

BLUR ASSESSMENT USING EDGE INFORMATION

ADELINE NG SIN LIN

Bachelor of Engineering with Honours (Electronics & Computer Engineering) 2010

UNIVERSITI MALAYSIA SARAWAK

Judul:	BLUR ASSESSMENT	USING EDGE INFORMATION
	SESI PENGA	JIAN: <u>2009/2010</u>
Saya	ADELI	NE NG SIN LIN
	(HURU	F BESAR)
menga dengai	ku membenarkan tesis * ini disimpan di Pusat K n syarat-syarat kegunaan seperti berikut:	Chidmat Maklumat Akademik, Universiti Malaysia Sarawak
1. 2.	Tesis adalah hakmilik Universiti Malaysia Sara Pusat Khidmat Maklumat Akademik, Univer tujuan pengajian sahaja.	awak. siti Malaysia Sarawak dibenarkan membuat salinan untuk
3.	Membuat pendigitan untuk membangunkan Pa	ngkalan Data Kandungan Tempatan.
4.	Pusat Khidmat Maklumat Akademik, Univers sebagai bahan pertukaran antara institusi penga	iti Malaysia Sarawak dibenarkan membuat salinan tesis in ajian tinggi.
5.	** Sila tandakan (✓) di kotak yang berkenaa	an
	SULIT (Mengandungi ma Malaysia seperti y	klumat yang berdarjah keselamatan atau kepentingan rang termaktub di dalam AKTA RAHSIA RASMI 1972).
	TERHAD (Mengandungi ma badan di mana per	klumat TERHAD yang telah ditentukan oleh organisasi/ 1yelidikan dijalankan).
	✓ TIDAK TERHAD	
		Disahkan oleh
	(TANDATANGAN PENULIS)	(TANDATANGAN PENYELIA)
A	lamat tetap: 242 LRG. 2 EASTERN PARK	
	93150 KUCHING, SARAWAK.	IR. DAVID BONG BOON LIANG
		Nama Penyelia

CATATAN

* Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah, Sarjana dan Sarjana Muda.
 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.

This Final Year Project attached here:

Title : Blur Assessment Using Edge Information

Student Name : Adeline Ng Sin Lin

Matric Number : 15896

has been read and approved by:

Ir. David Bong Boon Liang

(Supervisor)

Date

Blur Assessment Using Edge Information

ADELINE NG SIN LIN

This Thesis Is Submitted To The Faculty of Engineering, Universiti Malaysia Sarawak As A Partial Fulfilment of the Requirements for The Degree of Bachelor of Engineering with Honours (Electronic & Computer Engineering) 2010 Dedicated to my beloved family and friends

ACKNOWLEDGEMENT

Many individuals who contribute in assorted ways to the project and also in the making of the thesis deserved special mention here.

First and foremost, I am heartily thankful to my project supervisor, Ir. David Bong Boon Liang, whose abundant assistance, unflinching encouragement, guidance and support from the initial to the final level upon the completion of my final year project. I am much indebted to him for using his precious time to read this thesis and gave his critical comments about it. Without his persistent help this project and thesis would not have been possible.

Heartfelt thanks goes to my project coordinator, Mdm. Ade Syaheda Wani for her personal assistance in the thesis format and structure. I also appreciate the involvement of other lecturers who contribute their advice and incessantly sharing their crucial experience in producing a good thesis.

I would like to express my deepest gratitude to my beloved family members and friends who provide invaluable motivation and continuous support throughout the duration of the project.

Last but not least, I offer my regards and blessings to all of those who supported me in any respect till the completion of the project.

ABSTRAK

Kualiti imej digital sering dijejaskan oleh artifak kekaburan dalam keadaan seperti mampatan, ralat fokus, pergerakan relatif dan transmisi multimedia. Kehilangan komponen frekuensi tinggi menyebabkan kesan pengaburan dalam imej tersebut. Dalam kertas kerja ini, penilaian kekaburan yang berunsur rujukan penuh dan tidak penuh secara objektif dibentangkan untuk mengukur darjah *Gaussian blur* dalam imej berdasarkan maklumat yang diperolehi daripada pengesanan sisi imej. Darjah *Gaussian blur* suatu imej ialah jumlah purata lebar sisi daripada keseluruhan sisi yang dikesan. Prestasi penilaian kekaburan juga disahkan melalui keputusan subjektif. Keputusan menandakan hubungan rapat di antara penilaian kekaburan dengan persepsi manusia. Ukuran kekaburan sesuai digunakan dalam pelbagai aplikasi seperti anggaran kekaburan dalam fotografi digital, pemprosesan imej, percetakan atau sebagai perbandingan metrik antara dua imej. Kod bahasa pengaturcaraan untuk mengimplementasikan penilaian kekaburan ditulis dalam program MATLAB.

ABSTRACT

Quality of digital images is often impaired by blur artifacts in situation such as compression, focus error, relative motion and multimedia transmission. The loss of high frequency content leads to blurring effect in the image. In this paper, objective full-reference and no-reference blur assessments are presented to measure the degree of Gaussian blur in the image by using edge information. The degree of Gaussian blur of an image is the average of total edge widths over all detected edges. The performance of the blur assessment is also validated with subjective results. The results show that the blur assessment correlates relatively well with human perception. The blur measurement is applicable to numerous applications such as blur estimation in digital photography, image processing, printing or as a simple metric in comparing two images. The source code of this low computational complexity blur assessment is written in MATLAB program.

TABLE OF CONTENTS

Acknowledgement	i
Abstrak	ii
Abstract	iii
Table of Contents	iv
List of Tables	ix
List of Figures	X
List of Abbreviations	XV

Chapter 1 INTRODUCTION

1.1	Project Background	1
1.2	Problem Statement	2
1.3	Project Objectives	3
1.4	Project Scope	4
1.5	Thesis Outline	5

Chapter 2 LITERATURE REVIEW

2.1	Introduction	6
2.2	Digital Images	7
	2.2.1 Binary Image	8

	2.2.2	Grayscale Image	9
	2.2.3	RGB Image	9
2.3	Color I	Models	9
	2.3.1	RGB Color Space	10
	2.3.2	YCbCr Color Space	11
2.4	Image	Quality Assessment	12
	2.4.1	Objective Image Quality Assessment	13
	2.4.2	Subjective Evaluation	15
	2.4.3	Objective vs. Subjective Evaluation	16
2.5	Image	Artifacts	17
	2.5.1	Blurriness	17
	2.5.2	Blockiness	18
	2.5.3	Noisiness	18
2.6	Blur A	ssessment	19
2.7	Gaussi	an Filtering in Spatial Domain	21
2.8	Edge I	Detection	23
	2.8.1	Sobel Edge Detection	24
2.9	MATL	AB Software	26
	2.9.1	Image Processing Toolbox	27

Chapter 3 METHODOLOGY

3.1	Introd	uction	28
3.2	Test Iı	mages	28
	3.2.1	Creating Blur Images	29
	3.2.2	Blur Images from LIVE Database	33

3.3	NR Im	plementation	33
3.4	FR Im	plementation	37
3.5	Blur M	leasurement	39
	3.5.1	Edge Criteria	39
	3.5.2	Find Local Minimum and Local Maximum	44
	3.5.3	Blur Measurement Algorithm	46
3.6	Proble	ms Anticipated	49

Chapter 4 RESULTS, ANALYSIS AND DISCUSSION

4.1	Introduction	51
4.2	Results from Implementation	51
	4.2.1 NR Blur Measurement on Luminance	55
	Component	
	4.2.2 Correlation with Subjective Evaluation	58
4.3	FR Implementation	60
4.4	Analysis of NR Blur Measurement	64
	4.4.1 on Grayscale Component	64
	4.4.2 using Grayscale Images	69
	4.4.3 using Horizontal Edge Information	72
4.5	Analysis using LIVE Database Simulated Blur	77
	Images	
	4.5.1 NR Implementation	77
	4.5.2 FR Implementation	83
4.6	Discussion	86

Chapter 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	89
5.2	Recommendations	91

REFERENCES

92

APPENDICES

Appendix A	Name of Each Test Image and its Size	98
Appendix B	NR Blur Assessment MATLAB Source	99
	Code	
Appendix C	FR Blur Assessment MATLAB Source	105
	Code	
Appendix D	Insignificant Edge in Row 377 of Test	111
	Image 7 ($\sigma = 0.4$)	
Appendix E	Insignificant Edge in Row 374 of Test	112
	Image 7 ($\sigma = 0.4$)	
Appendix F	Insignificant Edge in Row 377 of Test	113
	Image 7 ($\sigma = 0.4$) Removed	
Appendix G	Insignificant Edge in Row 374 of Test	114
	Image 7 ($\sigma = 0.4$) Removed	
Appendix H	Test Images and its Graphical Results	115
Appendix I	Table of Results for NR Blur Measurement	144
Appendix J	Table of Results for FR Blur Measurement	145
Appendix K	Absolute Difference between NR and FR	146
	Blur Measurements	

Appendix L	Blur Measurement using NR Method on	147
	Grayscale Component	
Appendix M	Absolute Difference in Blur Measurement	148
	using Luminance and Grayscale	
	Components	
Appendix N	Blur Measurement on Grayscale Images	149
Appendix O	Absolute Difference in Blur Measurements	150
	between Grayscale Images and RGB	
	Images Represented by Grayscale	
	Component	
Appendix P	Blur Measurement using Horizontal Edge	151
	Detection	
Appendix Q	Gaussian Blur Standard Deviation Values	152
	to Distort Each Original Test Image from	
	LIVE Database	
Appendix R	Blur Measurement based on FR and NR	156
	Implementation using LIVE Database	
	Gaussian Blur Images	
Appendix S	DMOS Values	160
Appendix T	Table of Results of NBM based on NR	164
	Implementation (using LIVE Database	
	Gaussian Blur Images)	
Appendix U	Table of Results of NBM based on FR	168
	Implementation (using LIVE Database	
	Gaussian Blur Images)	
	Jaussian Diur miages)	

viii

LIST OF TABLES

Table		Page
4.1	Number of Bins based on Gaussian Blur Standard Deviation (σ)	53
4.2	Blur Measurement Results for Test Image 1	56
4.3	Comparison of Blur Measurement for Test Image 1	61
	based on NR and FR Implementations	
4.4	Comparison of Blur Measurement for Test Image 1	66
	based on NR Implementation measuring on Luminance	
	Component and Grayscale Component	
4.5	Comparison of Blur Measurements using Grayscale	70
	Image and RGB Image Represented by Grayscale	
	Component of Test Image 1	
4.6	Range of Blur Measurement using Vertical Edges and	75
	Horizontal Edges	
4.7	Blur Measurements for Test Image 5	78
4.8	FR Blur Measurement for Test Image 5	83

LIST OF FIGURES

Figure		Page
2.1	A Grayscale Image as a Function	7
2.2	Digital Images: (a) Binary Image (b) Grayscale Image	8
	(c) RGB Image	
2.3	Schematic of the RBG Color Cube	10
2.4	RGB to YCbCr Image Conversion: (a) RGB Image	11
	(b) YCbCr Image (c) Y Component Image (d) Cb	
	Component Image (e) Cr Component Image	
2.5	Distortion Types: (a) Blurriness (b) Blockiness	19
	(c) Noise	
2.6	Gaussian Filtering: (a) Original Lena Image	22
	(b) Gaussian Filtering with $\sigma = 1.0$ (c) Gaussian	
	Filtering with $\sigma = 5.0$	
2.7	Edge Detection: (a) Model of an Ideal Digital Edge	23
	(b) Model of a Ramp Digital Edge	
2.8	Sobel Operator: (a) Sobel Vertical Mask (b) Sobel	25
	Horizontal Mask	
2.9	Sobel Edge Detection: (a) An Integrated Circuit	26
	(b) The Circuit after Sobel Filtering (c) The Circuit	
	after Vertical Sobel Filtering (d) The Circuit after	
	Horizontal Sobel Filtering	

2.10	MATLAB version 7.6.0.324 (R2008A) Interface	27
3.1	Gaussian Blur on Test Image 1 with: (a) $\sigma = 0$ (b) $\sigma =$	30
	0.4 (c) $\sigma = 0.8$ (d) $\sigma = 1.2$ (e) $\sigma = 1.6$ (f) $\sigma = 2.0$	
3.2	Flow Chart of Creating Blur Images	32
3.3	Figure 3.3: Flow Chart of NR Blur Measurement on	35
	Luminance Component	
3.4	Figure 3.4: Flow Chart of NR Blur Measurement on	36
	Gray-level Component	
3.5	Figure 3.5: Flow Chart of FR Blur Measurement on	38
	Luminance Component	
3.6	False Edge on Local Minimum and Local Maximum	40
	Positions in Row 400 of Test Image 7 Blurred with	
	$\sigma = 0.4$	
3.7	False Edge on Local Minimum and Local Maximum	43
	Positions in Row 400 of Test Image 7 Blurred with	
	$\sigma = 0.4$ Removed	
3.8	Flow Chart of Finding Local Minimum and Local	45
	Maximum	
3.9	Measuring the Edge Width of an Edge in Row 400 of	47
	Test Image 1	
3.10	Flow Chart on the Procedures to Obtain Blur	48
	Measurement	
3.11	Two Regions Separated by a Vertical Edge	50

4.1	(a) Grayscale Image of Test Image 1 (b) Gray-level	52
	Histogram of Original and Distorted Images of Test	
	Image 1	
4.2	(a) Pixel Value in Column 344~354 (Row 200) of Test	54
	Image 1 with $\sigma = 0$ (c) Pixel Values of Original and	
	Distorted Images (d) Zoom-in Pixel Values	
4.3	Luminance Component of Test Image 1 with (a) $\sigma = 0$	55
	(b) $\sigma = 0.4$ (c) $\sigma = 0.8$ (d) $\sigma = 1.2$ (e) $\sigma = 1.6$	
	(f) $\sigma = 2.0$	
4.4	Blur Measurement versus the Gaussian Blur (σ)	56
4.5	Objective Blur Measurement for Test Image 1	57
4.6	Blur Metric Comparison between 10 Test Images (Test	58
	Image 1 until Test Image 10)	
4.7	Objective Blur Measurement for Test Image 1 by P.	59
	Marziliano et al.	
4.8	FR Blur Measurement Results for Test Image 1	60
4.9	Comparison between NR and FR Blur Assessments	62
4.10	Absolute Difference between Blur Measurement from	63
	FR and NR Implementations for All 29 Test Images	
4.11	Grayscale Component of Test Image 1 with (a) $\sigma = 0$	65
	(b) $\sigma = 0.4$ (c) $\sigma = 0.8$ (d) $\sigma = 1.2$ (e) $\sigma = 1.6$	
	(f) $\sigma = 2.0$	
4.12	2 Blur Measurement on Luminance Component and	67
	Grayscale Component for Test Image 1	

xii

4.13	Absolute Difference between Blur Measured on	68
	Luminance Component and Grayscale Component for	
	All 29 Test Images	
4.14	Comparison between Blur Measurement using	71
	Grayscale Image and RGB Image Represented by	
	Grayscale Component of Test Image 1	
4.15	Difference between Blur Measurement using Grayscale	72
	Image and RGB Image Represented by Grayscale	
	Component for All 29 Test Images	
4.16	Blur Assessment using Vertical Edge Information and	73
	Horizontal Edge Information for Test Image 1	
4.17	Absolute Difference between Blur Measurement using	74
	Vertical Edges and Horizontal Edges for All 29 Test	
	Images	
4.18	The Range of Blur Measurements using Vertical Edges	76
4.19	The Range of Blur Measurements using Horizontal	76
4.19	The Range of Blur Measurements using Horizontal Edges	76
4.194.20	The Range of Blur Measurements using Horizontal Edges Blur Assessment using NR Method for Test Image 5	76 78
4.194.204.21	The Range of Blur Measurements using Horizontal Edges Blur Assessment using NR Method for Test Image 5 DMOS for All 29 Test Images Blurred with Different	76 78 79
4.194.204.21	The Range of Blur Measurements using Horizontal Edges Blur Assessment using NR Method for Test Image 5 DMOS for All 29 Test Images Blurred with Different Standard Deviation Values	76 78 79
4.194.204.214.22	The Range of Blur Measurements using Horizontal Edges Blur Assessment using NR Method for Test Image 5 DMOS for All 29 Test Images Blurred with Different Standard Deviation Values SDBM and DMOS versus Gaussian Blur Standard	76 78 79 81
4.194.204.214.22	 The Range of Blur Measurements using Horizontal Edges Blur Assessment using NR Method for Test Image 5 DMOS for All 29 Test Images Blurred with Different Standard Deviation Values SDBM and DMOS versus Gaussian Blur Standard Deviation for Test Image 5 	76 78 79 81
 4.19 4.20 4.21 4.22 4.23 	 The Range of Blur Measurements using Horizontal Edges Blur Assessment using NR Method for Test Image 5 DMOS for All 29 Test Images Blurred with Different Standard Deviation Values SDBM and DMOS versus Gaussian Blur Standard Deviation for Test Image 5 Scaling Results between Blur Measurements and 	76 78 79 81

4.24	4 Correlation between Objective and Subjective Results	
	for all 29 Test Images	
4.25	Blur Assessment using FR Method for Test Image 5	84
4.26	SDBM and DMOS versus Gaussian Blur Standard	84
	Deviation for Test Image 5	
4.27	Scaling Results between Blur Measurements and	85
	DMOS values	
4.28	Correlation between Objective and Subjective Results	86
	for All 29 Test Images	

LIST OF ABBREVATIONS

BM	_	Blur metric
Bmp	_	Bitmap
DCT	_	Discrete Cosine Transform
DMOS	_	Differential Mean Opinion Score
FR	_	Full-reference
HVS	_	Human Visual System
JPEG	_	Joint Photographic Experts Group
MOS	_	Mean Opinion Score
MSE	_	Mean Square Error
NBM	_	Normalized blur measurement
NR	_	No-reference
PSNR	_	Peak Signal-to-Noise Ratio
RGB	_	Red Green Blue
RF	_	Reduced-reference
SDBM	_	Square root of difference in blur measurement
VQEG	_	Video Quality Experts Group
YCbCr	_	Luminance and Chrominance information
YIQ	_	Luminance In-phase Quadrature
YUV	_	Luminance and Chrominance information
α	_	Gain between two gradients
σ	_	Gaussian blur standard deviation

BM_{FR}	-	Blur measurement from FR implementation
BM _G	-	Blur measurement on gray-level component
BM _{GI}	-	Blur measurement using grayscale image
BM_H	-	Blur measurement using horizontal edge detection
BM _{NR}	_	Blur measurement from NR implementation
BM _{RI}	_	Blur measurement on RGB image represented by
		grayscale component
BM_{V}	_	Blur measurement using vertical edge detection
BM_Y	_	Blur measurement on luminance component

CHAPTER 1

INTRODUCTION

1.1 Project Background

Along with the rapid advances in digital and multimedia imaging industry, digital images have been playing an increasingly important role in the communication of visual information. Digital images can be classified as binary images, color images, grayscale images and so forth. Unfortunately, these images can be degraded during acquisition, compression, transmission or even processing. Thus, a measure to the image quality is necessary to assess the degree of degradation. There are indeed many great efforts made towards the development of image quality assessment to produce suitable methods of assessing the quality of the image to measure visual artifacts like brightness, blurriness and jerkiness.

Methods of measuring the artifacts are categorized into objective and subjective evaluation. Objective method is based on mathematical measure while subjective method relies on the perception of a selected group of human observers such as professionals or lay viewers. Human visual perception on the quality of the image is very important as human observers are the final arbiters who determine the acceptability of the image contents. Researchers have developed various perceptual image quality metrics where these metrics are used to measure the global distortion but a perceptual objective image quality analysis to measure a specific artifact is rarely found. There are a few objective measurements proposed for blockiness but less attention is devoted for other artifacts like blur and noise. Therefore, the aim of this project is to propose an objective blur assessment using edge information which correlates well with human visual perception.

1.2 Problem Statement

Most digital imaging capture devices and electronically displaying visual information devices aim to produce the best image quality. When an artifact like blur is introduced in an image due to acquisition or compression, the blur image has to be enhanced in order to look visually appealing. However, there is a possibility that this corrected image might not satisfy human perception. Various people evaluate the quality differently due to the sensitivity of human eye. Therefore, a blur metric which correlates with human visual is necessary to measure the blur image to determine the level of degradation so that it can be corrected to a certain extent to produce a better quality image and maintain the pleasure of human observers in viewing the image. For instance, in digital photography application, the metric is used to notify user the level of blurring in the image that has been captured.

The blur assessment proposed in this thesis is an objective method. Objective image assessment is least preferable as the most reliable means to access the image quality is through subjective evaluation where the quality of the image is evaluated by human. However, it is not an easy task to conduct a subjective evaluation image assessment because it is expensive and time-consuming [1]. Due to the limitations in subjective evaluation, researchers believed that it is useful to design objective method as long as it produces results that correlate closely with human visual system (HVS) [2]. There are 3 approaches to objective image quality assessment that can be considered such as no-reference (NR) measurement, reduced-reference (RR) measurement and full-reference (FR) measurement.

1.3 Project Objectives

The objectives of the project are:

- a) To implement objective NR and FR blur assessments using edge information with MATLAB as the assessment tool.
- b) To compare and analyze the blur metric that is measured on luminance component for color images and grayscale intensity component for gray-level images.
- c) To compare and investigate the difference between blur assessment using grayscale images and RGB images measuring on grayscale component.
- d) To test the difference of blur assessment using vertical edge detection and horizontal edge detection.
- e) To validate the performance of the objective blur assessment with subjective testing results.