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Abstract 
 

Artificial Neural Network (ANN) is a computational model based on 
the structure and operation of biological neural networks. It is a 
black box model due to its complexities and difficulties in 
understanding how to make decisions and predictions with 
complicated internal structures and huge parameters involved. The 
basic unit of ANN is the artificial neurons. A group of neurons forms 
a layer. There are three layers in ANN, namely, the input, hidden, 
and output layers. Forward and backward propagation are two 
common learning processes adopted for adjusting weights and 
biases in ANN. Various activation functions are used, such as Hard 
limit, Tan-Sigmoid, Linear, Log-Sigmoid, Rectified Linear Unit 
(ReLU), Hyperbolic Tangent (tanh), and Softmax, enabling ANN to 
simulate complicated relationships and perform nonlinear 
transformations. Three learning paradigms of ANN include 
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supervised, unsupervised, and reinforcement learning. A variety of 
metaheuristic algorithms have been used to train ANN, including 
Genetic Algorithms (GA), Particle Swarm Optimization (PSO), 
Simulated Annealing (SA), Ant Colony Optimization (ACO), Tabu 
Search (TS), and Harmony Search (HS). To date, ANN has been 
successfully adopted in streamflow prediction, rainfall-runoff 
modeling, groundwater modeling, water quality modeling, and 
water demand forecasting. 
 
Keywords: black box model, learning processes, activation functions, 
learning paradigms, metaheuristic algorithms 

1. Introduction 

Artificial Neural Network (ANN) is a computational model based on the 
structure and operation of biological neural networks, like the human brain. 
The fundamentals of deep learning are also based on ANN, a subfield of 
machine learning (Taye, 2023).  

An ANN comprises interconnected artificial neurons, also known as 
nodes or units. These artificial neurons are grouped, forming layers. ANN 
consists of three layers: the input layer, hidden layer, and output layer (Di 
Franco & Santurro, 2021). Each neuron receives input signals, executes a 
computation, and outputs a signal. The output of one layer is transmitted as 
the input for the following layer, allowing data to flow throughout the 
network (Kuok, 2010). 

The connections between neurons are represented by weights and biases 
to control the strength of the signals transmitted from one neuron to another. 
These weights and biases are adjusted during training to enhance the 
network's efficiency at a particular task. The backpropagation technique 
often accomplishes this by updating the weights and biases propagated 
backward through the layers to minimize the difference between the 
network's output and the desired output (Basheer & Hajmeer, 2000). 

ANN has the ability to learn and generalize from examples. This enables 
ANN to solve various tasks effectively, including classification, regression, 
and pattern recognition. The ability of ANN to discover subtle patterns and 
relationships within the data automatically makes them excellent at 
addressing complex problems involving massive data volumes (Goel et al., 
2022). 

In recent years, simple ANN has been expanded to deep neural networks. 
A deep neural network consists of multiple hidden layers that enable them 
to learn hierarchical data representations. The multiple hidden layers enable 
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deep learning models to handle more complex and sophisticated tasks and 
process enormous volumes of data (Montavon et al., 2018). 

2. ANN - Black Box Model 

To some extent, ANN can be considered a black box model since 
internal workings or mechanisms are difficult for humans to interpret or 
comprehend. It is difficult to understand how ANN justifies a decision and 
prediction due to their complicated internal structures and large number of 
parameters. Below are the reasons ANN is categorized as a black box model: 

a) Hidden Layers and Neuron Interactions: ANN can have multiple 
hidden layers and many neurons. Understanding and explaining how 
the inputs are handled and altered within the network is challenging, 
especially the computations of weights and biases within these 
hidden layers (Zhang et al., 2018). 

b) Nonlinear Transformations: ANN uses nonlinear activation functions 
to capture the nonlinearity and complicated data relationship. 
Identifying and tracking the effects of specific features on the 
network's output is difficult due to these nonlinear transformations 
(Buhrmester et al., 2021). 

c) High-Dimensional Parameter Space: ANN's training process often 
involves learning many weights and biases parameters. It is difficult 
to comprehend how each weight and bias affects the final prediction 
result (Buhrmester et al., 2021). 

d) Lack of Transparency in Training: The training process of ANN 
involves adjusting the weights and biases based on given objective 
function(s). However, the network's specific decision-making rules 
or patterns may need to be clarified or understandable (Zhang et al., 
2018). 

Although ANN can be categorized as a black box model in terms of 
interpretability, its effectiveness in learning and making precise predictions 
has made it a superior tool in various domains, including image and speech 
recognition, natural language processing, classification, and predictive 
modeling. 
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3. Relationships Between ANN and Biological Neural 
System 

3.1 The Biological Neuron 

ANN is inspired by the structure and function of biological neurons. A 
biological neuron, also called a nerve cell, is a fundamental element of the 
human brain, which provides the ability to remember, think, and apply 
previous experiences to every action. These neurons can connect with up to 
200000 other neurons wired up in a 3-dimensional pattern. The brain's 
power comes from the number of these essential components and their 
multiple connections (Kuok et al., 2010).  

These neurons control information transmission and processing through 
electrical and chemical signals. The four basic components of biological 
neurons are dendrites, soma, axons, and synapses (Molnar & Gair, 2015), 
as presented in Fig. 1. The process of these four basic components can be 
characterized as follows: 

a) Dendrites: The finger-like cells located at the end of a neuron. 
Dendrites are short, branching fibers extending from the cell body of 
the nerve cell. This fiber increases the surface area available for 
receiving incoming information or input portions of a neuron. 

b) Soma: The cell body of a neuron contains the nucleus and other 
structures that will combine the signals from the dendrites and pass 
them on. 

c) Axons: The axons are located at the end of the soma and control the 
neuron's firing. The structure will fire a signal when the signal's total 
strength exceeds the axon hillock's threshold limit. These axons may 
fire 200 times per second. 

d) Synapses: The gap in the terminal button is known as a synapse, 
which is responsible for sending the signal to other neurons by 
releasing neurotransmitters into the synaptic gap. This process of 
transfer takes between 0.1 and 0.2 milliseconds.  
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Fig. 1: Four Parts of a Typical Cell. 
 

Biological neurons rely on the generation and propagation of electrical 
signals to function. A neuron generates an action potential, a rapid electrical 
impulse that travels down the axon as it receives enough input from 
dendrites. This action potential causes neurotransmitters to be released at 
the synapse, which sends the information to the next neuron in the neural 
circuit. 

3.2   The Artificial Neuron 

The basic unit of the artificial neurons simulates the four basic functions 
of biological neurons, as shown in Fig. 2. It is a computer simulation of a 
'brain-like' system of interconnected processing units. However, artificial 
neurons are much simpler than biological neurons. The processing units are 
typically viewed as analogous to neurons and are presumed to operate in 
parallel (Kuok et al., 2021). The behavior of a single processing unit in an 
ANN can be characterized as follows (Minns & Hall, 1996): 

a) The units compute the total signal sent to it by other processors in 
the network. 

b) The unit applies an activation function to this total signal to adopt 
the particular level of internal activity. 

c) The units send a signal to other processors in the network. This signal 
is a function of the unit’s internal activity. 

d) One processor sends the signal to another through a weighted 
connection, typically analogous to a synapse. 

 

 

 

Dendrites: Accept inputs 

 

Soma: Process the inputs 

 

Axon: Turn the processed inputs into 
outputs 

Synapses: The electrochemical contact 
between neurons 



Chapter 1 
 

6

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: The basics of an artificial neuron. 
 

Various inputs to the network are represented by x(n). Each input is 
multiplied by a connection weight represented by w(n). In the simplest case, 
these products are summed and fed through a transfer function to generate 
a result and, subsequently, an output.   

3.3 Comparison between ANN and Biological Neural System 

ANN has exhibited brain-like characteristics such as learning from 
experiences, generalizing their knowledge, and performing extractions. In 
other words, ANN emulates the human brain neuron system. However, 
there are some differences between ANN and biological neural system. The 
main differences are summarized in Table 1. The analogies between 
biological and ANN are tabulated in Table 2. 
 

Table 1: Comparison between ANN and biological neural system  
 

Biological Neural System ANN 
Complex synapses Simple synapses 
Pulse transmission Activity value 

Learning as fast as one pass Many passes required 
10 billion neurons Maximum in 1000s 

X1 

X2 

X3 

Xn 

w1 

W2 

W3 

Wn 

Transfer SUM 

Note: xn = input 
           wn= weight 

Input Layer Hidden Layer Output Layer 
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Table 2: The analogy between biological and ANN 
 

Biological Neural System ANN 
Soma Neuron 

Dendrites Input 
Axon Output 

Synapse Weight 

4. Model of A Neuron 

 The neuron is the basic element of ANN. It is an information processing 
unit fundamental to the operation of a neural network where the neuron links 
between units to form a neural network. The purpose of a neuron is to 
receive information from other neurons and then perform some relatively 
simple processing on this combined information and send the results to 
other neurons. Neurons are classified into three types: input neuron, output 
neuron, and hidden neuron. An input neuron has only one input, no weight 
adjustment, and the input is from an external source. An output neuron is 
one whose output is used externally as a network result. Meanwhile, a 
hidden neuron receives its inputs from other neurons and sends its output 
only to other neurons. 

 

 
 

Fig. 3: Nonlinear model of a neuron 
 
According to Haykin (1994), three basic elements of the neuron model 

are presented in Fig. 3, including: 
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a)  A set of synapses or connecting links through weights. Specifically, 
a signal xj at the input of synapse j connected to neuron k is 
multiplied by the synaptic weight wkj. The first subscript refers to the 
neuron in question, and the second refers to the input end of the 
synapse to which the weight refers. The weight wkj is positive if the 
associated synapse is excitatory and negative if the synapse is 
inhibitory. 

b) An adder,  was used to sum all the input signals, which were 
weighted by the respective synapses of the neuron. This operation 
described here constitutes a linear combiner. 

c)  An activation function for limiting the amplitude of the neuron's 
output. The activation function is also called the squashing function 
to limit the permissible amplitude range of the output signal to some 
finite value. Typically, the normalized amplitude range of the 
neuron's output is written as the closed unit interval [0,1] or 
alternatively [-1,1]. 

4.1 A neuron sample 

A linear neuron with R inputs is illustrated in Fig. 4 below: 
 

 
 

Fig. 4: Linear neuron model 
 

Linear Transfer Function named purelin calculates the neuron's output 
by simply returning the value passed through, as presented in Eq. 1. 
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a = purelin(n) = purelin( Wp+ b)= Wp+ b                                   Eqn. 1  
 

Single-layer linear network can perform linear function approximation. 
It can be designed directly or trained with the Widrow-Hoff learning rule to 
find a minimum error solution. In addition, linear network can be trained 
adaptively by allowing the network to track changes in its environment. The 
design of a single-layer linear network is entirely constrained by the 
problem to be solved. The number of network inputs and neurons in the 
layer is determined by the number of inputs and outputs required by the 
problem. Multiple layers in a linear network do not necessarily result in a 
more robust network. Therefore, a single layer is not necessarily a 
limitation. However, the linear network can solve only linear problems by 
making a linear approximation with the minimum sum-squared error. A 
linear network is suitable if the relationship between inputs and targets is 
linear or a linear approximation is desired.  

Meanwhile, nonlinear relationships between inputs and targets cannot 
be exactly represented by a linear network (Demuth & Beale, 2004).  

5.   Learning Process 

An ANN learns by training it on a dataset by adjusting its weights and 
biases, allowing it to make accurate predictions or carry out the tasks that 
have been programmed. The principal method for training ANN is 
backpropagation. It consists of two fundamental steps: forward propagation 
and backward propagation (Yin et al., 2021). 

In forward propagation, the input data is fed into the network and 
propagates through the layers from the input layer to the output layer. Each 
neuron in the network receives inputs from the preceding layer. Then, it 
computes a weighted sum of those inputs, applies an activation function, 
and transmits the output to the following layer. The schematic diagram for 
forward propagation is presented in Fig. 5. 

Following the forward propagation step, the network output is compared 
to the desired output. After comparison, an error value is calculated. 
Backward propagation attempts to propagate this error across the network 
by adjusting the weights and biases, as shown in Fig. 6, to minimize these 
error values. 

The training procedure is repeated until the network achieves satisfactory 
performance or reaches a stable state. Training an ANN requires a suitably 
sizable and diverse dataset, an appropriate network architecture, appropriate 
activation functions, and adjustment of hyperparameters, including learning 
rate and regularisation methods to avoid overfitting. 
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Fig. 5: Schematic diagram of forward propagation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6: Schematic diagram of backward propagation 
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Once trained, the ANN can predict new data by performing forward 
propagation with the learned weights and biases, accurately mapping input 
data to the intended output based on the learned patterns and relationships. 

6. Activation Function 

Activation function in ANN is a mathematical function applied to the 
weighted sum of inputs at each artificial neuron. The activation function 
allows nonlinearity to the neuron's output, enabling ANN to simulate 
complicated relationships and perform nonlinear transformations. The 
activation function decides whether a neuron will send an output signal 
 based on its input.  

The activation function selection is determined by the task, network 
architecture, and desired network features (Manessi & Rozza, 2018). The 
four most commonly used functions are the Hard Limit, Tan-Sigmoid, 
Linear, and Log-Sigmoid activation functions.  
 

a) Hard Limit activation function 
 

 
 

Fig. 7: Hard limit activation function 
 

If its net input hits a threshold, the hard limit activation function 
forces a neuron to send an output of 1. In contrast, if the neuron 
doesn't reach that threshold, it sends an output of 0. This enables a 
neuron to make decisions or categorize information with the output 
of 1 for yes and 0 for no (Beale et al., 2010). Fig. 7 presents the 
schematic diagram of the hard limit activation function. The 
perceptron learning rule frequently trains neurons with the hard limit 
activation function. 
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b)   Tan-Sigmoid (Tansig) activation function 
Neurons with Tan-Sigmoid activation function named tansig, shown 
in Fig. 8. 

 

 
 

Fig. 8: Tansig activation function 
 

Tansig is a neural transfer or threshold function. Tansig activation 
function calculates a layer's output from its net input. The output of 
any neuron is the result of thresholding of its activation, which in 
turn is the weighted sum of the neuron's inputs. Thresholding is done 
to scale down the activation and map it into a meaningful output for 
the problem. The sigmoid function transforms the input, which can 
have any value between plus and minus infinity, into a reasonable 
value between 0 and 1 (Demuth & Beale, 2004). 

 
c)   Linear activation function 

  

 
 

Fig. 9: Linear activation function 
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The linear activation function, as presented in Fig. 9, allows their 
outputs to take on any value. A linear network is designed when 
presented with a set of given input vectors, producing outputs 
corresponding to the target vectors (Beale et al., 2010). 

 
d)   Log-Sigmoid activation function 

The log-sigmoid activation function, also known as the logistic 
sigmoid, as presented in Fig. 10, maps the weighted sum of inputs to 
a value between 0 and 1. As the input is close to negative infinity, 
the output becomes closer to 0. In contrast, as the input approaches 
positive infinity, the output gets closer to 1 (Beale et al., 2010). The 
log-sigmoid activation function is suitable for producing probabilities 
of binary classifications.  

 

 
 

Fig. 10: Log-Sigmoid activation function 
 

Some other popular activation functions are: 
 
e)   Rectified Linear Unit (ReLU) activation function 

The Rectified Linear Unit (ReLU) activation function is widely used 
in deep learning. ReLU directly returns the input if it is positive and 
returns zero otherwise. ReLU activation is computationally efficient 
and helps to avoid the vanishing gradient problem for deep learning 
networks. ReLU is effective in many applications and encourages 
sparsity (Yu et al., 2020; Sporea et al., 2021; Surekcigil Pesch et al., 
2022). The schematic diagram of the ReLU activation function is 
presented in Fig. 11. 
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Fig. 11: Rectified Linear Unit (ReLU) activation function 
 

f)   Hyperbolic Tangent (tanh) activation function 
The hyperbolic tangent activation function, also known as the tanh, 
maps the weighted sum of inputs to a value between -1 and 1. As the 
tanh function is symmetric around the origin, it works well in models 
where the output is required to be centered around zero (Wang et al., 
2022). The schematic diagram of the tanh activation function is 
presented in Fig. 12. 

 
 

Fig. 12: Hyperbolic Tangent (tanh) activation function 
 

g)   Softmax activation function 
The softmax activation function is typically applied to solve 
classification problems with multiclass output layers. Softmax 
activation function maps the weighted sum of inputs to a probability 
distribution over multiple classes and ensures that the output sum is 
1. Fig. 13 presents the schematic diagram of the softmax activation 
function (Sharma et al., 2017; Kouretas & Paliouras, 2019). The 
softmax transfer function is helpful for deriving class probabilities in 
multiclass classification tasks. 
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Fig. 13: Softmax activation function 
 

Apart from these few activation functions, other activation functions, 
such as leaky ReLU, parametric ReLU, and exponential linear unit 
(ELU), have been developed to solve various problems and achieve 
promising performance in different scenarios. The selection of the 
activation function depends on the task requirements and the 
architecture of the network. 

7. Learning Paradigms 

 Learning paradigms are the most salient feature of neural networks. The 
learning paradigm largely depends on the neural network structure and the 
data characteristics. Three basic classes of learning paradigms are supervised 
learning, reinforcement learning, and unsupervised (self-organized) learning.  

7.1   Supervised Learning 

The fundamental learning paradigm in ANN is supervised learning. The 
training data consists of input-output pairs. Each input is associated with a 
corresponding desired output or target value. Supervised learning aims to 
develop a function or mapping to correctly forecast the result for brand-new 
inputs (Cunningham et al., 2008). 

Supervised learning networks have been the mainstream of neural model 
development. Supervised learning is performed under the supervision of an 
external 'teacher' named as the target. This target is knowing the environment 
represented by a set of input-output examples. By virtue of built–in 
knowledge, the target is able to provide the neural network with a desired 
response for that training vector. The desired response represents the 
optimum action to be performed by the neural network (Uddin et al., 2019).  



Chapter 1 
 

16

The network parameters are adjusted under the combined influence of 
the training vector and the error signal (the difference between the actual 
response of the network and the desired response). This adjustment is 
carried out iteratively to make the ANN emulates the target eventually. 
Knowledge of the environment available to the target is transferred to the 
ANN as fully as possible (Kuok et al., 2019). When this condition is 
reached, the target is dispensed, letting the ANN deals entirely with the 
environment. The block diagram of supervised learning is shown in Fig. 14. 
 

 
 

Fig. 14: Block diagram of supervised learning 
 

Supervised learning can be performed in an offline or online manner. In 
the offline case, a separate computational facility designs the supervised 
learning system. Once the desired performance is accomplished, the design 
is frozen, where the ANN will operate statically. On the other hand, the 
learning procedure for online learning is implemented solely within the 
system itself and not by acquiring a separate computational facility (Jiang 
et al., 2020; Chiu et al., 2021). In other words, learning is accomplished in 
real time because the neural network is dynamic. Naturally, the requirement 
of online learning places a more severe requirement on a supervised 
learning procedure than offline learning. 
 The main disadvantage of supervised learning is that without a target, 
ANN is unable to learn new strategies for particular situations not covered 
by the set of examples used to train the network. The use of reinforcement 
learning may overcome this limitation. 
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7.2   Unsupervised Learning 

Unsupervised learning is a learning paradigm that does not have explicit 
target outputs. Unsupervised learning uses artificial intelligence (AI) 
algorithms to find patterns in data sets that are neither labeled nor 
categorized. Unsupervised learning aims to find hidden links, structures, or 
patterns in data without prior knowledge of the target outputs. The model 
learns from the data's underlying structure and distribution (Ghahramani, 
2004). 

Unsupervised learning models are superior for finding patterns, 
groupings, and distinctions in unstructured data. It works exceptionally well 
for image recognition, consumer segmentation, and exploratory data 
analysis. Unsupervised learning algorithms can categorize, label, and group 
the data points found in data sets without needing external assistance. It is 
able to find patterns on its own in data sets within a system. Unsupervised 
learning organizes unsorted data based on similarities and differences with 
the help of AI systems, despite the absence of categories. 

Unsupervised learning begins with an unlabeled dataset containing only 
input data fed through training algorithms by machine learning engineers or 
data scientists (Zaadnoordijk et al., 2022). The data consists of a set of 
examples or observations without any associated target values or 
classifications. 

The goal of unsupervised learning is for the algorithms to identify 
patterns in training data sets and categorize input objects based on the 
patterns identified by the system. The algorithms evaluate the underlying 
structure of the data sets by extracting useful information or attributes. 
These algorithms are anticipated to develop particular outputs by 
identifying the relationships between the input object of each sample (Iqbal 
et al., 2022).  

For example, when unsupervised learning algorithms were provided 
with fruit image data sets, they could categorize fruits into groups according 
to their physical characteristics, such as colour, scales or shapes. As the 
algorithms learn to recognize distinctions by uncovering and identifying 
patterns within each category, unsupervised algorithms further categorize 
the data into increasingly specific or ever-finer subgroups, as presented in 
Fig. 15. Pattern recognition occurs automatically in unsupervised learning 
without receiving any instruction that teaches the system to distinguish 
specific categories. 
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Fig. 15: Block diagram of unsupervised learning 
 

Unsupervised learning often focuses on clustering similar objects or data 
points while placing dissimilar objects in other clusters. Clustering 
algorithms for unsupervised learning can be categorized into:  

a) Exclusive clustering that specifies a data point can exist only in one 
cluster. 

b) Overlapping clustering enables data points to belong to multiple 
clusters at different membership levels.  

c) Hierarchical clustering classifies the data into agglomerative or 
divisive. Agglomerative clustering initially set the data points as 
separate groupings and merged at a later stage. In contrast, divisive 
clustering divides a single data cluster based on data points.  

d) Probabilistic clustering groups the data points based on their 
potential belonging to a specific distribution.  

7.3   Reinforcement Learning 

Reinforcement learning is utilizing an appropriate action to maximize 
reward in a specific situation. Reinforcement learning is used by many 
software and machines to figure out the best action or way to take within a 
particular situation. There is no target output for reinforcement learning 
during the training phase, but the reinforcement agent determines how to 
complete the task. Without a training dataset, reinforcement learning must 
gain knowledge from its experience (Wiering & Van Otterlo, 2012). Fig. 16 
presents the block diagram of reinforcement learning 

Reinforcement learning is the science of decision-making based on the 
trial and error method, intending to learn the optimal behavior in an 
environment to maximize reward. It is a self-teaching system that learns by 
trial and error to achieve the best results. Reinforcement learning employs 
algorithms that learn from outcomes and determine the following action. 
After each action, the algorithm receives feedback that helps to evaluate 
whether the option it made was accurate, neutral, or erroneous (Sutton & 

 

   

   
 

 

   

Input Data Output Data MODEL 



Neural Network – A Black Box Model  
 

19

Barto, 2018). It is an effective strategy for automated systems that make 
numerous small decisions without human intervention. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16: Block diagram of reinforcement learning 
 

The key points of reinforcement learning are: 
a) Input: Input is the initial state from which the model will begin.  
b) Output: Output is the solution to a given problem.  
c) Training: Training is based on the input. The model training is 

based on the input, and the user will determine whether to reward 
or penalize the model based on its output.  

d) The model continues to learn. 
e) The optimal solution is decided based on the greatest reward.  

8. Metaheuristic Algorithms 

Metaheuristic algorithms are a class of optimization algorithms designed 
to search and discover approximate solutions to complicated optimization 
problems. These algorithms are applicable to solve various problem 
domains, including engineering, logistics, finance, and machine learning, 
where finding the global optimum is challenging or computationally costly. 
Some examples of metaheuristic algorithms are genetic algorithm (GA), 
particle swarm optimization (PSO), simulated annealing (SA), ant colony 
optimization (ACO), tabu search, harmony search (HS), and others. Each 
algorithm has distinct features and strategies for exploring and utilizing the 
search space. 
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a) Genetic Algorithms (GA): 
Natural selection and evolution are the sources of inspiration for the 
GA. It operates on a population of candidate solutions. Each solution 
represents a set of parameters. The algorithm uses selection, 
crossover, and mutation operations to generate new candidate 
solutions. It continuously improves the solutions over generations 
(Kuok et al., 2011). 

b) Particle Swarm Optimization (PSO): 
The collective behavior of fish schools or bird flocks inspires PSO. 
Each fish or bird was assumed to be a particle. As the fish schools or 
bird flocks travel through the search space, each particle in the 
population represents a potential solution. The particles eventually 
converge on the best solution by shifting their positions in 
accordance with both their individual best-known position and the 
total population's best-known position (Kuok & Chan, 2012). 

c) Simulated Annealing (SA): 
The metallurgical annealing procedure serves as the basis of SA. 
This algorithm is a stochastic optimization technique that begins 
with a preliminary solution and iteratively investigates the search 
space by accepting moves that enhance the solution. Over time, the 
probability of accepting less desirable answers lowers, allowing the 
algorithm to avoid local optima and converge to the overall best 
solution (Chibante, 2010; Delahaye et al., 2019).  

d) Ant Colony Optimization (ACO): 
The fundamental ACO is based on the foraging habits of ants. It 
entails replicating the behavior of ants that leave pheromone trails to 
communicate and discover the fastest route between their nest and 
food sources. The algorithm utilizes pheromone trails to search for 
an optimal solution, updating the strength of the trails based on the 
effectiveness of the solutions discovered (Dorigo et al., 2006; Dorigo, 
2007). 

e) Tabu Search: 
Tabu Search is a metaheuristic algorithm based on local searches and 
retains a short-term memory referred to as the "tabu list" to avoid 
revisiting recently explored solutions. It investigates the current 
neighborhood solution by employing neighborhood movements 
while avoiding moves that violate specific tabu conditions (Glover 
& Laguna, 1997; Venkateswarlu, 2021). Tabu Search is effective at 
eluding local optima and finding better solutions. 
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f) Harmony Search (HS): 
The basis for HS is musical improvisation. By merging the 
components of existing solutions, HS simulates the process of 
musical improvisation to produce new solutions (Gao et al., 2015; 
Kim, 2016). The algorithm remembers the most successful solutions 
found and continuously improves the solution in accordance with 
harmony values. 

Apart from these few metaheuristic algorithms, a series of metaheuristic 
algorithms have been utilized and will be discussed in the following 
chapters. 

9.   Application of ANN in Hydrological Modelling 

Artificial neural network (ANN) has several applications in hydrological 
modeling. Applying ANN has improved the understanding and prediction 
of different hydrological processes. Below are a few particular applications 
of ANN in hydrological modeling: 

a) Streamflow Prediction: ANN can be used to model and predict 
streamflow, which is extremely important for managing water 
resources, forecasting floods, and monitoring droughts. In order to 
estimate streamflow accurately, ANN can learn intricate correlations 
and create relationships among meteorological factors, including 
rainfall, temperature, humidity, and streamflow. Halff et al. (1993) 
designed a three-layer feedforward ANN using the observed rainfall 
hyetographs as inputs and hydrographs recorded by the US 
Geological Survey at Bellevue, Washington, as the model's output. 
Harun et al., (1999) applied ANN in daily rainfall-runoff modeling 
to estimate inflows into the Pedu and Muda reservoirs in Kedah, 
Malaysia, using three-layer feedforward neural networks with a 
backpropagation learning algorithm. Elshorbagy et al., (2000) have 
used ANN to predict the daily runoff of the Red River in southern 
Manitoba, Canada. Gautam et al., (2000) have simulated runoff for 
the Tono catchment in Japan using a three-layer feedforward network 
backpropagation algorithm. Predicting daily watershed runoff as a 
function of rainfall, snow water equivalent, and temperature was 
investigated by Tokar and Markus (2000). Dibike and Solomatine 
(2001) investigated the use of ANN for daily river flow prediction in 
the Apure River basin in the southwest part of Venezuela. Garcia-
Bartual (2002) applied ANN models for short-term river flow 
forecasting under heavy rain storms for the upper Serpis basin, with 
the outlet in Beniarrés Reservoir, Spain. Dolling and Varas (2002) 
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utilized ANN to predict monthly streamflow in mountain watersheds 
in Chile. Nor et al., (2007) applied a radial basis function (RBF) 
network to simulate streamflow hydrographs for Sungai Bekok 
Catchment, Johor, Malaysia, and Sungai Ketil Catchment, Kedah, 
Malaysia. Noori and Kalin (2016) successfully coupled SWAT and 
ANN models to enhance daily streamflow prediction for 29 nearby 
watersheds around Atlanta, in the southeastern United States. 
Dalkiliç and Hashimi (2020) carried out a study to predict daily 
streamflow for Büyük Menderes River, Turkey, using ANN, wavelet 
neural networks (WNNs), and adaptive neuro-fuzzy inference 
system (ANFIS) models. Teng and Kuok (2021) developed an ANN 
model to forecast the precipitation and streamflow in Sarawak River, 
Malaysia. Gunathilake et al. (2021) developed hydrological models 
and ANN to simulate streamflow in a tropical catchment of Sri 
Lanka. Hassan and Hassan (2021) improved ANN-based streamflow 
forecasting models through data preprocessing for thirteen stations 
located in the Upper Indus Basin, Pakistan. 

b) Rainfall-Runoff Modeling: ANN simulates the transformation from 
rainwater into surface runoff. The transformation of rainfall into 
runoff is a complicated phenomenon. However, the ability of ANN 
to capture the nonlinear relationship between the input rainfall and 
the output runoff has made the accurate simulation of runoff volumes 
and hydrographs possible. Shamseldin (1997) used ANN for daily 
rainfall-runoff modeling and then compared the performance with a 
simple linear model (SLM), seasonally based linear perturbation 
model (LPM), and nearest neighbor linear perturbation model 
(NNLPM). Coulibaly et al., (2000) used an early stopped training 
approach (STA) to improve the neural network daily reservoir inflow 
forecasting for the Chute du-Diable watershed, Northern Quebec. 
Rainfall-runoff models using the ANN method in water resource 
projects were developed by Harun et al., (2002). Nourani et al., (2000) 
utilized a multivariate ANN-wavelet approach for rainfall–runoff 
modeling in Tabriz, Iran. Sarkar and Kuandar (2012) modeled the 
event-based rainfall-runoff using ANN for the Ajay River basin in 
India. Chakravarti et al., (2015) analyzed rainfall-runoff in India 
using ANN. Aoulmi et al., (2021) assessed ANN rainfall-runoff 
models under different input meteorological parameters for Seybouse 
basin, Northeast Algeria. Mohseni and Muskula (2023) modeled 
rainfall-runoff using ANN for the Purna sub-catchment of Upper 
Tapi Basin, India. Lai et al., (2023) developed the metaheuristic 
ANN to enhance the performance of the rainfall-runoff model. 
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c) Flood Forecasting: ANN can be used for flood forecasting by 
combining real-time and historical values for both meteorological 
and hydrological data. ANN is able to forecast and provide early 
warnings of flood disasters by learning the correlations among 
precipitation, river water levels, and other pertinent elements. This 
helps in the preparation and response of disaster management. Liong 
et al., (1996) developed a real-time hourly flow forecasting scheme 
and an early warning flow forecasting scheme for the Upper Bukit 
Timah catchment in Singapore using a feedforward multilayer 
perceptron network with a backpropagation training algorithm. 
Thirumalaiah and Deo (2000) have applied ANN for real-time 
forecasting of hourly flood runoff and daily river stage at Kunta and 
Koida, India. Imrie et al., (2000) developed an ANN model to predict 
extreme runoff values at downstream of Trent River, United 
Kingdom. ANN is also employed in river flood prediction of 
ungauged catchments in the United Kingdom by Wright and 
Dastorani (2001). Ayalew et al., (2007) utilized ANN for real-time 
flood forecasting at the Omo River in southern Ethiopia. Mukerji et 
al., (2009) simulated the flood using ANN, neuro-fuzzy, and neuro-
GA models for the Ajay River Basin in Jharkhand, India. Elsafi 
(2014) adopted ANN for flood forecasting at Dongola Station in the 
River Nile, Sudan. Agarwal et al., (2021) studied flood forecasting 
and flood flow modeling in a river system using ANN for Tar Basin, 
North Carolina, USA. Mistry and Parekh (2022) forecasted the flood 
events using ANN at Deo River, Gujarat, India.  

d) Groundwater Modelling: ANN was used to model and predict 
groundwater levels to ensure sustainable groundwater usage in 
managing water resources. To estimate groundwater levels accurately, 
the parameters that can be used to create the groundwater model 
include precipitation, evapotranspiration, soil characteristics, and 
pumping rates. Nourani et al., (2008) adopted an ANN‐based model 
for spatiotemporal groundwater level forecasting in northwestern 
Iran. Mohammadi (2008) estimated the groundwater table using 
MODFLOW and ANN. Trichakis et al., (2011) studied groundwater 
level simulation using ANN for Edward's aquifer in Texas, USA. 
Khaki et al., (2016) used ANN to model groundwater levels in 
Langat Basin, Malaysia. Lee et al., (2019) adopted ANN for 
groundwater level forecasting and assessed the impacts of 
groundwater levels on Yangpyeong riverside area in South Korea. 
Moghaddam et al., (2019) developed comparative mathematic 
models for forecasting groundwater levels at Birjand Aquifer, South 
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Khorasan, Iran. Al-Waeli et al., (2022) utilized ANN to predict 
groundwater salinity in the West Najaf–Kerbala region, Iraq. 

e) Water Quality Modeling: ANN has been utilized to model and 
forecast water quality data in rivers, lakes, and reservoirs. ANN is 
able to forecast temperature, dissolved oxygen, pH, and pollutant 
concentrations into consideration in water. This will help in 
understanding and managing water quality problems, such as 
eutrophication and contamination. Musavi-Jahromi and Olabi (2008) 
applied ANN in water quality modeling at Karoon River, Iran. Thair 
et al., (2014) successfully developed ANN to predict the water 
quality of the Euphrates River in Iraq. Sarkar and Pandey (2015) 
modeled the river water quality using the ANN technique at Mathura 
City, located on the bank of River Yamuna in Uttar Pradesh, India. 
Isiyaka et al., (2019) developed a water quality model using ANN 
and multivariate statistical techniques. Sulaiman et al., (2019) 
classified the water quality using ANN for three locations: Pontian 
River, Batu Pahat River, and Muar, Malaysia. Ubah et al., (2021) 
forecasted water quality parameters, including pH, Total Dissolved 
Solids (TDS), Electrical Conductivity (EC), and Sodium (Na) using 
ANN for irrigation purposes at Nnewi, Anambra State, Nigeria. 
Setshedi et al., (2021) used ANN to predict the physicochemical 
characteristics of water quality for three district municipalities in 
Eastern Cape Province, South Africa. Rustam et al., (2022) adopted 
ANN for water quality and consumption prediction using data from 
renowned sources such as Kaggle and GitHub.  

f)  Water Demand Forecasting: ANN is able to forecast water demand 
patterns and trends based on variables, including population growth, 
climatic conditions, economic indicators, and historical water 
consumption data. Accurate water demand estimation is essential for 
water supply planning and infrastructure design. Jain et al., (2000) 
forecasted short-term water demand using ANN for the Indian 
Institute of Technology (IIT) Kanpur campus, India. Al-Zahrani and 
Abo-Monasar (2015) predicted urban residential water demand 
based on ANN and time series models for Al-Khobar City in the 
Kingdom of Saudi Arabia. Gwaivangmin and Jiya (2017) predicted 
water demand using ANN for supervisory control at the Laminga 
Water Treatment Plant and its water distribution network in Jos, 
Nigeria. Lorente-Leyva et al., (2019) developed ANN for urban 
water demand forecasting for a principal city at zone north of 
Ecuador. Awad and Zaid-Alkelani (2019) predicted the water 
demand using ANN and a statistical model for Jenin City in the north 


