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ABSTRAK 

G protein-coupled receptors (GPCRs) comprise the largest family in the receptorome 

(the subset of the genome encoding membrane receptors). These signal transducing 

molecules convey extracellular signals into the cell interior by activating intracellular 

networks such as heterotrimeric G protein-dependent signaling pathways. They are 

widely distributed in the nervous system where they mediate a myriad of key 

processes including cognition, mood, appetite, pain and synaptic transmission. 

Currently, at least 30% of marketed drugs are GPCR modulators. With global aging, 

the CNS drug market is set to grow. GPCR ligands for CNS receptors feature 

prominently in the pipeline of major pharmaceutical companies. Among GPCRs 

widely investigated as drug targets include the metabotropic glutamate, adenosine 

and cannabinoid receptors, as evidenced by recently patented ligands for these 

receptors. Metabotropic glutamate receptors regulate signaling by glutamate, the 

major excitatory brain neurotransmitter, while adenosine is a ubiquitous 

neuromodulater mediating diverse physiological effects. Recent patents for ligands of 

these receptors include mGluR5 antagonists and adenosine A1 receptor agonists. 

Cannabinoid receptors used to be one of the most important GPCR drug discovery 

targets for treating obesity and metabolic syndrome, but the unexpected withdrawal 

of several CB1 antagonists/inverse agonists has prompted alternative approaches. 

These recent patents are the outcome of the continuing focus of many pharmaceutical 

companies to identify novel GPCR agonist, antagonist or allosteric modulators useful 

to treat psychiatric and neurological diseases for which more effective drugs are 

urgently needed. 
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Abstract: G protein-coupled receptors (GPCRs) comprise the largest family in the 
receptorome (the subset of the genome encoding membrane receptors). These 
signal transducing molecules convey extracellular signals into the cell interior by 
activating intracellular networks such as heterotrimeric G protein-dependent 
signaling pathways. They are widely distributed in the nervous system where they 
mediate a myriad of key processes including cognition, mood, appetite, pain and 
synaptic transmission. Currently, at least 30% of marketed drugs are GPCR 
modulators. With global aging, the CNS drug market is set to grow. GPCR ligands 
for CNS receptors feature prominently in the pipeline of major pharmaceutical 
companies. Among GPCRs widely investigated as drug targets include the 
metabotropic glutamate, adenosine and cannabinoid receptors, as evidenced by 
recently patented ligands for these receptors. Metabotropic glutamate receptors 
regulate signaling by glutamate, the major excitatory brain neurotransmitter, while 
adenosine is a ubiquitous neuromodulater mediating diverse physiological effects. 
Recent patents for ligands of these receptors include mGluR5 antagonists and 
adenosine A1 receptor agonists. Cannabinoid receptors used to be one of the most 
important GPCR drug discovery targets for treating obesity and metabolic 
syndrome, but the unexpected withdrawal of several CB1 antagonists/inverse 
agonists has prompted alternative approaches. These recent patents are the 
outcome of the continuing focus of many pharmaceutical companies to identify 
novel GPCR agonist, antagonist or allosteric modulators useful to treat psychiatric 
and neurological diseases for which more effective drugs are urgently needed.  

Keywords: G protein, receptor, signaling, drug target, drug discovery, ligand, agonist, 
antagonist, metabotropic glutamate, adenosine, cannabinoid.  

INTRODUCTION 

G Protein-Coupled Receptors 

 With approximately 5%, or about 1000 [1] out of the 20,000-25,000 protein-coding 
genes of the human genome [2] encoding for G-protein coupled receptors (GPCRs), this 
protein superfamily represents the largest class of cell surface proteins in humans. GPCRs 
transduce a diverse range of extracellular signals that include light, ions, odorants, 
neurotransmitters, hormones, chemokines, nucleotides, lipids, amino acids and proteins [3].  
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Their tissue distribution is wide, with particularly high representation in the brain [4]. Not 
surprisingly, they mediate a wide range of physiological processes ranging from vision to 
taste, reproduction, metabolism, hormone release, muscle contraction, inflammation, 
growth, differentiation and cell proliferation [5]. In the CNS, GPCRs play important roles in 
cognition, analgesia, appetite, mood, blood pressure, synaptic transmission and neuronal 
excitability. As at least 30% of marketed drugs have GPCRs as their molecular target, they 
are among the most intensely investigated drug targets in the pharmaceutical industry [6].  

 GPCRs share a common molecular architecture of seven transmembrane helices con-
nected by intra- and extracellular loops, an extracellular N-terminus and an intracellular C-
terminus [7]. They have been recently classified phylogenetically under the GRAFS system 
into 5 main families: glutamate, rhodopsin, adhesion, frizzled/taste2 and secretin [8]. 
Prominent GPCRs in the nervous system includes the adrenergic, muscarinic, serotonin, 
dopamine, metabotropic glutamate, adenosine, opioid and cannabinoid receptors.  

G Protein Signaling 

 In the classical GPCR signaling paradigm, the liganded receptor undergoes confor-
mational changes that activate membrane-bound signal transducing heterotrimeric guanine 
nucleotide-binding proteins (G proteins), which consist of an α subunit and a βγ dimer. The 
16 known mammalian Gα subunits are classified into 4 families (αi, αs, αq, and α12), with 
five β and eleven γ subtypes [9]. The Gα subunit is activated when it binds GTP in 
exchange for GDP, which then leads to the dissociation of G proteins both from each other 
and the receptor. Both can then modulate the activities of a variety of effector molecules 
ranging from ion channels to enzymes such as adenylyl cyclase, guanylyl cyclase, 
phospholipases, phosphodiesterases, and phosphoinositide-3 kinase (PI3K). In many cases, 
this leads to the generation of second messengers such as cyclic AMP, cyclic GMP, 
calcium, diacylglycerol and inositol 1,4,5-triphosphate. These can give rise to signaling 
pathways which eventually produce a cellular response, such as enzyme secretion or cell 
proliferation [5]. G protein signaling is terminated when the Gα-bound GTP is hydrolyzed, 
bringing the Gα subunit to its basal GDP-bound state, a process accelerated by GTPase-
activating proteins such as RGS (Regulator of G protein signaling) proteins [10]. This 
promotes the re-formation of the αβγ heterotrimer for coupling to the receptor. Signaling is 
also turned off when second messenger molecules are degraded, or receptor desensitized 
through phosphorylation by G protein-coupled receptor kinases (GRK) which promotes 
binding by arrestins that occlude binding to G proteins. After their activation, many GPCRs 
are targeted by arrestins for internalization via clathrin-mediated endocytosis [11]. 

 GPCR signaling is regulated by a host of accessory proteins which may influence ligand 
affinity, receptor-G protein coupling, receptor-effector coupling, receptor dimerization and 
receptor targeting to subcellular compartments [12]. GPCRs can also exist as homooligo-
mers or heterooligomers, where the heterooligomeric receptors may have different func-
tional characteristics compared to the contributing receptors. The discovery of various 
partner or scaffold proteins has made it increasingly clear that GPCRs can signal indepen-
dently of G proteins, hence the shift towards the naming of these receptors as heptahelical/ 
serpentine or 7 transmembrane receptors (7TMRs) [13]. Numerous studies have shown that 
binding of arrestins not only desensitize GPCRs but also serves as a scaffold for activating 
signaling pathways via JNK (Jun N-terminal kinase), PI3K, p38 and Akt [14]. The beta 
arrestin-bound β2 adrenergic receptor activates ERK (extracellular signal related kinases) 
1/2 independently of G proteins [15].  
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GPCR Ligands 

 GPCR ligands are generally divided into agonists and anta-gonists. They can be 
orthosteric ligands which bind at the ligand-binding or active site, or allosteric modulators 
that regulate receptors by binding at another site. An agonist can be defined as a drug which 
upon binding its receptor produces a biological response, in contrast to an antagonist which 
produces no response. In comparison to a ‘full’ agonist, a partial agonist produces less than 
the maximal response at full receptor occupancy. In a system with spare receptors or 
receptor reserve, a maximal response can be obtained without occupying all the receptors. 
According to the two state model for receptor activation, receptors switch between a resting 
state (R) and an activated state (R*) [16]. An antagonist binds equally well to both 
conformations, whereas an agonist preferentially binds R* over R, shifting the equilibrium 
towards R*. In 1980, the ternary complex model for GPCRs was proposed, where agonist 
binds with high affinity to the receptors that are coupled to G protein, whereas antagonist 
binding is independent of G protein [17]. This model was extended to ‘constitutively 
activated’ receptors which isomerize to the R* state in the absence of an agonist [18]. The 
main effect of a (neutral) antagonist is to reduce agonist occupancy of the receptor by 
blocking the active site. Inverse agonists are those that possess ‘negative intrinsic activity’ 
in that upon binding to constitutively activated receptors, they shift the equilibrium from R* 
towards R [19]. In agonist directed trafficking or biased agonism, receptors can attain 
several activated states, each corresponding to a different signal route, such that each 
agonist may preferentially direct receptor activation towards a specific signaling pathway 
[20]. 

GPCR Drug Discovery 

 GPCRs form one third of novel drug targets launched in the decade of 1990-2000. At 
least 30% of all current experimental and marketed small-molecule drugs act on GPCRs, 
including drugs for a wide array of CNS disorders. Hence GPCR modulators represent the 
largest single drug class. The GPCR family is estimated to be 15% of the ‘druggable’ subset 
of the human genome (genes expressing proteins able to bind drug-like small molecules) 
[21]. Hence GPCRs are major drug discovery targets and the focus of intense research by 
both academia and the pharmaceutical industry.  

 The completion of the sequencing of the human genome has resulted in the identification 
of ‘orphan’ receptors by sequence homology. These receptors number in the hundreds and 
are the subject of increasing patent files, but whose ligands and functions are not yet known. 
After its identification, a receptor’s physiology, function and disease-relevance can be 
postulated based on its anatomical distribution, expression levels during disease and any 
identified ligands. The identification of potential ligands is usually accomplished by high 
throughput screening of these receptors against corporate compound libraries via receptor 
binding or functional assays [22]. Screening of libraries against constitutively active 
receptors can identify antagonists or inverse agonists. Where receptors are found to 
participate in a signaling complex or pathway, the additional proteins involved increases the 
number of potential drug targets. The structure of identified ligands can be used as a 
template to design synthetic small-molecule modulators – be it agonists, antagonists, inverse 
agonists or allosteric regulators. Drug design is facilitated by the availability of GPCR 
structural data, which can come from either structural studies or in silico modeling. 
Promising lead compounds are then validated by in vitro and in vivo assays. However, 
ligand identification remains the important first step in the drug discovery process. Table 1 
summarizes recent patents for ligands of three CNS GPCRs, to be surveyed in this review.  



GPCR Drug Pipeline Frontiers in CNS Drug Discovery, 2010, Vol. 1     403 

METABOTROPIC GLUTAMATE RECEPTOR  

Background 

 L-Glutamate is the major excitatory neurotransmitter in the mammalian brain. It plays a 
vital role in the mediation of excitatory synaptic transmission, as most central neuronal 
circuits involve glutamatergic transmission at some level [23]. It binds to and activates two 
groups of postsynaptic receptors. The first group is the ionotropic glutamate (iGlu) receptors 
comprising NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid), and Kainate receptors, which are ligand-gated ion channels 
transducing glutamate binding into cation influx in postsynaptic neurons. The second group 
is the metabotropic glutamate (mGlu) receptors which mediate the slower actions of 
glutamate. They are GPCRs belonging to the Glutamate Receptor family, which also 
includes two GABA (gamma-aminobutyric acid) receptors, a calcium-sensing receptor and 
probably taste receptors. These receptors are characterized by a large N-terminal extra-
cellular domain [24].  

 There are eight mGlu receptors subdivided into three groups based on sequence 
homology, pharmacology and intracellular signaling mechanisms. Group I mGlu receptors 
(comprising mGluR1 and mGluR5) are coupled to Gαq to activate phospholipase C (PLC) 
for mobilization of intracellular calcium, while Groups II (mGluR2 and mGluR3) and III 
(mGluR4, 6, 7 and 8) receptors couple to Gαi for inhibition of adenylyl cyclase [25].  

Table 1. Recent Patents for GPCR Ligands 

Target 
GPCR 

GPCR 
subtype 

Type of 
Ligand Patent Holder Patent 

Number 
Date of 

Publication Ref. 

Metabotropic 
Glutamate mGluR5 Antagonist Hoffmann-La 

Roche, Inc. US7153874 Dec 26, 2006 [35] 

Metabotropic 
Glutamate mGluR5 Antagonist Hoffmann-La 

Roche, Inc. US7091222 Aug 15, 2006 [36] 

Metabotropic 
Glutamate mGluR5 Antagonist 

NPS 
Pharmaceuticals, 
Inc.; Astrazeneca 

AB. 

US7112595 Sep 26, 2006 [37] 

Adenosine A1 Agonist and 
Partial Agonist 

CV Therapeutics, 
Inc. US7022681 April 4, 2006 [47] 

Cannabinoid CB1 
Antagonist 

and/or Inverse 
Agonist 

Merck & Co., Inc. US7057051 June 6, 2006 [67] 

 

Drug and Disease 

 The importance of glutamate as an excitatory neurotransmitter suggests that mGlu 
receptors participate in a wide variety of CNS functions, regulating both presynaptic control 
of glutamate release, as well as postsynaptic control of neuronal responses to glutamate. 
Hence they have been suggested to be involved in a variety of pathophysiological processes 
and disease states affecting the CNS, where much of the pathology is thought to be due to 
excessive glutamate-induced excitation of CNS neurons.  
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 Metabotropic glutamate receptors mediate basal excitatory synaptic transmission and 
play multiple roles in synaptic plasticity including long-term potentiation (LTP) and long-
term depression (LTD). These are thought to underlie learning and memory, thus making 
them potential drug targets for CNS disorders such as Alzheimer’s disease [26]. 

 Metabotropic glutamate receptors are also seen as potential targets in the treatment of 
both convulsive and non-convulsive seizures because they modulate iGluR at glutamatergic 
synapses only under certain conditions, and so may selectively reduce hyperactive 
glutamatergic synapse communication with the cortex of thalamus without significantly 
affecting normal response rates [27].  

 Since mGlu receptors are differentially distributed in several basal ganglia nuclei where 
they regulate neuronal signaling, and the direct and indirect pathways of the basal ganglia 
act as a fine tuning mechanism in movement control, the pharmacological manipulation of 
these receptors may restore the balance between the direct and indirect pathways and thus 
relieve the symptoms of Parkinson’s disease and related movement disorders, without the 
side effects of current dopamine replacement therapies [28]. Group I mGlu receptor 
antagonists and Group II mGlu receptor agonists have been proposed as suitable candidates 
[29].  

Recent Patent 

 The mGluR5 has been implicated in synaptic plasticity, learning and memory, and 
shown to be necessary for some forms of LTP and LTD in different brain regions, making 
them potential therapeutic targets for many CNS disorders [30]. Studies in animal models 
have suggested that mGluR5 antagonists may be useful in various psychiatric and 
neurological disorders, chronic pain, substance abuse/withdrawal and obesity [31].  

 The majority of mGlu receptor ligands are amino-acid derivatives that bind to the 
glutamate-binding site situated within the large N-terminal domain of the receptor. Highly 
selective ligands for mGlu receptors had been a challenge to develop, due in part to their 
highly conserved glutamate binding site. In recent years, an increasing number of selective 
agonists, antagonists and allosteric modulators have been developed which activate or 
inhibit specific mGlu receptor subtypes [26]. MPEP (2-methyl-6-(phenylethynyl)-pyridine) 
is the first potent and selective mGluR5 antagonist, while the newer MTEP (3-[2-methyl-
1,3-thiazol-4-yl)ethynyl]pyridine is reported to be more selective for mGluR5 over 
mGluR1, and with fewer off-target effects such as inhibition of NMDA receptors [32]. 
These com-pounds belong to a novel family of non-amino acid-like allosteric mGluR5 
modulators. They are non-competitive antagonists which bind at sites within the seven 
transmembrane spanning domain, independently of glutamate binding at the N-terminal 
extracellular domain [33]. They are postulated to negatively modulate the receptor by 
blocking conformational changes effected by agonist binding [34]. Pharmacological 
characterization of these antagonists has enabled better understanding of their potential uses, 
the functions of mGLuR5 and ways to develop more selective ligands.  

 Patent US7153874 [35] is for novel imidazole derivatives potentially useful for 
treatment or prevention of mGluR5-mediated diseases. These are the mGluR5 antagonists 4-
[1-Aryl-imidazol-4-ylethynyl]-2-alkyl-pyridine and 1-heteroaryl-imidazol-4-ylethynyl]-2-
alkyl-pyridine derivatives. A second patent (US7091222) from the same inventors was for 
compounds that differed from those in US7153874 by the nature of side-chain substituents 
[36]. In competition experiments with radiolabeled MPEP for binding mGluR5, the 
compounds from both patents were reported to block MPEP binding with Ki values in the 
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range of 16-122nM, suggesting a relatively high affinity for the allosteric binding site used 
by MPEP. Patent US7112595 is for heteropolycyclic antagonists of Group I mGlu receptors, 
particularly the mGluR5 [37]. These compounds typically incorporate an oxadiazole moiety 
in between the benzene rings of a benzaldazine platform. 

 Overall, these patented compounds bear structural resemblance to the benzaldazine 
analogs reported to constitute a novel family of selective allosteric mGluR5 modulators that 
bind at the MPEP binding site [38]. Metabotropic glutamate receptor ligands which are 
amino acids or its derivatives tend to have poor blood-brain barrier penetration. These 
compounds are all non-amino-acid derivatives. They are likely to be selective allosteric 
mGluR5 antagonists that bind at a transmenbrane domain site to negatively modulate the 
receptor. These should serve as useful tools to understand modulation of mGluR5, and may 
find important therapeutic uses.  

ADENOSINE RECEPTOR 

Background 

 Originally known as P1 purinoceptors, four adenosine A1 receptor subtypes have been 
cloned, pharmacologically characterized, and designated A1, A2A, A2B and A3, following 
their chronological discovery [39]. They are classified within the Rhodopsin family, under 
the α subgroup and the MECA receptor cluster which also comprise the melanocortin, 
endothelial differentiation and cannabinoid receptors [24].  

 The A1 and A3 subtypes couple to the Gαi family subunits to inhibit adenylyl cyclase 
while A2A and A2B subtypes stimulate adenylyl cyclase via Gαs. Other signaling pathways 
include the activation of mitogen-activated protein (MAP) kinase by the A2A subtype via 
p21(ras) and rap1[40].  

 Adenosine is an endogenous purine nucleoside which is an important neuromodulator in 
the nervous system. It is present in every cell type where it is produced during metabolic 
stress and released into the extracellular space, to produce its effect by binding to adenosine 
receptors. Its range of physiological effects include neurotransmitter release, vascular 
smooth muscle tone, heart rate, atrial contractility, lipolysis and regulation of platelet, 
kidney and white blood cell function. The A1 subtype is the most comprehensively studied.  

Drug and Disease 

 A1 receptors are most densely expressed in the brain (cortex, hippocampus and 
cerebellum). Their activation inhibits many neurons postsynaptically by inducing or 
modulating ionic currents, and presynaptically by reducing transmitter release. A1 receptor 
agonists mimic these inhibitory effects and are potentially useful neuroprotective agents. 
Analogs of adenosine have been shown to have sedative and anti-convulsant effects and to 
modulate dopaminergic control of movement [41]. Antagonists lead to excitatory effects, 
and may be used to enhance cognition in geriatric therapy, and for various forms of 
dementia, such as Alzheimer’s disease [42]. Blockade of striatal A2A receptors have 
produced neuroprotective effects [43], suggesting its relevance in neurodegenerative 
disorders such as Parkinson’s disease. The A2B subtype is the least well characterized 
because of the lack of potent, selective agonists [44]. In humans, the A3 subtype has the 
most restricted distribution, with low density in the brain.  
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 The adenosine receptors are important targets in drug research. Intervention of adenosine 
metabolism is a potential tool for treating CNS disorders such as epilepsy, sleep-, 
movement- (Parkinsonism or Huntington’s disease) or psychiatric disorders (Alzheimer’s 
disease, depression, schizophrenia or addiction) [45]. The development of new ligands has 
so far been directed by medicinal chemistry and many have been generated by introducing 
modifications to the structure of the lead compounds adenosine and methylxanthine [46]. 
The prototypical full A1 receptor agonists are the N6-substituted adenosine analogs CCPA 
(2-chloro-N6-cyclopentyl-adenosine), CPA (N6 -cyclopentyladenosine) and R-PIA ((R)-N6 –
(2-phenylisopropyl)adenosine). A partial agonist is postulated to give less unwanted effects 
by not evoking all possible responses through activating only a subset of receptors in a 
system with receptor reserve. 

Recent Patent 

 Both agonists and antagonists for the A1 receptor have great therapeutic potential in a 
wide range of clinical conditions. The adenosine receptors have been investigated as drug 
targets for many years, but two factors make it difficult to develop useful agents. First, the 
receptors are ubiquitously expressed, potentially producing multiple physiological effects in 
peripheral tissues. Second, existing A1 receptor agonists tend to activate at least one other 
subtype [41].  

 Patent US7022681 [47] is for compounds based on the structure in Fig. (1). They 
represent optimization of the lead compound N6-substituted adenosine, and are described as 
A1 receptor agonists and partial agonists. These are patented for possible use in such CNS 
disorders as pain, epilepsy and emesis. Their usefulness will be dependent on a high degree 
of selectivity for the A1 receptor, while the partial agonists may give lesser unwanted effects 
by evoking mainly the desired therapeutic effect, and deliver sustained results through 
reduced receptor downregulation and desensitization [48].  

N
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Fig. (1). Structural formula of A1 receptor agonists in Patent US7022681. 

CANNABINOID RECEPTOR 

Background 

 Two cannabinoid receptor subtypes have been cloned, CB1 and CB2, both coupled to 
Gαi subunits for inhibition of adenylyl cyclase and activation of MAP kinase. CB1 receptors 
also inhibit presynaptic N- and P/Q-type calcium channels and activate inwardly rectifying 
potassium channels. Other signal transduction pathways involve focal adhesion kinase, 
PI3K, sphingomyelinase and nitric oxide synthase (reviewed by Mackie [49]). CB1 
receptors are expressed mainly in neurons, while CB2 receptors are also found in the brain 
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but principally they are expressed in non-neuronal tissues, primarily on immune cells. Brain 
CB1 receptors have been shown to undergo constitutive activation [50]. There is emerging 
evidence for additional types and subtypes of cannabinoid receptors [51]. 

 The main psychoactive component of the Cannabis sativa plant, ∆9- tetrahydro-canna-
binol (THC), is a cannabinoid receptor agonist. The search for an endogenous ligand led to 
the discovery of an endogenous cannabinoid system comprising the receptors, the endo-
genous ligands (endocannabinoids) and their associated molecular targets, transport system 
and degrading enzymes [52]. The first two endocannabinoid families with cannabimimetic 
activity discovered are the acyl ethanolamides (such as anandamide (arachidonoyl 
ethanolamide or AEA)) and the acyl glycerols exemplified by 2-arachidonylglycerol (2-
AG). They are agonists at both CB1 and CB2 receptor subtypes, with AEA being a partial 
agonist and 2-AG a full agonist. Both endocannabinoids are expressed in the brain, with 2-
AG levels about 100 times higher than AEA [53]. The third endocannabinoid in the series is 
the ether-type 2-arachidonylglyceryl ether (noladin ether) [54].  

 Endocannabinoids are produced when needed, by cleavage of membrane lipid precursors 
[55]. Their action is terminated in part by uptake into cells, a process involving a putative 
endocannabinoid membrane transporter (EMT), for which inhibitors have been developed. 
Anandamide and related ethanolamides are degraded by fatty acid amine hydrolase (FAAH) 
while 2-AG is degraded by monoacylglycerol lipase (MAG lipase or MGL). FAAH is better 
characterized than MGL, and inhibitors have been developed.  

Drug and Disease 

 Neuronal stimulation induces synthesis of endocannabinoids which act as retrograde 
signaling agents by activating presynaptic CB1 receptors to inhibit neurotransmitter release 
in a selective and restricted manner [56]. Cannabinoid receptor agonists as well as endo-
cannabinoids activate brain signaling pathways linked to neuronal repair and neuro-
protective responses [57]. As such, cannabinergic agents have been shown to increase 
neuronal viability from ischemic events, stroke, traumatic brain injury, Alzheimer’s disease, 
Parkinson’s disease and motor neuron disorders. Accordingly, enhancement of endo-
cannabinoid responses via inhibition of FAAH or EMT have been shown to reduce neuronal 
damage from excitotoxicity [58]. In contrast to CB1, less is known about the physiological 
roles of CB2 receptors, which most likely include modulation of cytokine release from 
immune cells [59]. As CB2 receptor agonists have been reported to promote analgesia, they 
may find clinical application in chronic pain [60]. 

 Development of selective inhibitors of endocannabinoid transport and degradation may 
allow treatments that avoid the psychoactive properties of cannabinoid agonists. It may also 
avoid receptor desensitization associated with agonist stimulation by working through 
endocannabinoids normally released in response to an insult [58]. 

 When development of antagonists/inverse agonists of the cannabinoid receptors 
represented one of the most active areas in drug development, most major pharmaceutical 
companies were believed to be undertaking parallel CB1 antagonist development programs 
[52]. Given that cannabis enhanced appetite, it was postulated that CB1 receptor antagonists 
could be used in obesity as an appetite suppressant. The first CB1 receptor antagonist/ 
inverse agonist reported was rimonabant (SR141716A or Accomplia®), a diarylpyrazole 
derivative with a more than 1000-fold selectivity (at sub-micromolar concentration) over 
CB2 subtypes and non-cannabinoid receptors [52]. Large clinical trials showed that it 
promoted sustained weight loss and improvement in lipid profiles, central obesity, insulin 
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resistance and incidence of metabolic syndrome [61]. Since CB1 antagonists also attenuate 
the rewarding properties of opioids, it has been postulated to be useful in ‘craving’ disorders 
such as smoking cessation and drug abuse [62]. 

Recent Patents 

 With rimonabant as a prototype, many analogs and other CB1 antagonists have been 
developed, mostly for the therapeutic indications of obesity and smoking cessation. 
Following rimonabant were its analogs such as AM251 [63], AM281 and SR147778 
(surinabant) [64], all diarylpyrazoles with high receptor affinity. Other derivatives include 
the 3,4-diarylpyrazoline SLV-319 (ibipinabant), the fused bicyclic derivative otenabant and 
the acyclic amide taranabant [65].  

 Patent number US7057051 [66] is for compounds which are antagonists and/or inverse 
agonists of the CB1 receptor. Unlike the aforementioned compounds, these are substituted 
imidazoles based on the structural formula in Fig. (2). These compounds are rimonabant 
analogs with an imidazole ring in place of the pyrazole ring of rimonabant derivatives. 
Aside from that, most of the compounds retain the structural determinants of rimonabant’s 
potency and CB1 receptor selectivity, as described by Lan et al: a para-substituted phenyl 
ring at the 5-position, a carboxamide at the 3-position and a 2,4-dichlorophenyl substituent 
at the 1-position [67] of the imidazole ring corresponding to rimonabant’s pyrazole ring. 
They were also reported to show pharmacokinetic and pharmacodynamic properties suitable 
for human drug therapy, and are patented for use in diseases mediated by the CB1 receptor. 
However, recent events have cast doubt on the utility of rimonabant-like compounds in 
obesity. Rimonabant was withdrawn (following its suspension by the European Medicines 
Agency in October 2008) in the wake of significant psychiatric side effects, notably anxiety 
and depression. This led to the withdrawal from clinical development of taranabant, 
otenabant, ibipinabant and surinabant by their respective developers [68].  

N N

R2O

R1

Ar1 Ar2  
Fig (2). Structural formula of substituted imidazoles of Patent US7057051. 

 As all these were antagonists with inverse agonist activity, it is postulated that 
compounds that are either neutral antagonists, or inverse agonists without antagonist activity 
may give a more acceptable side effect profile. Consistent with this, animal studies have 
shown nausea and vomiting caused by neutral antagonists but not antagonists with inverse 
agonist activity [69]. A second strategy to limit psychiatric side effects would be to use 
antagonists that do not penetrate the central nervous system but instead block possible 
overactivity of the endocannabinoid system in peripheral cells and organs. One such agent 
has been shown to reduce food intake in rats [70]. Lastly, given that blockade of CB1 
receptors in humans can result in depression, it may be possible to treat depression by 
activating these receptors. As administration of CB1 receptor ligands would affect all 
available CB1 receptors, a more selective effect may be obtained by enhancing the action of 
physiologically-released endocannabinoids. EMT or FAAH inhibitors would be potential 
candidates for this role. 
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CURRENT AND FUTURE DEVELOPMENTS 

 GPCRs constitute the single largest class of small-molecule drug targets [21]. With the 
availability of the human genome sequence, it has been reported that out of the estimated 
367 human GPCRs for endogenous (non-olfactory) ligands (endoGPCRs) [4], about 200 
have had their ligand identified, leaving about 160 with unknown natural ligand, the so-
called orphan receptors. These receptors are the focus of many pharmaceutical companies 
that use high throughput binding assays to determine the endogenous ligands 
(‘deorphanising’ the receptor). New approaches to ligand development will likely combine 
the traditional medicinal chemistry methods with advances in the fields of genomics, 
proteomics and bioinformatics. Due to the high cost of a high throughput screening cam-
paign and the high attrition rate of lead compounds during clinical testing, computational 
approaches are increasingly used to screen only candidate molecules possessing drug-like 
properties. 

 A second major effort is to screen for small molecule ligands without prior knowledge of 
endogenous ligands, by high throughput functional assays. This is commonly done with 
cell-based assays, which is continuously improving with novel technological advances. A 
new non-invasive assay which does not require labeling, utilizes microelectrodes embedded 
to the bottom of microwell plates to measure changes in cell impedance, which sensitively 
reflect changes in cell morphology upon agonist treatment [71]. The use of standardized cell 
culture using frozen cell division-arrested cells offers reduced data variability Advances in 
screening technologies hold promise of improving and expediting the process of uncovering 
novel modulators of GPCR function. Since currently only about 10% of endoGPCRs have 
been targeted by drugs [4], the race to identify novel GPCR-directed ligands carries 
immense potential for new drug discovery [72].  
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