [9,
10]. Spyropoulos et al. [9] proposed the so called SaW tech-
nique to control the level of flooding. SaW has two phases; in
the first phase, the source node ‘sprays’ a predefined number
of copies to the network, and then in the ‘wait’ phase the nodes
do direct delivery to the destination. In ref. [10], the authors
proposed control flooding by restricting it to certain areas,
known as cells. They used a special node to forward messages
to another cell and the passed messages are dropped from the
current cell. The authors in ref. [11], have recently proposed an
approach establishing a message duplicate adaptive allocation
and spray routing strategy algorithm. The model allows to
develop a self‐adaptive control replication transmission mode.

A lot of research has suggested controlling the flood
scheme based on utility functions. These utility functions
depend on the history of the previous contacts and the tran-
sitive calculation. MaxProp [12] is one of the first routers
proposed in this category. The MaxProp router uses an esti-
mated delivery likelihood for each node in the network ac-
cording to historical data. So, a node schedules packets
transmission to its peers based on the path likelihoods and
determines which packets should be deleted when buffer space
is almost full. PRoPHET is also an example of a routing
protocol based on utility functions [13]. PRoPHET estimates a
probabilistic metric called delivery predictability which char-
acterizes the probability of successfully delivering a message to
the destination from the local node. If two nodes are often
encountered, they have high delivery predictability to each
other. However, the forwarding metric of PRoPHET doesn't
take into account the nodes' attributes, which undoubtedly play
an important role. Later, many researchers built their for-
warding metrics on PRoPHET to improve it. For instance, in
ref. [14], the authors proposed a DEEP scheme to improve the
original version of PRoPHET by including energy in their
considerations. In ref. [15], the authors proposed the
PRoPHET + routing protocol, which shaped its forwarding
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metric based on the attributes of a weighted node. They inherit
nodes' attributes, namely buffer size, BW, popularity, and pre-
dictability. However, the weights of the nodes' attributes are
estimated based on work experience. The authors confirmed
that users need to adjust weight values according to the actual
scenario. In ref. [16], the authors combined PRoPHET routing
protocol with an acumen buffer management scheme. They
take into consideration two issues, namely limiting the
maximum number of message copies and deleting the node
cache in time.

Some special connections between users are reflected by
social attributes of humans, which can be a strong basis for
forwarding messages. Therefore, opportunistic social networks
are becoming a new trend that recently emerged through the
use of human behaviours and social relationships to build more
efficient and trustworthy message dissemination schemes. For
instance, but not limited, the authors in ref. [17] established a
fuzzy routing‐forwarding algorithm exploiting node similarity,
namely the mobile and social similarities between nodes and
the destination. The authors in ref. [18] propose a transmission
strategy based on node socialization, which divides nodes in
the network into several different communities. The scheme
involves a community reduction method that removes some
inefficient nodes according to the attributes of optimal relay
nodes. In ref. [19], the authors propose an energy‐efficient
altruism‐based message forwarding protocol for opportunistic
networks, where social matrices are exploited to establish the
reliability of a node in participating in the message forwarding
procedure. Nguyen et al. [20] recommended a social context‐
based routing algorithm based on context information pre-
diction. This algorithm essays to predict the context infor-
mation related to the node via historical communication
statistics of nodes. Meanwhile, the authors in ref. [21] proposed
the Predict and Forward algorithm, which is an efficient
routing‐delivery scheme based on node profile in OppNets.
The node profile effectively characterizes nodes by analysing
and comparing their attributes rather than network addresses
such as physical characteristics, places of residence, workplaces,
occupations or hobbies.

Recently many researches incorporate machine learning as
a tool to investigate the impact of nodes' attributes. For
instance, in ref. [22], authors proposed the cognitive routing
protocol for OppNets (CRPO), a neural networks machine
learning scheme, to make acumen forwarding decisions. CRPO
scheme depends on buffers, speed difference, normalized
distance and destination contacts history. However, due to the
method of calculating the normalized distance, this approach is
applied to stateful OppNets. The authors in ref. [23] proposed
a kROp routing scheme. This scheme uses the k‐means ma-
chine learning tool to group neighbouring nodes into k clusters
based on the buffer size, number of successfully delivered
messages, distance from target and number of contacts with
the target. The kROp node forwards messages to the most
optimal cluster members. Although this approach is valid in
stateless OppNets, it does not specify the number of clusters k
to be formed. In addition, other attributes of nodes, such as

degree of mobility, which plays a significant role in the per-
formance of OppNets, are not involved [24]. The MOTOR
approach, proposed in ref. [25], is based on the optimization of
a weighted function for formulating the message forwarding
decision. However, since knowledge of the distances between
all nodes in the network is required, this scheme is only used
for stateful OppNets. In ref. [26], authors used a machine
learning scheme to learn the weights of some attributes of
nodes such as buffer, remaining energy, MobSp, popularity. In
fact, they calculate the likelihood of message delivery success
to their destination based on two machine learning models,
namely neural networks and decision tree. Both models only
work after they have been created from a training data set.
Therefore, they are only suitable for the scenarios for which
they were designed. In a recent publication [27], the authors
proposed a link prediction approach for opportunistic net-
works based on random walk and a deep belief network. A
predictive model is established based on a deep belief network
which draw out the time‐domain characteristics in the process
of dynamic evolution of the opportunistic network.

In addition, many recent researches benefit from revisiting
the information theoretical concept of the entropy in Opp-
Nets. For example, authors in ref. [28] suggest using the en-
tropy concept to estimate the freedom of node movement
directions. The nodes that are most likely to move to more
locations are selected. It is very likely that these nodes will
reach the destinations of the messages. However, because this
approach relies on global position information, it cannot be
used in stateless OppNets because global information is not
available on these networks. The authors in ref. [29] used the
concept of entropy to calculate the metrics of centrality and
similarity. Despite the impressive results of this approach,
however, it is only suitable for social OppNets where node
membership information is available. Authors in refs. [30, 31]
suggest employing the concept of hesitant fuzzy entropy to
reduce energy consumption in the network. Although the
proposed approaches succeeded in saving energy and
increasing the network lifetime, they were tailored for the
system model for which they were designed.

3 | MUTUAL INFORMATION‐BASED
WEIGHTING SCHEME

The use of entropy to measure attribute's weights is inspired
from the ability of mutual information to measure the degree
of dependency between random variables. Mutual information
of two random variables allows to estimate the amount of
information that knowing either variable provides about the
other. This section aims to present a weighting procedure
based on the mutual information between nodes effectiveness
and attributes of nodes so as to figure out the correlative re-
lations between different attributes and delivery ratio perfor-
mance of the network. Let Y be a random variable that takes
two values, effective and ineffective, denoted by eff and ineff,
respectively. Effective and ineffective indicates whether a node
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in the vicinity of a certain node, that is, within its communi-
cation range, is effective or ineffective. A node is characterized
as effective or ineffective based on its successful number of
forwarding messages compared to the average successful for-
warding messages of all neighbouring nodes. The set of the
neighbouring nodes inside a node's communication range is
denoted by N. The following subsection illustrates an example
to explain this issue. Let peff and pineff denotes the probabilities
of effective and ineffective nodes in the neighbourhood of a
given node, respectively. Thus peff = neff/W, where neff is the
number of effective nodes and W is the size of N and is
referred to as window size. It is noteworthy that the window
size is constant, but the contained nodes could be altered, that
is, whenever a new node enters the communication range, the
oldest one is removed from the set N. Hence, a dynamic
window concept is adopted. Let F¼ ff 1;…; f nFg be the set of
attributes, where nF is the number of attributes included in the
weights estimation process, and let Vf i be the set of values that
fi can take, i = 1, …, nF. V f i can be considered as a random
variable where its probability density function is characterized
by the frequency of use of the attribute value, normalized by
the total number of nodes. The Entropy of the random vari-
able Y is given by the following expression [32]:

HðYÞ ¼ − ∑
y¼eff;ineff

pylog2 py
� �

: ð1Þ

The entropy of Y given a certain attribute value v from the
set V f i; i¼ 1;…; nF, is expressed as follows:

HðY
.
Vf i ¼ vÞ ¼ − ∑

y¼eff;ineff
py=vlog2 py=v

� �
; ð2Þ

where py/v is the conditional probability that Y = y, given that
Vf i ¼ v. Hence, the entropy of Y given that the set of attri-
butes Vf i occurs, could be calculated by averaging the
expression above and is given as follows:

HðY
.
Vf iÞ ¼ − ∑

v∈Vf i

pv ∑
y¼eff ;ineff

py=vlog2 py=v
� �

¼ − ∑
v∈Vf i

∑
y¼eff;ineff

py;vlog2 py=v
� �

:
ð3Þ

The basic idea behind the proposed weighting approach is
to assign each attribute a weight corresponding to the amount
of mutual information between nodes' effectiveness and the
attribute. Certain attributes are more significant than others, or
they are more semantically important than others. The mutual
information between the effectiveness random variable Y and
the attribute set Vf i quantifies the amount of information
obtained about Y through observing Vf i and is given by the
following expression:

IðY;Vf iÞ ¼HðYÞ − HðY
.
Vf iÞ: ð4Þ

Assuming that the knowledge of Vf i reduces dramatically
the randomness of Y. This reflects the impact of Vf i on the
neighbouring node's forwarding efficiency. Hence, the reduc-
tion of the randomness when knowing the distribution of a
certain attribute, could be considered as the weight of the
corresponding attribute. For this reason, the weight of the
attribute fi, i = 1, …, nF, will be calculated as follows:

wðf iÞ ¼
IðY;Vf iÞ

HðYÞ
;

¼ 1 −
HðY

.
Vf iÞ

HðYÞ
:

ð5Þ

The proposed attributes' weighting method is referred to as
Mutual Information based Weighting scheme (MIWS).

The most impactful attribute is then determined by

bf ¼ arg max
f i∈F

wðf iÞ
� �

� �

: ð6Þ

Lemma: The weight of a given attribute resulting from the
MIWS is always positive.

Proof: Please refer to appendix.
The algorithm of the proposed MIWS is resumed below.

Algorithm: Mutual information‐based weighting scheme

Input:

� N ← set of the neighbouring nodes
� F ← ff 1;…; f nFg
� Y ← {y1, …, yW}
� Vf i ← fv1;…; vnf ig; i¼ 1;…; nF

Output: w(fi), i = 1, …, nF

begin

for each attribute fi ∈ F

do

H(Y) ← Entropy of Y

HðY=Vf iÞ← Entropy of Y given Vf i

wðf iÞ ¼ 1 − HðY=Vf iÞ=HðYÞ

end for

bf ¼ argðmaxf i∈F wðf iÞ
� �

Þ← most impactful attribute

end
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3.1 | Case study

Figure 1 shows the scenario corresponding to the studied case,
where six nodes encounter the node n and enter within its
communication range.

The information obtained by the node n from its neigh-
bouring nodes are listed in Table 1. Each node should
broadcast the attributes to the neighbouring nodes. The attri-
butes' weights are propagated as a broadcast message and will
be received by all neighbouring nodes which are within the
communication range. Security and privacy management pro-
tocol should authenticate the message exchange between the
nodes in the networks. In ref. [33] security and privacy issue in
opportunistic networks are highlighted. Based on the received
attributes' messages, the MIWS estimates the weights of the
attributes BW, buffer size and MobSp, which are denoted by
BW, BS and MobSp, respectively, that is, the set of attributes
is F = {BW, BS, MobSp}. The number of successful relayed
messages is used as a metric for the node's effectiveness. The
window size is equal the number of neighbouring nodes and
hence equal to 6 as mentioned before. In order to characterize

whether the node is effective or ineffective, the number of
successful relaying is compared to the average. In this case
study the average is equal to 7.3. This means that, if the
number of successful relaying is larger than the average then
the node is characterized as effective, otherwise the node is
characterized as ineffective.

If we apply Equation (1) to the last field in Table 1, we get
a value of one because the probabilities of effective and inef-
fective are the same. It is worth noting that in the case that all
values in Y are eff or ineff, the entropy of Y becomes zero and
therefore cannot be used to estimate the weight of attributes.
As explained above, the attribute's weight is measured as the
decreasing amount of Y's entropy when the distribution of the
attribute is known. Using the MIWS to evaluate the weight of
an attribute, we have to apply Equation (5). As stipulated in
Table 1, the buffers provide only two distinct sizes 4 and
32 MB, that is, VBS = {4, 32}, where p(VBS = 4) = 4/6 as
shown in Table 1.

Table 2 shows an example to calculate the conditional
probability py/v of the neighbouring nodes' effectiveness (y)
given the buffer size (v) from the set VBS. The presented
example relies on the events presented in Table 1. Hence, the
conditioned entropy of Y when knowing the distribution of
VBS is calculated by applying Equation (3) and is given as
follows:

HðY=VBSÞ ¼ − ∑
v¼4;32

∑
y¼eff;ineff

py;vlog2 py=v
� �

¼ 0:54 bit:

Applying Equation (5), we can calculate the weight of the
buffer size attribute which is given by:

F I GURE 1 case study scenario

TABLE 1 Data obtained by node n from its neighbouring nodes

Node ID Bandwidth (BW) [kB/s] Buffer size (BS) [MB] Mobility speed (MobSp) [m/s] Number of successful relays eff or ineff

1 250 4 0.5 15 eff

2 1 4 0.5 10 eff

3 250 32 13 2 ineff

4 1 32 13 1 ineff

5 250 4 13 3 ineff

6 1 4 0.5 13 eff

TABLE 2 Example of conditional probability calculation of the
neighbouring nodes' effectiveness given the buffer size from Table 1 for the
calculation of the buffer size attribute's weight

Effectiveness (y) BS (v) pv py,v py/v

eff 4 4/6 1/2 3/4

ineff 4 4/6 1/6 1/4

eff 32 2/6 0 0

ineff 32 2/6 1/3 1
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wðBSÞ ¼ 1 −
HðY=VBSÞ

HðYÞ

¼ 1 − 0:54

¼ 0:46

The same steps are carried out for the calculation of the
MobSp and BW attributes, where we obtain:

wðMobSpÞ ¼ 1
wðBWÞ ¼ 0:08

Obviously the MobSp shows the highest weight, followed
by the buffer size and the bandwidth weights. As given in
Equation (6), we conclude that the MobSp is the most im-
pactful attribute among the attributes in the studied scenario
on the performance in terms of the relayed messages.

4 | PERFORMANCE EVALUATION

In this section, we apply the proposed MIWS in conjunction
with some routing algorithms to evaluate its performance in
terms of delivery ratio, overhead ratio, average delay and
efficiency.

We consider an opportunistic network with 50 nodes
classified in five groups, where each group is defined by a
speed range. This division into speed ranges was used to obtain
reduced values for this attribute, which makes calculation easier
when reducing the attribute set's alphabet size. In addition, the
range size is so chosen that all the MobSps of all possible
mobile groups (Pedestrian, Bicycle, Bike, Car, Train) are
covered. Helsinki city centre is chosen as environment for the
experiments. Bluetooth is used as communication medium
between nodes. Two different scenarios are analysed. The
attributes of both scenarios, regarding each group, are listed in
Tables 3 and 4 (columns 2 − 4) and implemented using the
well‐known ONE simulator. The ONE simulator has a set of
pre‐made features like movement models and protocols for
routing. The generated messages have size range of 64 to
500 kB. The surface of the experimentation area is
4500 � 3400 m2. No assignment of any special routes or maps
to any group is considered. We assume that all nodes are
energy‐recharged.

TABLE 3 Simulation settings of the five
groups in scenario 1

Group ID BW (MB/s) BS (MB) MobSp (m/s) Number of relayed messages

1 0.1 1 65–120 598

2 0.1 2 33–65 764

3 0.1 64 0.5–1.5 1203

4 0.1 16 4–10 1517

5 0.1 8 16–32 745

TABLE 4 Simulation settings of the five groups in scenario 2

Group ID BW (MB/s) BS (MB) MobSp (m/s)

1 1 8 65–120

2 1 1 33–65

3 1 2 0.5–1.5

4 1 4 4–10

5 1 16 16–32
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F I GURE 2 Mobility speed and buffer size weight evolution for
window size W = 100
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F I GURE 3 Mobility speed and buffer size weight evolution for
window size W = 200
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We evaluate the proposed MIWS to estimate the weights of
the attributes in both scenarios. We emphasize that the two
scenarios mainly differ in buffer size and bandwidth. The
bandwidth in scenario 2 is ten times than that in scenario 1. In
both scenarios, the groups are assigned the same MobSp
ranges.

4.1 | Weights estimation of scenario 1

Figure 2 shows the weight variation of buffer size and MobSp
attributes over time for a window size of 100 nodes, while
Figure 3 shows the weight variation of the same attributes for a
window size of 200 nodes. All estimated weights gradually
increase with increasing simulation time. The fact that the
weights initially take small values can be explained that initially
the effectiveness of the nodes is minted by no attribute. This
means that in the first trial steps, the knowledge of the attribute
does not lead to an important decline in the effectiveness
information. With increasing time, active nodes are distin-
guished in favour of other nodes, and the effect of distributing
a particular attribute will gradually shape the effectiveness of
nodes. Hence, the conditional effectiveness information given
that a certain attribute's distribution is realized, is reduced and
hence the weight possibly increase. In other words, the attri-
bute's distribution of nodes will mint the nodes' effectiveness
and therefore reduces their randomness. In case that the node's
attribute don't infer the effectiveness, the conditional effec-
tiveness entropy given the attribute set will be very close to the
effectiveness entropy itself and hence the weight remains small.
The observed fluctuations in Figure 3 are finer than those in

F I GURE 4 Performance of the MIWS in terms of delivery ratio when
varying the mobility speed attribute. MIWS, mutual information‐based
weighting scheme
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F I GURE 5 Performance evaluation of the proposed MIWS in terms of different metrics, namely, delivery ratio (a), efficiency (b), overhead ratio (c) and
average latency (d), when varying the mobility speed attribute. MIWS, mutual information‐based weighting scheme
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Figure 2. Thus, the proposed model becomes more precise
with larger window sizes. It is noteworthy that the transmission
speed weights are zero as the bandwidth values are identical for
all nodes.

4.2 | Impact of the optimal attribute on
network performance

As shown in Figures 2 and 3, the MobSp attribute has greater
weight, and hence, it has larger impact on the forwarding
performance. The number of the relayed messages of the five
groups are listed in the fifth column of Table 3. By referring to
these later, we observe that group 4 has the highest number of
successful relayed messages. Since the MobSp attribute pro-
vides the highest weight, we can deduce that group 4 has the
optimal MobSp for this scenario. In order to confirm this
inference, we repeat the same experiment for all groups,
keeping the same setting except for the MobSp, which is set to
4–10 m/s for all groups as in group 4.

Figure 4 shows a comparison between the performance of
the original scenario where the nodes of each group move with
their own speeds that are stipulated in Table 3 and that of the
optimal scenario where all nodes in all groups move with the
optimal speed (4–10 m/s). The simulation results show that
the delivery ratio raised to 70% after adjusting the nodes to
move at optimal speed. To consolidate this finding, five further
experiments are conducted. In each experiment, all nodes have
the same MobSp range. Figure 4 shows that the network
achieves the best performance when the MobSp of 4–10 m/s
is used.

Figure 5 illustrates the performance of the proposed
MIWS in terms of delivery ratio, overhead ratio, efficiency, and
average delay for the original setting, as well as five further
settings, each with a single speed range for all applied nodes.
The speed ranges are those listed in Table 3. In addition,
Figure 5a,d shows that the highest delivery ratio and the lowest
average delay are achieved when all nodes move with the
optimal speed. In addition, Figure 5c shows that the produced
overhead ratio of the scenario with optimal speed is about 5%
higher than that of the original scenario, which provides the
lowest overhead ratio. We emphasize that this difference is
negligible and could be explained by the fact that the number
of redundant messages when using the optimal speed is slightly
larger than that of the original one. The scenario with the
optimal MobSp clearly outperforms all other scenarios in
terms of efficiency, as shown in Figure 5b.

In all previous experiments, we used the Epidemic routing
protocol [8] which is optimal in terms of delivery ratio and
latency. Epidemic algorithm is flooding‐based in nature, as
nodes continuously replicate and transmit messages to newly
discovered nodes that do not already holds a copy of the
message. In fact, both nodes exchange the so‐called summary
vector, which contains their respective message IDs. The
messages remain in buffers until they are delivered to their
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F I GURE 6 Time evolution of mobility speed and buffer size weights
for different routing protocols applied to the nodes of scenario 1
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destination or dropped due to their expired lifetime. Figure 6
shows the results of the estimated attributes' weights for
scenario 1 when using different routing protocols, namely:

� Spray and Wait routing protocol [9]: It has two phases; in the
first phase, the source node sprays a predefined number of
copies to the network, and then in the wait phase all nodes
that received a copy of the message wait to meet the
destination node directly to deliver data to it

� MaxProp routing protocol [12]: Each node in the network
maintains a vector list which contains the estimation of
encountering of all other nodes in the network. Message
forwarding decisions are performed based on this vector.

� PRoPHET routing protocol [13]: Messages are routed based
on the destination's encounter probability which is termed
as delivery predictability.

A detailed explanation of the aforementioned routing
mechanisms in OppNets has been included in ref. [5].

Figure 6 shows that the weights of the MobSp attribute for
all deployed routing protocols are larger than the weights of
the buffer size attribute. From this finding, we can conclude
that the proposed MIWS can calculate and differentiate
weights regardless of the provided routing protocol. This un-
derlines the robustness of the proposed weighting scheme.
Furthermore, Table 5 shows a comparison of the performance
improvement percentage in terms of delivery ratio between the
deployed routing protocols when using the proposed weight-
ing scheme. The proposed weighting scheme shows promising
results in conjunction with all protocols. We note that the
percentage of improvement differs significantly from one
protocol to another. This is due to the way each routing
protocol works. This leads us to conclude that the proposed
MIWS could be integrated as a plug‐in in routing protocols to
involve these estimated weights in the message forwarding
decisions.

4.3 | Weights estimation of scenario 2

As shown in Tables 3 and 4, the bandwidth (transmission
speed) of scenario 2 is ten times larger than that of scenario 1
and the buffer sizes of scenario 2 are smaller than those of
scenario 1. Figure 7 shows the estimated attributes' weights
of the scenario 2 under different routing protocols as per-
formed for scenario 1 and reveals that, in contrast to scenario

1, in which MobSp plays the most important role in the
characterization of the network performance, the buffer size
has the greatest influence on the forwarding rate in scenario
2. This can be explained by the fact that transmission speed
in scenario 2 is much larger than that of scenario 1, and
hence, MobSps of nodes are no longer as important. In turn,
buffer sizes play a greater role in determining the network
performance in scenario 2 as they have become very
restricted. Under other circumstances, this could result other
attributes that provide the highest impact on the network
performance. Therefore, we could not commit ourselves to a
specific attribute value, be it MobSp, buffer size or other
attributes.

5 | CONCLUSION AND PERSPECTIVES

We proposed the MIWS which aims to measure the correlative
relations between the nodes' attributes and the delivery ratio
performance in OppNets. We have proofed conceptually that
the proposed scheme can identify the node attribute that has
the greatest impact on the forwarding efficiency. In contrast to
previous studies, the proposed approach is conducted in the
context of stateless non‐social OppNets, where the environ-
ment is characterized by a high degree of randomness and it is
difficult to reveal a meaningful statement about the charac-
teristics that must be met in the routing protocols to achieve
high performance. Through extensive simulations, we have
shown that, regardless of the routing algorithms used, adjust-
ing the nodes' attributes based on the proposed scheme can
improve the performance up to encouraging delivery ratios. To
this end, the MIWS provides an innovative way to explore the
depths of these networks, so that it becomes possible to
determine the importance of the role played by every attribute
of the nodes. This opens the door wide to address the afore-
mentioned statement. The estimated weights can be used to
control nodes' attributes and can be included in the work flow
of the routing process and forwarding decision. For example,
by knowing the buffer size's weight, the routing protocol can
control buffer consumption in the network. This is the future
challenge that will open new horizons in dealing with OppNets
with limited resources.
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TABLE 5 Comparision of percentage improvement of different routing protocols when using the optimal attributes

Routing protocol Average delivery ratio of original attributes Average delivery ratio of optimal attributes Improvement percentage

Epidemic 0.1610 0.2717 70%

PRoPHET 0.1360 0.2717 100%

MaxProp 0.1580 0.2932 86%

SaW 0.1665 0.3154 89%
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