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Abstract  

A novel additive manufacturing method (AM)) constructs a three-dimensional model from a computer-aided design 

by adding material layer by layer. This technique produces a lightweight end product with complex geometries and has gained 

recognition among industrial players. Nonetheless, the mechanical properties and geometry components are the uncertainties 

that prevail in its structures. An alternative approach using the Finite Element Method (FEM) to analyse these uncertainties 

demands extensive computational effort and time consumption. Therefore, a machine learning (ML) tool using the surrogate 

modelling technique offers an alternative way to provide and predict simulation outcomes. This study applies two surrogate 

modelling approaches, the decision tree (DT) and the Gaussian process regression (GPR) methods. Output data from a FEM 

simulation with uncertainty elements are obtained for the training purposes of the surrogate models. Both ML methods can 

predict simulation results with high precision. Both approaches obtained an excellent coefficient of determination value, R2 of 

0.998, and Root Mean Square Error, RMSE of 0.012, successfully reducing time consumption and computational effort. The 

DT method shows better robustness when compared to the GPR method. A value change in the input parameter significantly 

impacts the surrogate model's prediction performance. An adequate quantity of data input for the training phase of both 

surrogate models exhibits the FEM results with the presence of uncertainty and robustness. 

 

Keywords: decision tree; finite element method; gaussian process regression; machine learning; surrogate model; uncertainty 

analysis 

 

 

1.  Introduction 

The advancement of the manufacturing 

industry has led to the discovery of new technology, 

such as the additive manufacturing (AM) method. 

This revolutionary technology produces less waste 

and lightweight materials during the manufacturing 

process. Moreover, this recent manufacturing method 

can have complex components from computer-aided 

design (CAD) drawings to end products. Besides, it 

consumes less energy regarding tooling and workers' 

perspectives (Seharing et al., 2020). Thus, it has 

gained the attention of crucial industrial players, 

especially in the research and development sector. 

However, further research has discovered specific 
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variability in the end-product quality, proving that 

uncertainties exist. Mahadevan et al., (2022) have 

highlighted that those uncertainty factors might occur 

because of porosity in the AM product microstructure, 

material properties, and residual strength created 

during the manufacturing process.  

Researchers have Identified a few scientific 

methods to overcome these issues, for example, by 

conducting physical experiments to analyze these 

uncertainties. However, extensive waste has been 

created due to consumable materials, sample disposal, 

and failed experiments. Therefore, another alternative 

method is by implementing computational 

approaches, such as the Finite Element Method 

(FEM). Nonetheless, specific FEM simulations are 

related to a multi-physics basis and require complex 

modelling, and it requires a further computational 

approach, increased cost, and more simulation time 

run. Emerging research nowadays has discovered 

Artificial Intelligence (AI) technology which is linked 

to a machine learning (ML) tool, the surrogate model, 

as a possible alternative computational method to the 

FEM simulation. This method can cater to complex 

and multi-physic models in a lighter approach and 

steps up simulation to shorten the simulation time 

(Yan et al., 2020). 

In recent years, machine learning tools via 

surrogate models have been a research subject in vast 

domains and engineering problems. Figure 1 shows 

the increasing trend of research publications on 

surrogate models and machine learning over the last 

five years. Yu et al., (2023) have applied a surrogate 

optimization model to reduce the finite element 

calculation and shorten the time consumption. 

Meanwhile, Perera et al., (2020) have implemented 

the neural network method to identify damage on a 

large complex 3D finite element model. Wang et al., 

(2022) monitored the structural health of a concrete 

bridge using the Gaussian process regression (GPR) 

method and finite element model updating. 

 Furthermore, Arabbeiki et al., (2023) have 

conducted research on a finite element model of a 

bone segment using the DT method. Xia et al., (2021) 

have shown a Computational Fluid Dynamics (CFD) 

simulation under uncertain conditions to evaluate the 

efficiency of a surrogate model. Abid et al., (2020) 

have carried out an uncertainty analysis on shape 

memory alloy microactuators by combining the finite 

element method, surrogate model, and Monte Carlo 

simulation. Therefore, this study uses the surrogate 

model approach to incorporate uncertainty parameters 

in a FEM.

 

 
Figure 1 Research trend of surrogate models and machine learning based on publications: adapted from  

Web of Science (2024) 
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2.  Objectives 

A rectangular-shaped and hollow steel plate 

was created as the FEM study case. Axial loading and 

other boundary conditions were applied to the plate. 

The FEM output analyzed in this paper is the von-

Mises stress (VM) and the displacement of the plate. 

Based on the previous research above, the specific 

objectives of this paper are given below. 

• To implement uncertainty elements and 

approaches on the input parameters of the 

FEM simulation. 

• To evaluate the prediction performance of 

surrogate models, the GPR and DT methods, 

and compare with the results of a FEM 

simulation.  

• To test the robustness of the prediction 

performance of the surrogate models in 

uncertain conditions 

 

3.  Methodology 

3.1 FEM Model and mesh convergence study 

A quarter model of a steel plate was created for 

modelling purposes. Figure 2 illustrates the plate 

model with its boundary condition and dimension. An 

equally distributed force was implemented on top of 

the steel plate. The figure also shows the angle 

direction of the quarter-hole part of the model. For 

simulation works, the angle φ is defined as 90°. The 

plate is meshed using triangular-shaped elements. 

Seven meshed models, Model Ⅰ, ⅠⅠ, ⅠⅠⅠ, ⅠⅤ, Ⅴ, ⅤⅠ, and 

Ⅶ, which have different numbers of nodes and 

elements, were created for the mesh convergence 

study. Each model was subjected to a stress 

simulation study, and the mesh convergence was 

obtained when the graph curve acquired a stable 

condition at 16 MPa of stress value, as presented in 

Figure 3. FEM model Ⅵ is chosen for this paper's 

study as it has already achieved the 16 MPa 

convergence limit. As represented in Figure 4, the 

model consists of 180 nodes and 304 elements and is 

the optimum number of nodes and components for the 

FEM simulation purposes. Figure 5 shows the flow of 

each task in this study. Each task is separated into 

three stages. The FEM simulation is performed, and 

the output is produced in the first stage. The FEM 

output is used as the input of the surrogate modelling 

training and testing phase in the second stage. The last 

stage is predicting and validating the surrogate 

models' output.

 

 
Figure 2 Quarter steel plate model with angle orientation 
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Figure 3 FEM plate model convergence study 

 

 
Figure 4 FEM model Ⅵ with 108 nodes and 304 elements 
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Figure 5 Flowchart of tasks  

 
Figure 6 Fuzzy output 
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Table 1 Plate model specifications (Yanase, 2017) 

Parameters Value Uncertainty Span 

Young's modulus, E 222.5 GPa ±12.5 GPa 

Distributed force, F 5500 N ±500 N 

Poisson's ratio, v 0.32 ±0.02 

 

3.2 Uncertainty parameters 

Stritih et al., (2019) highlighted those 

uncertainties existed due to information scarcity in 

process modelling. There are two types of 

uncertainties: aleatory and epistemic uncertainties. 

Aleatory is associated with the natural law, while 

epistemic uncertainty is related to the extent of human 

thinking. According to Faes, & Moens (2020), and 

Kamil et al., (2023), there are two uncertainty solution 

methods: the probabilistic and non-probabilistic 

approaches. This study applied the Monte Carlo 

simulation and fuzzy analysis approach, respectively. 

Combining the fuzzy analysis and Monte Carlo 

simulation creates the Fuzzy-Random approach. The 

parameters of the plate were set with a range of values, 

from minimum to maximum values, to perform FEM 

simulation on the plate with uncertainties. 

The Monte Carlo simulation relies on recurrent 

arbitrary sampling and statistical analysis to perform 

computational simulation runs (Noii et al., 2022). This 

method requires a data set and randomly generates 

any numbers or data in the sample between a defined 

range of minimum and maximum limits. A loop 

system or function can be implemented to have a set 

of random data after each loop.  

The fuzzy analysis technique is a non-

probabilistic uncertainty method that involves fuzzy 

numbers mapping using α-cut based computational 

procedure and has fuzzy sets as the output 

(Baykasoğlu, & Gölcük, 2021; Das, & Granados, 

2022; Zafwan et al., 2024). This procedure defines the 

output as lower and upper bound values representing 

the fuzzy sets. These fuzzy sets interpret numerical 

parameters into membership functions. Figure 6 

depicts the lower and upper bounds of a fuzzy 

outcome of an element P. The triangle shape 

represents the membership function. The α-cut 

mapped f(P) output to a crisp set, the lower and upper 

bounds.  

The uncertainty parameters in this paper are the 

plate's material properties, and the force applied. The 

uncertainty range was fixed in a span of maximum 

and minimum numbers. Table 1 represents the steel 

plate specifications: Young's Modulus, E; Poisson's 

Ratio, v; and distributed force, F. The uncertainty 

range of these specifications is presented in Table 1. 

  

3.3 Surrogate Models 

The number of uncertainty parameters can be 

increased to conduct a deep analysis of this study. 

However, this approach requires more computational 

effort, increased time consumption and increased cost. 

According to Alizadeh et al., (2020), the surrogate 

model technique is an alternative to this limitation. 

The surrogate model is an approximate simplified 

representation of a complex and computationally 

expensive system. It can be applied in machine 

learning techniques and for engineering predictions in 

simulations. The regular methods of surrogate models 

are DT and GPR. In this paper, both models were used 

for prediction.   

 

3.3.1 Decision Tree (DT) method 

Shivaie et al., (2021) proposed the decision tree 

method as a surrogate model approach. This white-

box model has a visible and clear prediction 

mechanism. This method is a supervised machine 

learning technique replicating a model by prediction 

via classification and regression tasks (Kunviroteluck 

et al., 2024). This model is transparent, interpretable 

and resembles a tree system in making decisions 

based on an input's feature or parameters. It can 

handle both numerical and categorical parameters. In 

this tree system, a decision is reached based on a 

parameter at each internal tree node. Then, the 

parameter is split into branches representing the 

decision's outcome. Finally, the results or predictions 

are the leaf nodes of the branches. The features or 

parameters keep splitting into multiple subsets or 

decisions until each subset contains only one final 

decision. Figure 7 illustrates an example of a decision 

tree with its leaves and branches. V1, V2, and V3 are the 

tree's features, P, Q, R, S, T, and U are the branches, 

and Decisions 1, 2, 3 and 4 are the leaves. In this 

study, the parameters in Table 1, Young's modulus, E, 

distributed force, F, and Poisson's ratio, v, are the 

tree's features and parameters. At the same time, the 

von-Mises stress (VM) and displacement are the 

leaves (decisions) produced by the tree.
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Figure 7 A decision tree with branches and leaves (Ahmad et al., 2020) 

 

3.3.2 Gaussian Process Regression (GPR) method 

Asante-Okyere et al., (2018) state that 

Gaussian Process Regression (GPR) is a surrogate 

model characterized by a straightforward function. 

This function describes the training data, 

incorporating uncertainty parameters from Table 1 

and FEM outputs without the need for manual tuning 

of specifications. This model is a probabilistic non-

parametric machine learning method for regression by 

defining a probability and function distribution to 

make predictions. It sets a preliminary allocation of 

vast possibilities over the function directly. This 

distribution includes a mean prediction and a measure 

of variance. The regression task helps to produce 

predictions that are continuous values, which are the 

von-Mises stress (VM) and displacement values. GPR 

relies on a covariance function, which is the kernel 

function. This function determines the shape and 

smoothness of an estimated function. It measures the 

similarity between the FEM data points. The kernel 

function has parameters learned from the input data in 

Table 1. These parameters influence the shape of a 

predicted function. Equation 1 shows the kernel 

function of a GPR.  

Assume that a training set y of n number of 

parameters and an input matrix 𝑥 ∈ 𝑅𝑛 and an output 

variable 𝑦 ∈ 𝑅, the GPR equation is as follows; 

 

y
*
 ~ GPR(m(x),k(x,x'))  (1) 

 

where GPR is the Gaussian Process Regression, m(x) 

is the mean function and k(x,x’) is the covariance 

(kernel) function.  

 

3.3.3 Training and prediction output process 

A total of 100 sets of data were obtained from 

the Fuzzy-Random FEM simulation. This simulation 

was acquired by incorporating the uncertainty range 

of the input parameters into the Fuzzy-Random 

method in the FEM simulation. The output of this 

uncertainty simulation is an essential tool for a 

surrogate model's training and testing phase. This 

output data contains the input parameters and their 

corresponding results from the Fuzzy-Random 

simulation. 

The totality of the data is separated for the 

training and testing phase. Fallucchi et al., (2020), and 

Esfe et al., (2021) suggested that the ideal portion of 

70% of the data is for Training, while another 30% is 

for the testing phase. The training and testing phases 

are the main elements of surrogate modelling. The 

training data is used to construct the DT and the GPR 

model in the training phase. Once completed, the 

constructed model is evaluated to ensure it accurately 

represents the original model.  

The testing phase assesses the model's 

performance and is used to compare the predicted 

output of the surrogate model with the original model. 

A performance metrics tool, the coefficient of 

determination, R2, and the Root Mean Squared Error, 

RMSE, are used to measure the precision and validate 

the prediction output of the model. Figures 8 and 9 

show the validation process of the surrogate model's 

prediction data with the original model's output. 

Figure 8 is the surrogate model's prediction output for 

the displacement of the plate. Figure 8(a) indicates the 

surrogate model prediction output has not yet 

achieved good regression with the original model's 

result with only 10 data, and its value of R2 is 0.887 

and RMSE is 0.436. Thus, the required training data 

quantity is insufficient to construct a perfect surrogate 

model of the original data. However, Figure 8(b) 

represents a good correlation of the surrogate model 
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prediction with the original data, with a value of R2 of 

0.998 and RMSE of 0.012, with 30 training data.  

Figure 9 is the surrogate model's prediction 

output for the stress von-Mises (VM) of the plate. 

Figure 9(a) shows the surrogate model prediction 

output has not yet achieved good regression with the 

original model's result with only 10 data, and its value 

of R2 is 0.888 and RMSE is 0.512. However, Figure 

9(b) represents a good correlation of the surrogate 

model prediction with the original data, with a value 

of R2 of 0.999 and RMSE of 0.019, with 30 training 

data. Tang et al., (2020), and Asteris et al., (2021) 

have highlighted that a surrogate model can produce 

a precise and accurate prediction output when 

sufficient Training has been accomplished. 

 

4.  Results and Discussion 

Two data sets were prepared as inputs for both 

surrogate models to produce prediction output. Each 

set consists of several values of data, which are the 

value of the force applied, F, Young's modulus, E, and 

Poisson's ratio, v. The first set of data consists of input 

parameters with deterministic or fixed values. In 

contrast, the second set consists of input parameters 

with random data values. This is to test the robustness 

of the surrogate models when there is a significant 

change in input parameters for prediction purposes. 

Figure 10 represents the comparison of the 

displacement output of the quarter plate via the FEM 

approach and the surrogate models, the GPR and DT 

methods. The prediction output of the surrogate 

models was compared to the FEM output, and the 

predictions were based on the first set of data. The 

FEM curve is the exact value and serves as the 

benchmark for the output of both models.  

The three curves have a maximum 

displacement value at a 90° angle at the top edge of 

the plate's hole. The displacement was small but 

increased slowly with the angle. This shows that the 

force's vertical pull increased the plate's displacement. 

It is observed that both surrogate models' output curve 

has the same curve trend as the FEM output and are 

almost superposed with each other in the figure. The 

coefficient of determination, R2, and the RMSE in 

Table 2 show that the value of R2 and RMSE of both 

models was 0.998 and 0.017 for GPR and 0.997 and 

0.022 for DT, respectively, when compared with the 

FEM output. Therefore, this shows a good validation 

of the surrogate model's output with the FEM result, 

as the R2 value is close to 1 and the RMSE value is 

close to 0.

 

 

     
(a) 10 data      (b) 30 data 

Figure 8 Surrogate model validation output for displacement 
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(a) 10 data     (b) 30 data 

Figure 9 Surrogate model validation output for von-Mises stress 

 
Table 2 Coefficient of determination, R2 and RMSE for displacement 

Surrogate Model R2 RMSE 

GPR 0.998 0.017 

DT 0.997 0.022 

 

Table 3 Coefficient of determination, R2 and RMSE for von-Mises stress 

Surrogate Model R2 RMSE 

GPR 0.998 0.015 

DT 0.992 0.025 

 

Figure 11 shows the comparison of the von-

Mises stress (VM) output of the quarter plate via the 

FEM approach, the GPR and the DT methods. The 

prediction output of the surrogate models was 

compared to the FEM output, and the predictions were 

based on the first set of data. The FEM curve was the 

benchmark curve for comparison purposes. 

The three curves have a maximum VM stress 

value at 0° angle at the lower edge of the plate's hole. 

The stress value was intense at 0° angle, decreased 

slowly from 60° to 70°, and then increased gradually 

after 70°. This shows that the vertical pull of the force 

exerted a high VM stress intensity at the fixed end of 

the plate (0°). It is observed that the output curves of 

both surrogate models follow the same trend as the 

FEM output and almost superposed with each other 

after 50° in the Figure 11. The R2 and RMSE values 

in Table 3 for both surrogate models are 0.998 and 

0.015 for GPR and 0.992 and 0.025 for DT, 

respectively, when compared with the FEM result. 

Therefore, this shows a good validation of the 

surrogate model's output with the FEM result, as the 

R2 value is close to 1 and the RMSE value is close to 0.  

Based on these results, both surrogate model 

methods can produce precise predictions using the 

first data set as input if 30 data sets were supplied to 

the surrogate models during the training phase. 

Therefore, it is essential to have adequate FEM data for 

the surrogate models' training purposes and for making 

prediction outputs (Tan et al., 2022; Jiang, & Durlofsky, 

2023). Furthermore, these findings demonstrate that both 

surrogate models can simulate and produce prediction 

outputs by implementing input parameters with 

uncertainties and ranges.
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Figure 10 Displacement output of the quarter plate with deterministic input parameter 

 

 
Figure 11 von-Mises stress output of the quarter plate with deterministic input parameter 

 

 
Figure 12 Displacement output of the quarter plate with random input parameter 
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Figure 12 illustrates the comparison of 

displacement output of the quarter plate via the FEM 

approach and the surrogate models, the GPR and DT 

methods. The prediction output of the surrogate 

models was compared to the FEM output, and the 

predictions were based on the second set of input data. 

The FEM curve was the benchmark curve for 

comparison purposes. 

Similar to Figure 9, the FEM and DT curves 

have a maximum displacement value at a 90° angle at 

the top edge of the plate's hole. The displacement 

increased slowly with the angle. The DT output curve, 

with a coefficient of determination (R2) value of 0.984 

and an RMSE value of 0.031 when compared to the 

FEM output values. Therefore, this shows a good 

validation of the DT output with the FEM output. 

However, contrary to the DT model, the GPR model's 

curve failed to follow the same trend and trajectory as 

the FEM output curve. With a coefficient of 

determination (R2) of 0.352 and an RMSE value of 

0.674, this represents poor validation. The GPR curve 

only managed to follow the FEM curve trend before 

the 33° angle, and it failed to maintain the trajectory 

afterwards. Table 4 represents the value of R2 and 

RMSE of both surrogate models. 

Figure 13 compares the VM stress output of the 

quarter plate via the FEM approach, the GPR and the 

DT methods. The prediction output of the surrogate 

models was compared to the FEM output, and the 

predictions were based on the second set of input data. 

The FEM curve was the benchmark curve. The value 

of the VM stress was at its maximum point at 0° and 

had minimum values of 60° and 70°. The DT and VM 

output curves have the same curve trend and trajectory 

as the FEM output curve. The DT model's coefficient 

of determination, R2, value is 0.999, and its RMSE 

value is 0.011, indicating good validation as the 

curves almost superpose on each other. However, the 

GPR model's output failed to follow the same curve 

trend and trajectory of the FEM curve. The GPR 

model's coefficient of determination, R2, value is 

0.471, and RMSE value is 0.531. They represent a 

poor validation value. Similar to Figure 10, the GPR 

curve only managed to follow the FEM curve trend 

between 6° and 36°, and it failed to maintain the 

trajectory afterwards. Table 5 shows the value of R2 

and RMSE of both surrogate models.  

The simulation output results from Figures 11 

and 12 demonstrate that the DT method is more robust 

than the GPR method. The DT method consistently 

maintain its prediction output performance, although 

there was a change in input parameters from 

deterministic to random data values. Chen et al., 

(2019), and Hafeez et al., (2021) highlighted that the 

DT approach is robust and can be applied in non-

linear cases, proving that this surrogate model can be 

subjected to random input parameters for prediction 

purposes. Moreover, regression methods such as the 

GPR method only produce a scalar output value of Y, 

although a multi-variable input value of X is 

introduced. This limitation prevents the method from 

predicting consistent output values when a set of 

random values is used as input parameters (Kaneko, 

2021).  

 

Table 4 Coefficient of determination, R2 and RMSE for displacement 

Surrogate Model R2 RMSE 

GPR 0.352 0.674 

DT 0.984 0.031 

 

Table 5 Coefficient of determination, R2 and RMSE for von-Mises stress 

Surrogate Model R2 RMSE 

GPR 0.471 0.531 

DT 0.999 0.011 

 

Table 6 Simulation time (s) for uncertainty FEM and surrogate model 

Total data 10 30 50 70 100 

Uncertainty FEM 300s 840s 1380s 1890s 2700s 

Surrogate model (DT) 4.37s 5.58s 8.7s 21s 40s 

 

 



MOHAMAD SUFFIAN ET AL. 

JCST Vol. 14 No. 3, September - December 2024, Article 50 

12 

 

Figure 13 von-Mises stress output of the quarter plate with random input parameter 

 

Table 6 shows the comparison of the simulation 

running time of the surrogate model, the DT method, 

and the uncertainty FEM with the total input data used 

in the simulation for output prediction purposes. The 

simulation was performed for 100 input data, and the 

time was in seconds. Only the DT method time 

simulation is considered, showing promising results 

and predictions for both inputs. Based on Table 6, the 

number of data sets applied to the surrogate model to 

produce output prediction did not significantly impact 

the time to complete a simulation run. The simulation 

time curve was almost constant until 100 data in total. 

However, the uncertainty FEM simulation time curve 

has significantly increased from 0 to 100 data sets. The 

simulation time for the surrogate models was observed 

to be more than three times faster than the uncertainty 

FEM output, and it shows that the total amount of data 

in the surrogate models has no evident impact on the 

simulation run time. As for the uncertainty FEM 

approach, a more significant increase in the number of 

input data increases the complexity of the FEM model 

(Luo et al., 2022), and this requires more 

computational effort and simulation time. Huzni et al., 

(2022) mentioned that a complete simulation time run 

of a surrogate model is four times faster than a full 

computing time of a FEM approach. The surrogate 

model approach represents a "trade-off" between 

computational effort, cost, and simulation time. 

 

5.  Conclusion 

This research focuses on the capability of 

surrogate models, the DT and GPR methods, to 

produce predictions with uncertain input parameters. 

A finite element model is created, and the material 

specifications and boundary conditions are the 

uncertainty properties. Uncertainty FEM was 

performed with the implementations of the Fuzzy-

Random approach. The simulation output was then 

compared to the output of the surrogate models, and 

two performance metrics tools, the coefficient of 

determination, R2 and the Root Mean Squared Error, 

RMSE, were used to measure the accuracy of the 

prediction.  

Both surrogate models have excellent and 

accurate prediction output when applying a 

deterministic input parameter for prediction 

purposes. However, when a random input parameter 

was used, the DT method outperformed and was 

more robust than the GPR method. The DT method 

still maintains accurate prediction with an R2 value of 

0.999 and an RMSE value of 0.011.  

Moreover, simulations using surrogate models 

are three times faster than those using the FEM 

method to produce output. This demonstrates that the 

surrogate model can be an alternative method for 

computational and cost efficiency, high fidelity and 

precision, and simulation time reduction when 

compared to the FEM method. However, this 

approach depends on input data for training and 

prediction, such as output data from FEM 

simulations, and cannot function independently. 

Future research can compare the neural network 

approach, Bayesian Network and Artificial Neural 

Network (ANN) with the DT method regarding 

prediction output performance.  
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