STUDY OF BIODIESEL PRODUCTION FROM VEGETABLE OILS AND ITS APPLICATION IN DIESEL ENGINE

LEE TONG MIN

Thesis is Submitted To Faculty of Engineering, Universiti Malaysia Sarawak In partial fulfilment of the Requirements For the Bachelor Degree of Engineering with Honours (Mechanical and Manufacturing Engineering) 2009

UNIVERSITI MALAYSIA SARAWAK

	BORANG P	ENYERAHAN TESIS	R13a
Judul: STUD	Y OF BIODIESEL PROD	UCTION FROM VEGETABLE OILS AND	ITS
APPL	ICATION IN DIESEL ENG	INE	_
	SESI PEN	GAJIAN: <u>2008/2009</u>	
Saya	LE	E TONG MIN	_
	(HU	RUF BESAR)	
mengaku me Malaysia Sar	mbenarkan tesis * ini disimp awak dengan syarat-syarat keg	an di Pusat Khidmat Maklumat Akademik, Univ unaan seperti berikut:	ersiti
1. Tesis adala	h hakmilik Universiti Malaysi	a Sarawak.	
2. Pusat Khic untuk tuiua	mat Maklumat Akademik, Ur n pengaijan sahaja.	nversiti Malaysia Sarawak dibenarkan membuat sa	lınan
3. Membuat p	endigitan untuk membangunk	an Pangkalan Data Kandungan Tempatan.	
4. Pusat Khid	mat Maklumat Akademik, Ur	iversiti Malaysia Sarawak dibenarkan membuat sa	linan
tesis ini sel	agai bahan pertukaran antara i	nstitusi pengajian tinggi.	
J. ·· Sha tan	iakali (V) ui illalla kotak yalig	Derkeinaan	
SI SI	JLIT (Mengand kepenting RAHSIA	ungi maklumat yang berdarjah keselamatan an Malaysia seperti yang termaktub di dalam A RASMI 1972).	atau KTA
	ERHAD (Mengand organisasi	ungi maklumat TERHAD yang telah ditentukan /badan di mana penyelidikan dijalankan).	oleh
	DAR IERHAD	Disahkan oleh	
(TANDATANO	GAN PENULIS)	(TANDATANGAN PENYE	LIA)
Alamat tetap:	19-24, Vista Impiana,	Dr. Abu Saleh Ahmed	
	Section 10, Taman Bukit Se	rdang,	
	43300, Seri Kembangan,		
	Selangor.		
Tarikh:		Tarikh:	
Catatan * **	Tesis ini dimaksudkan sebagai t Jika tesis ini SULIT atau T berkenaan dengan menyertakan	esis bagi Ijazah Doktor Falsafah, Sarjana, dan Sarjana Muda. ERHAD, sila lampirkan surat daripada pihak berkuasa/orga sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULI	anisasi T atau

TERHAD.

Approval Sheet

Final Year Project attached here:

 Title
 : Study of Biodiesel Production from Vegetable Oils and Its

 Application in Diesel Engine

Student Name : Lee Tong Min

Matric No : 14344

Has been read and approved by:

Dr. Abu Saleh Ahmed

Date

(Supervisor)

Dedicated to, My beloved family and friends

ACKNOWLEDGEMENT

The author would like to express his sincere gratitude to all the individuals who have assisted and guided him during his project study.

First of all, the author would like to express his deepest appreciation to his supervisor, Dr. Abu Saleh Ahmed for his patience, invaluable advice, and restless supports for the author's Final Year Project. The author would also like to take this opportunity to thank his supervisor for his superb supervision and guidance as well as giving the author extraordinary experiences from the very early stage which has made them the backbone of the research and so to this thesis. Without the supervisor guidance, it will be a tough start for the author's research. The author would also like to thank his mentor, Mr. Nazeri Abdul Rahman for his precious opinions and motivation. The author would like to express his gratitude to the Faculty of Engineering, Universiti Malaysia Sarawak for the facilities and supports provided.

The author would also like to thank all the lab assistants who have assisted him throughout the project. The author's deepest appreciation goes to Mr. Ricky Stu Anding for his helps and supports during the ongoing research. There are many things that the author and Mr. Ricky shared and discussed among themselves throughout the research.

Finally, the author would like to thank to his family for their inspiration, encouragement and continuous support.

ABSTRAK

Biodisel ialah sejenis bahanapi alternatif yang dihasilkan melalui transesterifikasi minyak sayur. Penghasilan biodisel dengan menggunakan minyak sayur terpakai adalah penting kerana kos penghasilannya yang rendah dan keupayaannya untuk kitar semula minyak terpakai. Pengkajian ini menitikberatkan kecekapan dalam penukaran minyak masak tulen dan minyak masak terpakai ke biodisel dan penilaian biodisel minyak sayur melalui prestasi enjin. Kaedah transesterifikasi pemangkin alkali dengan minyak sawit, minyak bunga matahari, minyak kelapa dan minyak terpakai dijalankan dan kecekapan penukaran ke biodisel dinilai melalui jumlah biodisel yang dihasilkan. Disel normal B0 (iaitu 0% biodisel dan 100% disel) dan campuran biodisel yang berlainan B10, B20, B30, B40 dan B50 diuji dalam enjin disel dan prestasi enjin direkodkan. Dengan menggunakan nisbah isipadu 1:1 metanol ke minyak sayur dan pemangkin kalium hidroksida (KOH), penukaran ke biodisel minyak sawit menghasilkan jumlah biodisel yang tertinggi. Sebaliknya, penukaran ke biodisel minyak sayur terpakai menghasilkan jumlah biodisel yang terendah. Enjin disel yang diisi dengan B50 biodisel minyak kelapa menghasilkan penurunan yang terendah dalam keluaran kuasa enjin dan tambahan terendah dalam penggunaan bahan api tentu jikalau dibandingkan dengan penggunaan biodisel normal. Manakala pengisian enjin disel dengan B50 biodisel minyak sayur terpakai akan menghasilkan penurunan kecekapan mekanikal yang terendah. Walaubagaimanapun, penggunaan bahan api biodisel campuran yang lebih rendah seperti B10 dan B20 akan menghasilkan variasi enjin prestasi yang lebih rendah.

ABSTRACT

Biodiesel is one of the alternative fuels which are produced from transesterification of vegetable oil. Biodiesel production using waste vegetable oils is of great interest due to its low cost and the ability to recycle and reuse waste oils. This study concerns the efficient conversion of straight and waste vegetable oil to biodiesel and the assessment of vegetable oil biodiesel in terms of the resulted engine performance. Alkali-catalyzed transesterification of palm, sunflower, coconut and waste oils was carried out and the vegetable oil conversion to biodiesel efficiency is rated by the amount of biodiesel yield. Normal diesel B0 (i.e. 0% biodiesel and 100% diesel) and different types of biodiesel blends B10, B20, B30, B40 and B50 were tested in diesel engine and the engine performance was recorded. By using 1:1 volume ratio of methanol to vegetable oil and potassium hydroxide (KOH) catalyst, the conversion to palm oil biodiesel produced the highest yield. Conversely, conversion to waste vegetable oil biodiesel resulted in the lowest yield. Diesel engine fuelled with B50 coconut oil biodiesel blend resulted in lowest drop in engine power output and increment in specific fuel consumption if compared to using normal diesel. While fuelling with B50 waste vegetable oil biodiesel blend, it resulted in the lowest drop in mechanical efficiency. However, lower variation in engine performance is resulted when fuelling with lower biodiesel blend like B10 and B20.

TABLE OF CONTENTS

CONTENT	PAGE
ACKNOWLEGEMENT	i
ABSTRAK	ii
ABSTRACT	iii
TABLE OF CONTENT	iv
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xvi

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Biodiesel Production	3
1.3	Economic of using Waste Vegetable Oil Biodiesel	3

	1.3.1 Pros	spect of Using Waste Vegetable Oil as	5
	Bio	diesel Production Feedstock	
1.4	Biodiesel Pro	oduction Challenges	6
1.5	Engine Perfo	ormance with Biodiesel Usage	7
1.6	Environment	tal Impact	8
1.7	Objectives		12
СНА	PTER 2 LITI	ERATURE REVIEW	
2.1	Biodiesel in	Worldwide	13
	2.2.1	Biodiesel Production in Asian	16
		Countries	
2.2	Biodiesel in	Malaysia	17
2.3	Biodiesel Pro	oduction in General	19
	2.3.1	Transesterification of Vegetable Oils	20
	2.3.2	Biodiesel Production using Vegetable	22
		Oils and Alternative Feedstock	
	2.3.3	Alternative Biodiesel Production	27

Methods

CHAPTER 3 METHODOLOGY

3.1	Preparation of	of Waste Vegetable Oil for Biodiesel	32
	Production		
3.2	Preparation of	of Straight Vegetable Oil for Biodiesel	34
	Production		
3.3	General Proc	redure for Biodiesel Production	35
	3.3.1	Washing	36
	3.3.2	Drying and Storage	38
3.4	Blending Bio	odiesel	38
3.5	Engine Perfo	ormance	41
	3.5.1	Calculation for Engine Power Output	44
	3.5.2	Calculation for SFC	44
	3.5.3	Calculation for Mechanical Efficiency	44
3.6	Burning Test	t Procedure	46

CHAPTER 4 RESULT AND DISCUSSION

4.1	Biodiesel Production from St	traight and Waste Vegetable Oil	47
1.1	biodicsel i foddetion nom b	duight and waste vegetable on	• •

	4.1.1	Proportion of Catalyst and Methanol Used	47
		For Biodiesel Production	
	4.1.2	Purification	49
	4.1.3	Produced Biodiesel	50
4.2	Engine Perfo	rmance Testing	53
	4.2.1	Diesel Engine Testing with Palm Oil	53
		Biodiesel Blends	
	4.2.2	Diesel Engine Testing with Sunflower	58
		Oil Biodiesel Blends	
	4.2.3	Diesel Engine Testing with Coconut	62
		Oil Biodiesel Blends	
	4.2.4	Diesel Engine Testing with Waste	67
		Vegetable Oil Biodiesel Blends	
4.3	Study on the	Engine Performance Result	70
4.4	Comparison on the Variations in Engine Performance		72
4.5	Burning Test		77

CHAPTER 5 CONCLUSION AND RECOMMENDATION

APPE	APPENDIX	
REFERENCES		86
5.3	Recommendation	84
5.2	Limitations on Study	81
5.1	Conclusion	79

LIST OF TABLES

CONTENT		PAGE
1.1	Engine Testing Result in Different	8
	Blending Percentage	
2.1	Effects of Various Treatments on the	26
	Physical and Chemical Properties of Waste	
	Cooking Oil	
3.1	Diesel Engine Specifications	43
3.2	Experimental data for speed, brake horse power,	42
	indicated horse power and efficiency of diesel	
	engine using various type of biodiesel (without	
	result)	
4.1	Amount of Methanol and Catalyst Required for	48
	Optimum Biodiesel Yield	
4.2	Average Data Recorded from PALM Biodiesel	54
	Blends Testing on Diesel Engine	

4.3	Diesel Engine Testing Result of PALM Biodiesel	55
	Fuel from Different Blending Ratio	
4.4	Average Data Recorded from SUN Biodiesel	59
	Testing on Diesel Engine	
4.5	Diesel Engine Testing Results Using SUN	60
	Biodiesel Fuel from Different Blending Ratio	
4.6	Average Data Recorded from COCO Biodiesel	63
	Testing on Diesel Engine	
4.7	Diesel Engine Testing Results Using COCO	64
	Biodiesel Fuel from Different Blending Ratio	
4.8	Average Data Obtained from WVO Biodiesel	67
	Testing on Diesel Engine	
4.9	Diesel Engine Testing Results using WVO	68
	Biodiesel Fuel from Different Blending Ratio	
5.1	Biodiesel Fuel Quality Standards	84

LIST OF FIGURES

CONTENT		PAGE	
1.1	World's Region Oil Consumption by Million	2	
	Barrels Daily		
1.2	Variation of CO with Load for Different Fuels	9	
	Tested		
1.3	Variation of NO_x with Load for Different Fuels	10	
	Tested		
1.4	Variation of Smoke Density with Load for	11	
	Different Fuels Tested		
2.1	Reaction Mechanism for Alkaline-Catalyzed	19	
	Transesterification of Vegetable Oil		
2.2	Direct Esterification Reaction	22	
2.3	Two Step Supercritical Methanol (Reaction 1	28	
	and 2) Reaction Mechanism		

2.4	Two Step Supercritical Methanol (Reaction 3	29
	and 4) Reaction Mechanism	
2.5	The Effects of Reaction Pressure on the	31
	Conversion of Soybean Oil to Methyl	
	Ester Yield	
3.1	Biodiesel Production Flowchart	32
3.2	Filtrating Waste Vegetable Oil	33
3.3	Magnetic Stirrer (Having both Functions:	34
	Heat and Stir)	
3.4	Settling of Mixture (Methoxide and Coconut	36
	Oil) in Separatory Funnel	
3.5	Washing Biodiesel	37
3.6	Palm Oil Biodiesel Blends (from left to right:	39
	B0, B10, B20, B30, B40)	
3.7	Coconut Oil Biodiesel Blends (from left to right:	40
	B0, B10, B20, B30, B40)	

3.8	Sunflower Oil Biodiesel Blends (from left to	40
	right: B0, B10, B20, B30, B40)	
3.9	Palm Oil Biodiesel Blends (from left to right:	41
	B0, B10, B20, B30, B40)	
3.10	Diesel Engine Used for Engine Performance Testing	42
	(Model: Techno-mate, TNM-TDE-700)	
4.1	Photos Showing Raw Palm Oil (left) and	50
	PALM Biodiesel (right)	
4.2	Photos Showing Raw Sunflower Oil (left) and	51
	SUN Biodiesel (right)	
4.3	Photos Showing Raw Coconut Oil (left) and	51
	COCO Biodiesel (right)	
4.4	Photos Showing Waste Vegetable Oil (left) and	52
	WVO Biodiesel (right)	
4.5	Biodiesel Production Volume	52
4.6	Engine Power Output versus PALM Biodiesel	56
	Blending Percentage	

4.7	Specific Fuel Consumption versus PALM	57
	Biodiesel Blending Percentage	
4.8	Mechanical Efficiency versus PALM Biodiesel	58
	Blending Percentage	
4.9	Engine Power Output versus SUN Biodiesel	60
	Blending Percentage	
4.10	Specific Fuel Consumption versus SUN	61
	Biodiesel Blending Percentage	
4.11	Mechanical Efficiency versus SUN Biodiesel	62
	Blending Percentage	
4.12	Engine Power Output versus COCO Biodiesel	65
	Blending Percentage	
4.13	Specific Fuel Consumption versus COCO	65
	Biodiesel Blending Percentage	
4.14	Mechanical Efficiency versus COCO Biodiesel	66
	Blending Percentage	

4.15	Engine Power Output versus WVO Biodiesel	69
	Blending Percentage	
4.16	Specific Fuel Consumption versus WVO Biodiesel	69
	Blending Percentage	
4.17	Mechanical Efficiency versus WVO Biodiesel	70
	Blending Percentage	
4.18	Percentage of Reduction on Engine Power Output	73
	versus Biodiesel Blending Percentage	
4.19	Percentage of Increment in SFC versus Biodiesel	74
	Blending Percentage	
4.20	Percentage of Decrement on Mechanical	75
	Efficiency versus Biodiesel Blending Percentage	
4.21	Video Screenshots (Burning with Normal Diesel)	77
4.22	Video Screenshots (Burning with B20 PALM	77
	Biodiesel Blend)	
5.1	Tachometer Used to Measure Motor Speed	82

LIST OF ABBREVIATIONS

А	-	Ampere
ASTM	-	American Society for Testing and Materials
B0	-	Biodiesel Blend with 0% Biodiesel and 100% Diesel
B10	-	Biodiesel Blend with 10% Biodiesel and 90% Diesel
B20	-	Biodiesel Blend with 20% Biodiesel and 80% Diesel
B30	-	Biodiesel Blend with 30% Biodiesel and 70% Diesel
B40	-	Biodiesel Blend with 40% Biodiesel and 60% Diesel
B50	-	Biodiesel Blend with 50% Biodiesel and 50% Diesel
B60	-	Biodiesel Blend with 60% Biodiesel and 40% Diesel
B80	-	Biodiesel Blend with 80% Biodiesel and 20% Diesel
B100	-	Biodiesel Blend with 100% Biodiesel and 0% Diesel
b/d	-	Barrel per Day
Bhp	-	Brake Horse Power
°C	-	Degree Celsius
CI	-	Compression Ignition
cm ²	-	Centimeter Square
СО	-	Carbon Monoxide
CO_2	-	Carbon dioxide
СОСО	-	Coconut Oil
EN	-	European Standard for Product and Services
EPA	-	Environmental Protection Agency

EU	-	European Union
F	-	Fahrenheit
FFA	-	Free Fatty Acid
g	-	Gram
GHG	-	Greenhouse Gas
HP	-	Horse Power
HSU	-	Hartridge Smoke Unit
Ihp	-	Indicated Horse Power
IEA	-	International Energy Agency
kg/kW.hr	-	Kilogram per Kilowatt power per Hour
kgf/cm ²	-	Kilogram-force per Centimeter Square
КОН	-	Potassium Hydroxide
kW	-	Kilowatt
l	-	Length of Stroke
М	-	Million
MJ/kg	-	Mega Joule per Kilogram
MeOH	-	Methyl Ester
ml/s	-	Milliliter per Second
ml/kW	-	Milliliter per Kilowatt
mmb/d	-	Millions Barrel per Day
	-	Speed in rpm (revolution per minute)
Ν	-	Number of Strokes Diesel Engine is running
NaOH	-	Sodium Hydroxide
NaOCH ₃	-	Sodium Methoxide

Nm	-	SI unit for Torque
NO _x	-	Nitrogen Oxides
OECD	-	Organization for Economic Co-operation
		and Development
PALM	-	Palm Oil
ppm	-	Parts per Million
pH	-	Measure of Acidity and Basicity of a Solution
psi	-	Pound per Square Inch
rpm	-	Revolution per Minute
S	-	Second
SBO	-	Soybean Oil
SFC	-	Specific Fuel Consumption
SO _X	-	Sulfur Oxides
SUN	-	Sunflower Oil
US\$	-	US Dollars
U.S	-	United States
US	-	United States
V	-	Volt
VOCs	-	Volatile Organic Compounds
WVO	-	Waste Vegetable Oil
\$	-	Dollar
	-	Mechanical Efficiency

CHAPTER 1

INTRODUCTION

1.1 Background

Biodiesel is one of the sustainable types of energies which can be produced from oil or fats through the process called transesterification (Tabe *et al.*, 2003). Before the World War 2, biodiesel has been introduced in South Africa with the purpose of powering heavy-duty vehicles. Due to the recent environmental and domestic economic concerns, the use of biodiesel is revived throughout the world (Saifuddin & Chua, 2004).

The increases in industrialization and population have causes the energy demand in world to increase continuously. Mainly, these energy demands are fulfilled by basic energy sources like fossil fuels, hydro and nuclear (Hossain *et al.*, 2007).

Statistically, the global oil consumption grew by 1.1% in year 2007 (comparing to the year before) which is 1 million barrels per day. While the global natural gas and coal consumption was reported grew by 3.1% and 4.5% respectively in year 2007 (BP, 2008). What worry the global is the increasing trend of fossil fuels consumption will result in drastic atmospheric pollution and a substantial decrease in fossil fuel reserves (Hossain *et al.*, 2007).

Additional Facts: World oil consumption rose about 1mmb/d (million barrels per day) in 2007, just below the 10-year average. Organization for Economic Co-operation and Development (OECD) member countries consumption declined nearly 400,000b/d (barrel per day). China accounted for the largest increment to consumption even though the growth rate was below average. Consumption in oil exporting regions was robust (BP, 2000)

Figure 1.1: World's Region Oil Consumption by Million Barrels Daily (BP, 2008).

During the fuel crisis, the soaring cost of oil is burdening motorists and consumers the world over (AlJazeera, 2008). While the world is searching for remedies, biodiesel has appeared to be one of the solutions for the crisis. Operationally, biodiesel performs very similar to low sulfur diesel in terms of power, torque, and fuel without major modification of engines or infrastructure. The low emissions of biodiesel make it an ideal fuel for use in many applications (Biodiesel Association of Australia, n.d.).