

Study of Distributed Coordination Function (DCF) and Enhanced DCF (EDCF) in IEEE 802.11 MAC Protocols for Multimedia Applications

Chan Chen Hoong

Bachelor of Engineering with Honors (Electronics & Computer Engineering) 2009/2010

STUDY OF DISTRIBUTED COORDINATION FUNCTION (DCF) AND ENHANCED DCF (EDCF) IN 802.11 MAC PROTOCOLS FOR MULTIMEDIA APPLICATIONS.

CHAN CHEN HOONG

This project is submitted in partial fulfillment of The requirements for the degree of Bachelor of Engineering with Honors (Electronic and Computer Engineering)

> Faculty of Engineering UNIVERSITI MALAYSIA SARAWAK 2010

Dedicated to my beloved family and friends

UNIVERSITI MALAYSIA SARAWAK

			R
	BOR	RANG PENGESAHA	N STATUS TESIS
Judul:			RDINATION FUNCTION (DCF)
		· · · · ·	N 802.11 MAC PROTOCOLS FOR
	MULTIMEDIA AP	PLICATIONS	
		SESI PENGAJIAN:	2006 - 2010
Saya		CHAN CHEN	
		(HURUF BE	(SAR)
	ku membenarkan tesis * ini dis ak dengan syarat-syarat keguna		at Maklumat Akademik, Universiti Malaysia
1. 2.	Tesis adalah hakmilik Unive Pusat Khidmat Maklumat Al tujuan pengajian sahaja.		c. alaysia Sarawak dibenarkan membuat salinan untuk
3.	Membuat pendigitan untuk r		alan Data Kandungan Tempatan.
4.	Pusat Khidmat Maklumat Al ini sebagai bahan pertukaran		alaysia Sarawak dibenarkan membuat salinan tesis
5.	** Sila tandakan (✓) di ko		lan unggi.
			nat yang berdarjah keselamatan atau kepentingan termaktub di dalam AKTA RAHSIA RASMI 1972)
		(Mengandungi maklur badan di mana penyeli	nat TERHAD yang telah ditentukan oleh organisasi/ dikan dijalankan).
	✓ TIDAK TERHAD		
			Disahkan oleh
	1 llow	n_	
	Junker		
-	(TANDATANGAN P	ENULIS)	(TANDATANGAN PENYELIA)
Alamat			
-	46300, PETALING J SELANGOR DARU		DR HUSHAIRI ZEN
-			(Nama Penyelia)
Tarikh:	24 March 201	10	Tarikh:
ATATAN	N * Tesis dimak	sudkan sebagai tesis b	agi Ijazah Doktor Falsafah, Sarjana dan Sarjana Muc
	** Jika tesis ini	i SULIT atau TERHAI	D, sila lampirkan surat daripada pihak berkuasa/orga
	berkenaan d SULIT dan		ali sebab dan tempoh tesis ini perlu dikelaskan sebag

The Following Final Year Project:

Title	:	Study of Distributed Coordination Function (DCF) and Enhanced
		DCF (EDCF) in 802.11 MAC Protocols for Multimedia
		Applications.
Author	:	Chan Chen Hoong
Matric numbe	er:	16056

has been read and certified by:

Dr Hushairi Zen (Supervisor) Date

ACKNOWLEDGEMENT

This project was made possible as a result of the co-operation and support given by several parties. Though I am not able to list down all of them, rest assured I am grateful for their assistance no matter how or what their contribution may be.

A very special note of appreciation is extended to my supportive Final Year Project supervisor, Dr Hushairi Zen for to his undying patience, enlightening advices, constructive comments and constant guidance throughout the course of the project. Also, I would like to dedicate a special gratitude to Pn. Ade Syaheda Wani (as the Final Year Project Coordinator) and to Yu Ka Chai, Lee Liang Wee and Punitha Subbramaniam for being excellent colleagues in our clique of NS-2 networking projects.

Last but definitely not least, I would like to thank my family and friends for all their love, care, support and companion that had helped me in surviving times of insurmountable odds and making my educational years a wonderful and hopefully a successful one.

ABSTRAK

IEEE 802.11e Kawalan Kemasukan Medium (MAC) merupakan satu penambah-baikan kepada piawaian IEEE 802.11 rangkaian kawasan tempatan tanpa wayar (WLAN) untuk menyokong kualiti servis (QoS). 802.11e MAC adalah berdasarkan kepada kawalan berpusat dan juga capaian medium secara bertanding. Projek ini meliputi penilaian mekanisma capaian medium secara bertanding yang diperbaiki iaitu Fungsi Penyelarasan Pengedaran yang Ditingkatkan (EDCF), berbanding dengan 802.11 MAC, Fungsi Penyelarasan Pengedaran (DCF) yang asal. Tiga jenis trafik multimedia dipertimbangkan dalam projek ini adalah suara, video dan data. Penilaian tersebut dilaksanakan menggunakan simulasi NS-2 (versi 2.34) di dalam Ubuntu, sebuah sistem operasi Linux. Metrik-metrik yang digunakan dalam penafsiran ini adalah jumlah hasil proses, masa tangguh, ketaran dan jumlah kehilangan paket. Berdasarkan pada graf bagi keempat-empat metrik ini, prestasi EDCF dan DCF telah ditafsirkan. Selain itu, had kemampuan EDCF dapat dikenalpasti melalui simulasi menggunakan bilangan aliran trafik yang dimanipulasikan. Melalui kajian simulasi ini, kesimpulan yang didapati ialah EDCF boleh menyediakan capaian medium yang berbeza untuk setiap jenis trafik. Hasil simulasi menunjukkan prestasi EDCF adalah lebih baik berbanding dengan DCF.

ABSTRACT

IEEE 802.11e Medium Access Control (MAC) is an enhancement to the legacy IEEE 802.11 standard's Wireless Local Area Network (WLAN) ideally to support Quality-of-Service (QOS). The 802.11e MAC is both centrally-controlled and contention-based channel accesses based. This project covers evaluation of the contention-based channel access mechanism, called Enhanced Distributed Coordination Function (EDCF), in comparison with the 802.11 legacy MAC, Distributed Coordination Function. Three different types of multimedia traffic are considered namely, voice, video and data. The evaluation was performed using ns-2 simulator (version 2.34) on Linux Ubuntu. The metrics used in the evaluation are throughput, delay, jitters and packet loss. The graphs from the metrics benchmarked the performance of EDCF and DCF evaluation. Through this simulation study, EDCF conclusively provides differentiated channel access for various multimedia traffic types. Simulation results proved that comparatively EDCF performs better performance than legacy DCF.

TABLE OF CONTENTS

CONTENT	PAGES
ACKNOWLEDGEMENT	ii
ABSTRAK	iii
ABSTRACT	iv
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xvi

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	3
1.3	Project Objective	4
1.4	Scope of Project	4
1.5	Project Outlines	5

CHAPTER 2 LITERATURE REVIEW

2.1	Project Background	7
2.2	802.11 DCF	11
2.3	802.11e EDCF	18
2.4	Related Works	23
2.5	Network Simulator 2	27
2.6	ITU-T Recommendations	30

CHAPTER 3 METHODOLOGY

3.1	Introd	uction	32
3.2	Patchi	ng EDCF into NS-2.34	34
3.3	Simula	ation Cases	37
	3.3.1	Case 1 - Topology used to compare performances of DCF	38
		and EDCF	
	3.3.2	Case 2 – Topology to Study the Limitation of Multimedia	40
		Stream using EDCF	

3.5	Simul	ation Parameter Values	43
3.6	Analy	ses Metrics	44
	3.6.1	Throughput	45
	3.6.2	Delay	46
	3.6.3	Packet Loss	47
	3.6.4	Jitter	48

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1	Introd	uction	49
4.2	Perfor	mance Study of DCF versus EDCF	49
	4.2.1	Trace Files for DCF and EDCF	50
	4.2.2	Comparison for DCF and EDCF	51
4.3	Detern	nining the Limitation of Number of Nodes under EDCF	56
	4.3.1	Trace Files for Individual Multimedia Traffics	57
	4.3.2	Discussions for Simulations of Multimedia Traffics	60
	4.3.3	NAM File for Multimedia Traffic	66

CHAPTER 5 CONCLUSION AND FUTURE WORK

5.1	Conclusion	70
5.2	Recommendations	71
REFE	RENCES	72
APPE	NDICES	
APPE	NDIX A	76
APPE	NDIX B	83
APPE	NDIX C	90
APPE	NDIX D	99
APPE	NDIX E	102
APPE	NDIX F	105
APPE	NDIX G	108

LIST OF TABLES

TABLES

PAGES

2.1	Different Interframe Spacing	14
2.2	Parameters used in Legacy 802.11b PHY	17
2.3	Priority to Access Category Mappings	19
2.4	Default EDCF Parameters for Simulations	22
2.5	Multimedia Traffic Types and their Characteristics	24
3.1	Multimedia Types and their Characteristics	38
3.2	EDCF Simulation Parameters	43
3.3	Legacy 802.11b Simulation Parameters	44

LIST OF FIGURES

FIGURES		
2.1	MAC and PHY layer	9
2.2	Access Mechanism in MAC Layer	10
2.3	Flow chart of the process of sending data packets under the	12
	CSMA/CA based Distributed Coordination Function (DCF).	
2.4	DCF CSMA/CA	12
2.5	Legacy IEEE 802.11 DCF Channel Access	15
2.6	IEEE 802.11e EDCF Channel Access	20
2.7	Four access categories (ACs) for EDCF	21
2.8	Comparison of Throughput (bits/sec) Between	25
	DCF and EDCF for Various Multimedia Type	
2.9	Comparison of Data Dropped (bps) Between	25
	DCF and EDCF for Various Multimedia Type	
2.10	Comparison of Delay (sec) Between	26
	DCF and EDCF for Various Multimedia Type	

3.1	Project Flow Chart	33
3.2	Simulation Case 1	39
3.3	Simulation Case 2 For Voice and Video Traffic	41
3.4	Simulation Case 2 For Data Traffic	42
3.5	End to End Delay	46
4.1	DCF Trace File (EDCF trace file exhibits similar	50
	characteristics as its DCF counter part)	
4.2	Delay with DCF	52
4.3	Delay with EDCF	53
4.4	Packet Loss with DCF	53
4.5	Packet Loss with EDCF	54
4.6	Throughput with DCF	54
4.7	Throughput with EDCF	55
4.8	Jitters with DCF	55
4.9	Jitters with EDCF	56
4.10	Trace File for Voice Traffic	57
4.11	Trace File for Video Traffic	58

4.12	Trace File for Data Traffic	59
4.13	Voice Delay for Different Number of Nodes	61
4.14	Voice Packet Loss for Different Number of Nodes	62
4.15	Voice Throughput for Different Number of Nodes	62
4.16	Voice Jitter for Different Number of Nodes	63
4.17	Video Delay for Different Number of Nodes	63
4.18	Video Packet Loss for Different Number of Nodes	64
4.19	Video Throughput for Different Number of Nodes	64
4.20	Video Jitter for Different Number of Nodes	65
4.21	Data Packet Loss for Different Number of Nodes	65
4.22	Data Throughput for Different Number of Nodes	66
4.23	NAM Visualization for Voice Traffic	72
4.24	NAM Visualization for Video Traffic	73
4.25	NAM Visualization for Data Traffic	73

LIST OF ABBREVIATION

ACK	-	Acknowledge
AIFS	-	Arbitration Interframe Spacing
AP	-	Access Point
BSS	-	Base Service Set
CBR	-	Constant Bit Rate
CFB	-	Contention Free Burst
CSMA	-	Carrier Sense Multiple Access
CTS	-	Clear To Send
CW _n	-	Contention Window
DCF	-	Distributed Coordination Function
DDRR	-	Distributed Deficit Round Robin
DFS	-	Distributed Fair Scheduling
DIDD	-	Double Increment Double Decrement
DIFS	-	DCF Interframe Spacing
DWFQ	-	Distributed Weighted Fair Queuing

EDCF	-	Enhanced Distributed Coordination Function
EIFS	-	Extended Interframe Spacing
FTP	-	File Transfer Protocol
HTTP	-	Hypertext Transfer Protocol
IEEE	-	Institute of Electrical & Electronics Engineers
IFS	-	Interframe Spacing
IP	-	Internet Protocol
ITU-T	-	ITU Telecommunication Standardization Sector
LAN	-	Local Area Network
LLC	-	Logical Link Control
MAC	-	Media Access Control
MSDU	-	MAC Service Data Unit
N _x	-	Node
NAV	-	Network Allocation Vector
NS-2	-	Network Simulator 2
PCF	-	Point Coordination Function
РНҮ	-	Physical

PIFS	-	PCF Interframe Spacing
QoS	-	Quality of Service
RTS	-	Request To Send
SIFS	-	Short Interframe Spacing
STA	-	Station
TCL	-	Tool Command Language
ТСР	-	Transmission Control Protocol
ТХОР	-	Transmission Opportunity
TCP/IP	-	TCP for Transport Control Protocol/Internet Protocol
UDP	-	User Datagram Protocol
WLAN	-	Wireless Local Area Network

CHAPTER 1

INTRODUCTION

1.1 Introduction

The IEEE 802.11 wireless local area network (WLAN) technology has been a worldwide preference in terms of affordability, simplicity and flexibility convenience. This leading deployed wireless technology provides a network environment that is ubiquitously found in various locations such as café, offices, airport and universities for conventional data applications along with multimedia applications sharing. This high demand by public is concurrent with the significant growth in multimedia application usage such as teleconferencing, media transfer, streaming videos and online gaming.

The IEEE 802.11 Working Groups had employed various task groups that are actively developing improved revisions of the standard [1][2]. This standard comprises of the Physical Layer (PHY) and Medium Access Control (MAC) specifications for WLAN [3]. Improvements include allocation of higher data rates to be used under the PHY specifications. However, high data rate alone does not guarantee support of Quality of Service (QoS) requirements needed in applications such as real time voice, video and audio. The lack of real time QoS support in WLAN has led to studies of Distributed Coordination Function (DCF) mode of 802.11 MAC using data application models on an ad hoc simulator [4]; the architecture and scheduling problems in supporting real time traffic are addressed based on the optional Point Coordination Function (PCF) mode of 802.11 MAC [5] [6]; service differentiation issues based on DCF are investigated in [7] and [8] by varying the MAC parameters for different traffic.

The ad-hoc simulator's architecture is basically similar to the IEEE 802.11e task group in defining the new Enhanced Distributed Coordination Function (EDCF) [9] MAC access method as a standard for QoS enhancement of 802.11 MAC.

1.2 Problem Statement

The legacy 802.11 is governed by two access methods; the Distributed Coordination Function (DCF) and Point Coordination Function (PCF). With QoS support being the center of interest, DCF in legacy 802.11 is noted for being unable to support the concept of differentiating frames with different priorities. Ideally, the DCF is expected to provide a channel access with equal probabilities to all stations contending for the channel access in a circulated manner. That being said, equal access probabilities are not desirable among stations with different priority frames. The emerging Enhanced DCF (EDCF) is designed to provide differentiated, distributed channel accesses for frames with different priorities. As proposed, EDCF provides better performance enhancement for real time traffic as compared to DCF. Thus, a study is required to analyze to what extent EDCF is better over DCF and what are the limitations of EDCF for various multimedia traffic scenarios under ITU-T requirements [10].

1.3 Project Objective

The objective of this project is as followed

- i. To understand and learn to use Network Simulator (NS-2) Software
- To evaluate and compare the network performance of Enhanced Distributed Coordination Function (EDCF) versus legacy Distributed Coordination Function (DCF) access mechanisms in IEEE 802.11
 Wireless LANS by means of a comprehensive set of well known traffic patterns (voice, video and data) and NS-2 as a simulation tool [11].
- iii. To provide quantitative results on how the 802.11e standard makes a difference in QoS architecture governed WLAN.
- iv. To determine the limitation of nodes for individual traffic type that can fulfill ITU-T requirements for EDCF.

1.4 Scope of Project

This project focuses on DCF and EDCF access mechanism that are the basic of 802.11 and 802.11e MAC access protocol respectively. By using both DCF and EDCF, the evaluation of each traffic type is carried out individually with different number of traffic nodes.

1.5 Project Outlines

The Final Year Project Report records the project's overall progress from the preliminary idea development till the project execution and analysis. It is essentially divided into five chapters, which are introduction; literature review; methodology; results, analysis and discussion and, conclusion and recommendations. The brief information of each chapter is described below:

Chapter 1 reviews the aims and purpose of the project as to its relevance, practicality and appeal. The introduction also assesses the description of the approach to the problem and its context. It also explains the brief outline of the structure of the following chapters.

Chapter 2 summarizes and reviews the overall studies and researches which are related to the project. The literature review covered several researches regarding MAC protocol, the mechanisms of DCF & EDCF, NS-2 and ITU-T standards.

Chapter 3 discusses the methodology development as well as the NS-2 simulation tool that is thoroughly used in this project.