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Preface

Integrating nanotechnology and polymer composites has emerged as a
transformative paradigm in the rapidly evolving landscape of materials sci-
ence and engineering, offering unprecedented opportunities to develop
advanced materials with tailored properties and multifunctional applica-
tions. This book, Advanced Nanocarbon Polymer Biocomposites, represents a
comprehensive exploration of the synergistic possibilities of the fusion of
nanocarbons, polymers, and biocompatible elements.

Nanocarbon materials extracted from wood (pine and aspen) biomass
(natural fiber, etc.) exhibit exceptional mechanical, thermal, and electrical
properties. Harnessing the unique characteristics of these nanoscale entities
and combining them with polymers, which provide flexibility, pro-
cessability, and a wide range of functionalities, opens new frontiers in
material design. Moreover, incorporating biocompatible components facil-
itates the development of materials that excel in mechanical, morphologi-
cal, and chemical performance and demonstrate compatibility with living
systems, paving the way for applications in biomedicine, construction and
building, packaging, and sustainable technologies.

This book is crafted to provide a comprehensive overview of the fun-
damental and state-of-the-art research and developments in nanocarbon
polymer biocomposites. Each chapter is meticulously crafted by experts in
the respective areas, covering fundamental principles, synthesis methods,
characterization techniques, and diverse applications. The chapters are
organized to guide readers through the intricate landscape of nanocarbon
polymer biocomposites, from theoretical foundations to practical applica-
tions, fostering a holistic understanding of this burgeoning field.

The multidisciplinary nature of this book makes it an invaluable
resource for researchers, academics, and practitioners working at the inter-
section of nanotechnology, polymer science, and biocompatible materials.
Whether delving into the fundamental science behind nanocarbon inter-
actions with polymers or seeking insights into the practical applications of
these advanced materials, this book serves as a roadmap to navigate the
complexities and potentials of nanocarbon polymer biocomposites.

xvii



As editors, we would like to express our gratitude to the contributing
authors for their scholarly contributions and dedication to advancing the
knowledge in this field. We believe this compilation will inspire further
exploration, foster collaboration, and contribute to the evolution of nano-
carbon polymer biocomposites as a transformative technology.

Md Rezaur Rahman
Muhammad Khusairy Bin Bakri
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CHAPTER TWO

Nanocarbon from pine wood
sawdust and its biocomposites
applications
Perry Law Nyuk Khui1, Md Rezaur Rahman1,
Khairul Anwar Bin Mohamad Said1, Al-Khalid Othman1,
Jamal Uddin2 and Kuok King Kuok3

1Faculty of Engineering, Department of Chemical Engineering and Energy Sustainability, Universiti
Malaysia Sarawak, Jalan Datuk Mohammad Musa, Kota Samarahan, Malaysia
2Department of Natural Science, Coppin State University, Science and Technology Center, Baltimore, MD,
United States
3Faculty of Engineering, Computing and Science, Swinburne University of Technology, Sarawak Campus,
Kuching, Sarawak, Malaysia

2.1 Introduction

The development and utilization of nanocarbon in innovative bio-
composite products are receiving special attention from researchers. Most
researchers' study covers the development of carbon based materials which
range from activated carbon, carbon fiber, carbon nanotubes, nanocarbon
powders, and graphene. However, the studies conducted on the source of
the nanocarbon and utilization of the nanocarbon for further biocompo-
site development and applying to their respective applications are not a
popular research topic. Therefore, in this book chapter, the topic regard-
ing the development of nanocarbon from Pine wood sawdust biomass
and the possible applications from the biocomposites developed are specif-
ically selected. The compilation of studies compiled showcases the nano-
carbon potential application in various fields, methods for developing
nanocarbon from pine wood sawdust, characterization of the developed
nanocarbon, and comparison with other types of nanocarbon. It also
showcases the synthesis and characterization of properties of pine wood
sawdust nanocarbon biocomposites, applications of the developed nano-
carbon biocomposites, comparison over traditionally known composite
materials, and future direction for improvements in this field of study.
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There is significant waste produced by the wood industry, especially from
pine wood sawdust. The disposal of this waste is not only expensive but
also unsustainable for the ecosystem. As a result, there is an increasing
need for environmentally friendly waste management techniques that may
turn pine wood sawdust into products that are useful. Pine wood sawdust
can be used as source material to synthesis nanocarbon, this offers a sus-
tainable option for the industry regarding managing wood waste. The
production process still needs to be made more effective and scalable, the
end product, safety and environmental sustainability must be guaranteed,
and regulatory difficulties must be resolved.

2.2 Pine wood sawdust

Pine wood is well known for its excellent quality joinery wood,
which is used for furniture, windows, doors, shutters, paneling, siding,
moldings, and other architectural millwork and joinery items. Wood pro-
cessing generally produces lignocellulosic biomass in the form of sawdust
and uneven chips, which can account for up to 20% of the total input
mass (Foo & Hameed, 2012; Mao et al., 2014).

Wood properties vary primarily as a result of its growth pattern
(Downes et al., 2000) and biological origin (Dias et al., 2020; Zobel &
Buijtenen, 1989). From pith to bark, and from earlywood to latewood,
there is variance throughout the tree (Zobel & Sprague, 1998). This high
variability complicates the forecast of wood performance and, as a result,
the efficiency of its processing and usage (Koga & Zhang, 2004). Wood
quality is defined by its properties for specific end use, with density being
the most important feature, followed by chemical composition (the con-
tent of cellulose, hemicellulose, and lignin) and mechanical properties
(modulus of elasticity and rupture) (Zobel & Buijtenen, 1989). Wood
density is the primary factor influencing timber strength, pulp yield, dry-
ing ease, machining, and hardness (Brazier & Howell, 1979; Elliot, 1970;
Panshin & Zeeuw, 1980). This wood feature is determined by the cell
size/wall thickness ratio, the proportion of earlywood/latewood, the
number of ray cells, vessel components, and chemical composition (Cave
& Walker, 1994; Zobel & Buijtenen, 1989). The chemical composition
of wood (cellulose, hemicellulose, lignin, and extractive components) and

18 Perry Law Nyuk Khui et al.



its variation is critical for a segment of the forestry sector, such as the pulp
business. In this scenario, high cellulose, low extractive content, and lignin
content are required to obtain high pulp output and brightness of the
bleached paper (Campbell & Sederoff, 1996; Uner et al., 2009).
Furthermore, the chemical composition of particle boards determines their
strength (Uner et al., 2009). The mechanical properties of wood are of
relevance in numerous fields of engineering, particularly in the selection
and application of wood for certain end uses. The modulus of elasticity
and rupture are two of the most often measured parameters for evaluating
wood quality for structural components (Forest Products Laboratory,
1999). P. nigra is widely utilized in the forestry industry due to its ability
to thrive in a variety of conditions and produce adequate products (Dias
et al., 2020; Uner et al., 2009).

Wood factories can be found in almost every country in the world,
and sawing is a constant daily operation that generates a lot of waste. In
an open region, sawdust is routinely dumped, burned, or landfilled (Adu,
2014; Ogundipe & Jimoh, 2012) Sawdust is difficult to dispose of and,
when burned, contributes to greenhouse gas emissions, despite the pollu-
tion and accompanying threats to public health, open fire is the most fea-
sible method for saw millers to dispose of sawdust (Mwango & Kambole,
2019; Okedere et al., 2017; Olaiya et al., 2023). For many years, sawdust
has been utilized in construction applications. This material could be
found in large volumes, as well as being portable and light. Different
physical and chemical properties of sawdust may vary from tree to tree
(Olaiya et al., 2023). Construction applications have been using sawdust
composite materials, such as sawdust low cost concrete, which has been
around for more than 40 years (Kumar et al., 2014; Olaiya et al., 2023).
In addition to concrete, the literature indicates that different sawdust com-
posites have been used in a variety of building applications, including par-
ticle boards, bricks, floor slabs, paneling, partitioning and attic insulation.

In regards to specifically pine wood sawdust for polymer composite
development, a few studies have shown improved mechanical properties
such as withstanding impact forces (Martins et al., 2022) and flexural
forces (Narlıoğlu et al., 2021). The improved impact strength properties
of the polymer composite made from polyethylene (PE) matrix and pine
wood sawdust as filler contributed to the lower weightage content of 10%
and finer particle size which enables a compact structure to be developed
in the composite material (Martins et al., 2022). The improved flexural
strength properties of the polymer composite made from polylactic acid

19Nanocarbon from pine wood sawdust and its biocomposites applications



matrix and pine wood sawdust as filler at 5% weightage content came to a
similar conclusion of the improved mechanical properties (Narlıoğlu et al.,
2021). Incorporating nanotechnology in polymer composite development
may open up many possibilities for research. Simply reducing the particle
size to smaller from macro, micro to nanosize will increase surface area.
Some specific examples of size reduction of carbon based materials could
be observed as the resulting effects of milling processes, for example, con-
ventional ball milling and planetary ball milling (Garg & Das, 2018;
Peterson et al., 2012; Zhang et al., 2019).

2.3 Development of nanocarbon from sawdust
(pine wood)

This section discusses the development of pine wood sawdust into a
nanosize carbonized material. Generally, the view on pine wood sawdust
in this section is described as a basic sawdust material from lignocellulosic
biomass. The main focus is to overview the development processes or
techniques of achieving a nanosize carbonized material.

2.3.1 Biochar (carbon sawdust) synthesis via pyrolysis
Biochar has drawn a lot of interest from researchers to investigate practical
uses in several fields of study, including energy production, soil amend-
ment, water treatment, nutrient retention capacity, waste management,
greenhouse gas reduction, and environmental restoration (Liu &
Balasubramanian, 2014; Qian et al., 2015). The materials used as feedstock
for synthesizing biochar include animal manure, agricultural waste or crop
residue, and wood waste (Rajapaksha et al., 2016; Vijayaraghavan &
Balasubramanian, 2021)

In terms of pine wood sawdust, it will be within the wood waste cate-
gory for feedstock used. The synthesis of biochar generally involves ther-
mal decomposition as the standard process. Pyrolysis, hydrothermal
carbonization, gasification, and torrefaction, are examples of different ther-
mochemical methodologies for synthesizing biochar (Amalina et al.,
2022a; Tang et al., 2019; Wang & Wang, 2019).

Pyrolysis is a nonoxidative thermal breakdown process, as a result, 3
distinct product fractions are created: a solid residue called biochar, a
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condensable liquid called bio oil, and a noncondensable gas called syngas
(Amalina et al., 2022b; Rangabhashiyam and Balasubramanian, 2019;
Senthil & Lee, 2021). Combustion will not occur when oxygen is not
present in the environment; hence pyrolysis occurs instead. Pyrolysis com-
monly occurs at temperatures between 300�C and 700�C. The most
advantageous method for synthesizing biochar and bio oil from biomass
appears to be pyrolysis. This is due to the greater yields of biochar
obtained with lower pyrolysis temperatures and longer residence dura-
tions. Longer reaction times are known to encourage polymerization,
which increases the synthesis of biochar. More liquids often come from
moderate temperatures and brief reaction times (Yaashikaa et al., 2019).
These thermochemical reactions operate under a variety of conditions,
such as residence periods between 1 second and hours, heating rates
between 11�C and 1000�C/second, and temperatures between 300�C
and 700�C or higher (Rangabhashiyam and Balasubramanian, 2019). It is
essential to choose the pyrolysis procedure carefully in order to get a
desirable outcome because each pyrolysis produces a different proportion
of the byproducts. The direct conversion of biomass during the pyrolysis
process can be characterized along three different pathways: fragmenta-
tion, depolymerization, and char formation (Karimi et al., 2018;
Rangabhashiyam and Balasubramanian, 2019; Yaashikaa et al., 2020). The
synthesis of biochar is frequently encouraged via intramolecular and inter-
molecular rearrangement processes, resulting in a more thermally stable
residue. This path is established by the formation of benzene rings, which
are then combined to form an aromatic polycyclic structure (Amalina
et al.a, 2022; Karimi et al., 2018).

Slow pyrolysis increases biochar production by activating secondary
reactions through extended vapor residence times, the slow pyrolysis gen-
erates both primary and secondary char. The lower temperature range of
300�C to 550�C, slow heating rates of 0.1�C to 0.8�C/s, and a longer
contact period of 5�30 minutes or 25�35 hours characterize slow pyroly-
sis (Das et al., 2021; El-Naggar et al., 2019). Furthermore, the moderate
heating rate mixed with the medium pyrolysis heat promotes the creation
of biochar. The biochar yield is determined by the properties of the mate-
rials as well as the pyrolysis processes, specifically the temperature, heating
rate, and pyrolysis reactor (Sonu et al., 2020). The yield of biochar formed
from mineral rich biomass is lower. Due to the methodical development
of secondary reactions, slow pyrolysis may be an exothermic reaction.
Particles with sizes ranging from 5 to 50 mm can be absorbed by slow
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pyrolysis (Sakhiya et al., 2020). The reaction in intermediate pyrolysis is
faster than slow but slower than fast pyrolysis. It occurs between 450�C
and 550�C, is faster than slow pyrolysis, lasts 10�30 seconds, and produces
less biochar than slow pyrolysis (Ge et al., 2021; Sakhiya et al., 2020). At
appropriate temperatures, intermediate pyrolysis chemosynthesis inhibits
the formation of high molecular weight tars and produces a variety of
product qualities, that is; biochar, bio oil, and syngases. In intermediate
pyrolysis, the size and form of the biomass particles are less important than
in fast pyrolysis. It can handle a wider variety of biomass, from larger par-
ticles to pellets and chips, as well as material containing over 40% biomass
(Mbarki et al., 2019).

Fast pyrolysis is distinguished by the higher temperature settings, rapid
heating rates (10�C to 1000�C/second), and short residence durations (0.5
to 2 seconds). By utilizing short vapor residence periods and maintaining
high biomass heating rates, fast pyrolysis eliminates secondary reactions. It
increases bio oil yield (Mutsengerere et al., 2019; Tomczyk et al., 2020).

Byproduct distribution is influenced by biomass composition, heating
rate, and temperature. If bio oil is the desired result, the ideal pyrolysis
temperature range is 425�C�600�C with a maximum heat of less than
650�C. However, if gas generation is the primary goal, the peak tempera-
ture can approach 1000�C (Ge et al., 2021). A finely powdered biomass
feedstock, frequently less than 1 mm in size, is required to provide
extremely high heat transfer rates and, as a result, extremely high heating
rates, easing mass and heat transfer restrictions (Ravindran et al., 2018).
Although only primary carbon is produced in fast pyrolysis, biochar yields
are frequently insufficient. The entire fast pyrolysis process is endothermic
due to the lack of secondary reactions. To decrease water in the final bio
oil, fast pyrolysis suggests biomass with less than 10% moisture content by
weight. Furthermore, a low moisture content allows the feed to be
ground into fine enough particles to allow for rapid heating and pyrolysis
(Amalina et al., 2022a; Lee et al., 2020).

Flash pyrolysis yields mainly the same products as rapid pyrolysis. It
occurs between 800 and 1000�C, requiring excellent biomass feed particles
(0.2 mm). The goal of flash pyrolysis is to optimize bio to oil production. It
is distinguished by high temperatures, rapid heating (. 1000�C/second),
and short contact times (0.5 seconds) (Amalina et al., 2022a; Gaurav et al.,
2020).

One of the more intriguing methods for accelerating and optimizing
chemical processes is microwave assisted pyrolysis. Due to the superior
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heat transfer profile, chemical reactions occur faster and more efficiently
in comparison to other thermochemical processes (Yin et al., 2018).
Microwave assisted pyrolysis has several advantages over conventional
pyrolysis, including consistent heating, rapid heating rate, volumetric and
selective heating. It is also known that microwave assisted pyrolysis has a
quick on/off control while increasing production and product output
quality (Amalina et al., 2022a; Xiang et al., 2020).

Studies have shown that increasing microwave power results in a
decrease in biochar yield (Arafat Hossain et al., 2017; Hossain et al., 2016;
Nizamuddin et al., 2016; Safarian, 2023; Sahoo & Remya, 2022; Wallace
et al., 2019)

A study on the optimization of process parameters for microwave
pyrolysis of oil palm fiber for hydrogen and biochar production demon-
strates that microwave power influences biochar and syngas yields, with
lower microwave power favoring biochar yield and limiting gaseous
yield. It was also reported that the biochar yield at 400 W microwave
power is 48.2 wt.%, which drops to 31.2 wt.% at 900 W microwave
power (Arafat Hossain et al., 2017). A study conducted by the same
researcher explains that higher microwave power leads to higher heating
rates, and higher heating rates cause an increase in thermal cracking,
resulting in an increase in syngas yield and a decrease in biochar yield
(Hossain et al., 2016).

The key variable affecting the distribution of the products during the
microwave pyrolysis of the feedstock biomass is the temperature. By
simultaneously adjusting the temperature and microwave power, it is pos-
sible to change both the yield and quality of the biochar product. It was
determined that yielding more biochar with high carbon content occurs
at lower temperatures, whilst producing less biochar with a nearly
unchanged quality at higher temperatures. In regards to feedstocks such as
softwood chips, changing the temperature and microwave power from
348.4�C to 459.8�C and 2100 to 2700 W, respectively, resulted in a
reduction in biochar yield from 40% to 24%. They discovered that as the
temperature was raised from 400�C to 700�C, the production of biochar
decreased, but there was no change after that point (Safarian, 2023;
Wallace et al., 2019).

Table 2.1 shows examples of different studies regarding activated char
synthesis from sawdust as raw material. The majority of the studies men-
tioned involve slow pyrolysis, which many attribute to high carbon con-
tent and high activated carbon/biochar/char yield.
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Table 2.1 Examples of activated carbon-char synthesis from sawdust as raw material.
Type of process Raw material Catalyst Temperature References

Brief carbonization via slow pyrolysis,
activated with microwave pyrolysis

Chengal wood sawdust Potassium carbonate (K2CO3) 700�C Foo and Hameed
(2012)

Carbonization via slow pyrolysis Pine wood sawdust
pellets

Carbon dioxide (CO2) 800�C Nowicki and
Pietrzak (2010)

Carbonization via slow pyrolysis Oak wood sawdust Nickel (II) acetate tetrahydrate (Ni
(CH3COO)2 � 4H2O), nitric acid
(HNO3) solution, and potassium
carbonate (K2CO3)

400�C Zhang et al. (2012)

Carbonization via slow pyrolysis Havea braziliansis
(rubberwood) sawdust

Potassium carbonate (K2CO3) 600�C Krishnan et al.
(2010)

Carbonization via slow pyrolysis Rubberwood sawdust Potassium hydroxide (KOH) 700�C�900�C Phainuphong et al.
(2022)

Carbonization via slow pyrolysis Cedar deodar sawdust - 350�C�650�C Varma et al. (2019)
Carbonization via fast pyrolysis Mixed wood waste

sawdust
- 400�C�700�C Salehi et al. (2009)

Carbonization via fast pyrolysis Mixed wood waste
sawdust

- 400�C�600�C Duanguppama et al.
(2016)

Carbonization via slow pyrolysis Pine wood (Pinus radiata)
sawdust

Zinc chloride (ZnCl2) 600�C Pimentel et al.
(2023)

Carbonization via slow pyrolysis Pine wood (Pinus strobus)
sawdust

Sodium hydroxide (NaOH),
phosphoric acid (H3PO4), oxalic
acid (C2H2O4)

600�C Yakout et al. (2019)

Carbonization via slow pyrolysis Durian wood (Durio
zibethinus) Sawdust

- 350�C�550�C Chowdhury et al.
(2016)



2.3.2 Biochar (carbon sawdust) size reduction and activation
techniques
2.3.2.1 Physical activation processes via ball milling
Nano particles synthesized mechanically through the process of milling
utilizes equipment intended to apply mechanical forces to the materials to
be processed, such as ball mills, planetary mills, or vibrating mills. Ball
milling is an effective nonequilibrium processing technique which utilizes
physical work done mechanically to reduce the solid particles feedstocks
from a macro size scale into the micro and/or nanosize scale (Lyu et al.,
2017; Soares et al., 2015; Ullah et al., 2014).

A study on the impact of ball milling on the physicochemical and sorp-
tive properties of biochar exploring the experimental observations and gov-
erning mechanisms, shows that utilizing ball milling processes on activated
carbon for modifying carbon based nanocomposites produces improved
properties for real life applications. Due to activated carbon and biochar
having shared characteristics and properties, ball milling could be utilized as
a physical modification technique to create a biochar tailored from different
targeted applications (Gao et al., 2015; Lyu et al., 2018; Ramanujan et al.,
2007). It could be linked, that the biochar can be an activated carbon, from
simply using ball milling processes, to achieve increased surface area, poros-
ity, pore size, and sorption capabilities. These improved properties/charac-
teristics are in line with what is considered to be an activated carbon. The
processing time of ball milling to achieve micro to nanosize range samples
may vary according to the volume of feedstock, type and number of balls
used. Some studies have shown processing time ranging from 1 to 24 hours
of ball milling (Amusat et al., 2021; Lyu et al., 2018).

According to a review study conducted on ball milling synthesis of bio-
char and biochar�based nanocomposites and prospects for removal of emerg-
ing contaminants, there is a scarcity of research specifically on the ball milling
methods to modify biochar to develop composite materials. However, the
majority of the research stated by the author, do discuss the improved proper-
ties of biochar after ball milling, in which leads to improved application per-
formances in usage in filtration of contaminants, such as dyes, heavy metals,
and other organic and inorganic contaminants. In terms of wet and dry ball
milling procedures, one comparative study found that ball milled biochar
improved its specific surface area by 200 times that of pristine biochar, but no
significant difference was found between the two processes (Amusat et al.,
2021; Yuan et al., 2020). According to one study, it is hypothesized that in
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ball milling biochar enhances both its internal surface area and external surface
area by opening the inner pore networks. Biochar that had been ball milled
had pores that were 6.4 to 48 times larger than biochar samples that have not
undergone ball milling (Lyu et al., 2018).

2.3.2.2 Chemical activation processes of biochar
According to a study on the recent advancements and challenges in
emerging applications of biochar based catalytic agents, chemical activa-
tion of biochar is normally performed at a moderate temperature with or
without the thermal processes to assist further biochar activation (Kumar
et al., 2020; Yuan et al., 2022). Acid and alkaline chemical activation, and
impregnation of metals, salts, and oxides are the most common activation
processes. Various chemicals, such as potassium hydroxide (KOH), phos-
phoric acid (H3PO4), sulfuric acid (H2SO4), sodium hydroxide (NaOH),
and zinc chloride (ZnCl2), are employed for chemical activation of bio-
char (Patel et al., 2022; Yuan et al., 2018, 2023.

During the soaking stage, chemicals dilate and hydrolyzed the biochar,
retains porosity during the carbonization stage, and inhibits the generation
of undesirable compounds (Kumar et al., 2020) Minerals are removed in
an acidic alteration to improve the hydrophobicity of biochar (Zhang
et al., 2015). Alkaline treated biochar produces greater positive surface
charges (Li et al., 2014). As a result, chemical changes have a greater
impact on increasing biochar surface functioning than physical activation
(Yuan et al., 2021). Alkaline treated biochar, in particular, has the highest
surface functionality (Ahmed et al., 2016; Yuan et al., 2021). Acidic treat-
ments, on the other hand, increase the oxygenation functional groups of
biochar (Ahmed et al., 2016; Yuan et al., 2021; Zhang et al., 2015).
According to one study on synthesizing engineered biochar for CO2 cap-
ture for sustainable food waste management, alkaline chemical activation
of biochar using Potassium hydroxide (KOH) at 600�C for 1 hour has
increased in surface area of 807 (m2/g). The researcher has also compiled
surface area data of similar chemical activation parameters from different
studies has shown biochar surface area to be ranging 947 to 1479 (m2/g)
(Chen et al., 2015; Huang et al., 2015, 2019; Yang et al., 2018, 2022).

2.3.2.3 Surface functionalization via hydrothermal processes for
biochar activation
The incorporation of surface functional groups to the carbon surface of
the biochar through surface functionalization via hydrothermal process has
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been proposed as an additional method to enhance biochar adsorption
performance. Although hydroxyl and carbonyl groups are among the
functional groups that biochar naturally possesses, their presence is mini-
mal in comparison to the material's overall surface (Ibrahim et al., 2021;
Wang & Liu, 2017).

Numerous research demonstrate the benefits of increasing surface
functional groups for biochar and other carbon materials' adsorption capa-
bilities, particularly for dyes and heavy metals. The acidic oxygen func-
tional groups increase electrostatic interaction between the functional
groups and the adsorbate molecule, particularly negatively charged mole-
cules like heavy metals and cationic dyes, and the functional groups
increase its hydrophilicity, increasing efficiency in wastewater application
(Ibrahim et al., 2021; Liu et al., 2015; Park et al., 2010; Sophia A. &
Lima, 2018; Wang & Wang, 2019). To increase the oxygen surface func-
tional groups on biochar, oxidizing agents like nitric acid could be used to
functionalize the surface. While successful, surface functionalization of
biochar employing nitric acid via a chemical soaking treatment technique
often takes an extended period of time with a higher solution concentra-
tion of nitric acid (Tan et al., 2017; Ibrahim et al., 2021). Furthermore,
the functionalization process has a tendency to change the morphology
and pore structure of the changed carbon material, which reduces its sur-
face area. Most industries find it difficult to adopt the functionalization
process due to the risk and expense involved, the reduction in surface
area, the use of very caustic chemicals, and the excessively lengthy time
required. With this issue in mind, an autoclave functionalization proce-
dure is recommended to speed up biochar functionalization and improve
the surface functionalities of biochar, which will then improve its adsorp-
tion performance.

The combination of increased temperature and pressure during treat-
ment distinguishes the autoclave from other documented methods of
modification. According to the researcher, this will accelerate nitric acid's
conversion to nitrogen containing species like nitrous acid, which can also
oxidize organic molecules (Catherine and Housecroft, 2008; Ibrahim
et al., 2021). The process efficiency can be considerably improved when
there are several oxidation paths accessible.

According to Ibrahim et al. (2021), the production of biochar as an
adsorbent from oil palm empty fruit bunch biomass utilizing a simple
functionalization procedure in an autoclave. The surface of the biochar
was functionalized in this system by using nitric acid as an oxidation agent
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to increase the number of functional oxygen groups on the surface. The
functionalization process was sped up and made more effective using an
appliance called an autoclave. In other words, compared to other surface
functionalization processes previously reported, the hydrothermal functiona-
lization process could increase the quantity of oxygen surface functional
groups on the surface of the biochar using a lower concentration of nitric
acid, a shorter period of time, and a simpler process. The resulting biochar
has more surface functional groups, which is crucial for the adsorption of
contaminants from aqueous solutions like dyes and heavy metals. By com-
paring treated and untreated biochar, the hydrothermally treated biochar
performed better during application, with a sevenfold increase in adsorption
capacity from 8.706 0.09 to 62.526 0.48 mg/g (Ibrahim et al., 2021).

Table 2.2 shows examples of size reduction and modifying techniques
from different studies for activated carbon. On average, the majority of
the studies are able to achieve good sample size and specific surface area
properties for their activated carbon samples. Most studies may suggest the
main effects of these properties are the process used and pretreatments.

2.4 Synthesis of nanocarbon (biochar) biocomposites

Nanocarbon materials categorized as carbon nanotubes single walled
(SWCNTs), multiwalled (MWCNTs), graphene (G) or graphene oxide
(GO), activated carbon (e.g., biochar), carbon nanoparticles (CNPs) have
gained popularity due to their unique structural regularity, high surface
area, electrical conductivity, chemical inertness, biocompatibility, mechan-
ical and thermal stability (Allen et al., 2010; Gopiraman & Soo Kim,
2019; Rahman et al., 2011; Vairavapandian et al., 2008). One way to uti-
lize or incorporate their unique properties for different real life applica-
tions is to develop nanocomposites. Generally, the methodology of
developing nanocomposites with nanocarbon materials depends on the
desired properties, application, and cost. This section will focus on the
standard techniques for incorporating nanocarbon with polymer matrices,
as there is a wider field of real-life applications which benefit both poly-
mer and nanocarbon properties.

According to the handbook of carbon nanotubes (CNTs) polymer
nanocomposites, techniques for the preparation of CNT reinforced
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Table 2.2 Examples of size reduction and modifying techniques for activated carbon.
Type of process Pretreatments and catalyst Average size Specific

surface area
References

Planetary ball milling - 75 μm .3000 m2/g Eguchi et al.
(2020)

Planetary ball milling - 521 nm 432 m2/g Baheti et al.
(2015)

Chemical activation followed by
thermal annealing

Potassium hydroxide (KOH) - 1303�2004
m2/g

Nowicki (2016)

Chemical activation, followed by
thermal annealing

(Oxidation) nitric acid (HNO3), (oxidation)
hydrogen peroxide (H2O2)

- 582�657 m2/
g

Gil et al. (2019)

Catalytic chemical vapor
deposition

Nickel (II) nitrate hexahydrate (Ni(NO3)2) 100�200 nm 837 m2/g Ahmed et al.
(2016)

Catalytic chemical vapor
deposition

Nickel (Ni) impregnation, and calcination in N2

atmosphere
15.2�39.8 nm 792.3 m2/g Rezvani et al.

(2019)
Hydrothermal processes Nitric acid (HNO3) 50�120 nm 79 m2/g Sedira and

Mendaci
(2020)

Hydrothermal processes Potassium hydroxide (KOH) 4.48�11.74 μm 3026 m2/g Hao et al. (2016)



polymers include: solution processing, bulk mixing, melt mixing, and in
situ polymerization (Nasir Mahmood, 2014). The stated CNT polymer
nanocomposites preparation techniques could be utilized with the devel-
oped pine wood sawdust nanocarbon/biochar/activated carbon to synthe-
size similar nanocomposites. According to a study on nanobiochar and
biochar based nanocomposites advances and applications, as biochar is
characteristically a carbon nanomaterial and has been explored for its
numerous potential applications, biochar is a cheaper and sustainable pre-
cursor for synthesizing CNT. As the biochar is synthesized from lignocel-
lulosic plant biomass (e.g., pine wood sawdust), the biochar could be
identified as a possible agent for phytoremediation of various contaminants
such as organic and inorganic pollutants, as well as heavy metals in waste-
water (Chausali et al., 2021; Noreen & Abd-Elsalam, 2020). Hence, tech-
niques for synthesizing CNT polymer composite by the researcher may
be applied to other nanocarbon forms, for example, pine wood sawdust
biochar, activated carbon, and nanocarbon particles.

A technique for synthesizing CNT polymer composites called solution
processing involves combining the two materials with a specific solvent.
The solvent is then evaporated under a vacuum or at a higher temperature
to synthesize the composite. The vacuum assists in removing the solvent
from the mixture as well as any tiny air bubbles that may otherwise nega-
tively affect the properties. The high temperature helps the solvent evapo-
rate and starts the curing reaction of the resin. In simple terms, the
solution processing techniques follow a general approach that entails dis-
persing CNT powder in a liquid medium using stirring and/or sonication,
combining the CNT dispersion with a polymer solution, and carefully
evaporating the solvent (Nasir Mahmood, 2014; Ma et al., 2010).
Synthesizing the composites with a uniform distribution of CNTs depends
on both mechanical stirring and ultrasonication. The ultrasonic, abrupt
collapse of cavitation bubbles that are produced as ultrasonic waves pass
through a liquid media is linked to the chemical effects of ultrasounds.
According to sonochemical theory and the accompanying research, ultra-
sonic cavitation can produce a harsh local environment with temperatures
and pressures as high as 5000 K and 500 atm. MWCNTs were mechani-
cally combined with epoxy resin and hardener after being dispersed in a
solvent using a similar technique for thermosetting resin in our investiga-
tion. After the solvent had evaporated, the CNT-resin mixture was cast
into capsular mold for the finishing curing process (Nasir Mahmood,
2014).
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Bulk mixing could be characterized as a fabrication technique as a
result of high pressure localized from the grinding media and high energy
impacts during the milling processes. Carbon nanostructures are reduced
in length or size via milling processes. According to the researcher, CNT/
polypropylene composite powder has been reported to be prepared via
pan milling (a solid state mechano chemical pulverization method). To
create a homogenous composite, the powder was melt mixed via a twin
roll masticator. The length of the CNT is reduced from the microsize
range to within the 500 nm range (Nasir Mahmood, 2014).

In addition, the melt mixing technique involves the use of thermoplas-
tics, which softens and flows in a molten state when heated above or at
the melting point. Therefore, when utilizing thermoplastic, the melt mix-
ing technique is an important technique for the synthesis of CNT poly-
mer composites. Melt mixing could be the standard technique used for
thermoplastic polymers, in which are insoluble in common solvents (solu-
tion processing).

Melt mixing generally involves melting and blending the thermoplastic
polymer with CNT material via high shearing forces. Mold casting is also
utilized, depending on the final morphology/shape of the composites, the
bulk samples could be extruded into a mold using an extruder (Nasir
Mahmood, 2014; Sahoo et al., 2010).

In situ polymerization involves the incorporation/dispersion of
CNTs in a monomer or thermoset polymer (resin or epoxy) which
immediately proceeds to the polymerization process. This technique has
the added advantage due to the higher volume fraction of the dispersion
of CNTs, hence attaining good uniform dispersion and developing a
stronger CNT matrix bonding. This technique is effective for synthesiz-
ing nanocomposites utilizing polymers that could not be processed via
solution processing or melt mixing, such as insoluble and thermally
unstable polymers (Sahoo et al., 2010). In situ polymerization of vinyl
monomers in the presence of CNT material has piqued the interest of
researchers working on functional composites (Nasir Mahmood, 2014;
Spitalsky et al., 2010).

Table 2.3 shows examples of synthesis processes for nanocarbon poly-
mer composites with their respective mechanical properties, processes and
polymer types. The majority of the studies mentioned yield different
mechanical properties, attributed to the polymer and carbon base used.
The process used may be optimized for achieving a better sample quality,
poor handling during the processes may affect the composite properties.
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Table 2.3 Examples of synthesis process and mechanical properties of nanocarbon polymer composites.
Type of process Type of polymer Type of carbon base Mechanical properties References

Melt mixing Polypropylene Multi walled carbon
nanotube

2 Tensile strength 35.23�38.23 MPa
2 Young modulus 1843.08�2251.56 GPa

Stanciu et al.
(2021)

Melt spinning Polypropylene Single walled carbon
nanotubes fibers

2 Average yield strength 380 MPa
2 Average Young modulus 6 GPa

Acierno et al.
(2017)

Shear mixing and melt
mixing

Isotactic
polypropylene

Single walled carbon
nanotubes

2 Yield Strength 24.7�31 MPa
2 Young modulus 868�1187 MPa

Manchado
et al. (2005)

In situ polymerization Epoxy resin Nanocarbon fiber and
E glass fiber

2 Tensile strength 355�390 MPa
2 Hardness 55�75 HRC

Vinayaka et al.
(2023)

Melt mixing High density
polyethylene

Activated carbon,
carbon briquettes,
carbon black

2 Ultimate tensile strength .31�34 MPa
2 Flexural modulus .800�840 MPa
2 Izod impact strength .30�35 MPa

Choudhury
et al. (2021)

In situ polymerization Polyethylene Multi walled carbon
nanotube

2 Tensile strength 30.1 MPa
2 Young modulus 132 MPa

Al-Harthi and
Bahuleyan
(2018)

In situ polymerization via
heating & compression
molding

Epoxy resin Activated carbon 2 Tensile Strength 19�20 MPa
2 Young modulus .7000�9000 MPa
2 Hardness 95�96 (Digital shore scale

"D")

Mohmad et al.
(2018)

Electrospinning Cellulose acetate Activated carbon 2 No mechanical testing
2 Oil sorption capacity 8.2 g/g

Narlıoğlu et al.
(2021)

Shear mixing, in situ
polymerization

Cellulose, chitosan Activated carbon 2 Compressive resistance 53.6�98.5 KPa
2 Compressive modulus 214�394 KPa

Ergun (2023)

Shear mixing, in situ
polymerization (phase
inversion)

Cellulose acetate Activated carbon 2 No mechanical testing
2 Dyes adsorption equilibria

58.23�58.69 mg/g

Zhao et al.
(2019)



2.5 Applications of nanocarbon (pine wood sawdust)
biocomposites

The applications of nanocarbon and nanocarbon composites for this
section of the chapter may be directed towards the nanocarbon derived
from activated carbon or biochar, as the theoretical source material is saw-
dust (pine wood). Hence, according to a study on nanobiochar and bio-
char based nanocomposites advances and applications (Chausali et al.,
2021), there are several categories of potential applications for nanobio-
char and biochar based nanocomposites. For example:

Environmental, Energy and Material Science applications:
• Energy production;
• Organic and inorganic pollutant removal;
• Water and wastewater treatment;
• Carbon sequestration (mitigating climate change);
• Agricultural application (fertilizer and soil amendment).

Among the applications involving nanobiochar polymer composites
are limited to improving polymer or plastic based products. Hence, the
potential applications are regarding improving packaging, films, coatings,
various thermoplastic extruded product parts, membranes for water and
wastewater treatment and recently, electroconductive composite materials
(Rahman et al., 2011). However, for this section of the chapter regard
applications of nanocarbon biocomposites, energy production, organic
and inorganic pollutant removal, water and wastewater treatment, carbon
sequestration (mitigating climate change), and agricultural application (fer-
tilizer and soil amendment) are discussed.

Researchers extensively studied and demonstrated the use of macro
biochar in environmental applications. However, nanobiochar is currently
being researched for a number of environmental applications, including
waste management, pollutant removal, wastewater treatment, and carbon
sequestration (Chausali et al., 2021). However, it has been established that
carbon dioxide created by the combustion of biomass, which includes
plant matter or wastes, is ultimately consumed by plants, making this a
carbon neutral source of energy. As biochar is applied to agricultural areas,
the carbon is highly resistant to further deterioration and is sequestered for
an exceptionally long period of time. As a result, biochar has been recog-
nized as a carbon negative energy resource, providing energy while seques-
tering carbon. Biochar has emerged as a potential solution in relation to
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numerous environmental challenges such as climate change (Timmons
et al., 2017). Furthermore, it is now being researched for the creation of
sustainable energy and electrode applications, as well as its increased features
via various pre and postmodification approaches (Ramanayaka et al., 2020).
Nanobiochar has acquired attention as an excellent adsorbent due to its
greater adsorption capacity, among other responsibilities. Pharmaceuticals,
steroid hormones, pesticides, hazardous metals, and personal care products
have all been successfully removed using nanobiochar and its sorption capa-
bilities (Taheran et al., 2018) These micropollutants spread easily in the
atmosphere as a result of numerous human activities, posing a hazard to
human health and the environment. Contaminants enter the environment
through improper wastewater discharge, trash disposal, and pesticide use
(Ramanayaka et al., 2020). When compared to ordinary biochar, nanobio-
char and biochar enhanced with nanominerals showed exceptional adsorp-
tion capability for the remediation of different pollutants (Ma et al., 2019;
Samsudin et al., 2019). Furthermore, by adsorbing hazardous substances
such as pesticides and immobilizing metals, biochar can remediate pollution,
which can create serious environmental and health issues (Cernansky,
2015). As a result, nanobiochar has been regarded as a promising agent for
bioremediation of a wide range of pollutants.

Heavy metal contamination in water is a major environmental concern
due to its buildup and toxicity to humans, land and aquatic life. Heavy
metals, unlike other organic and inorganic pollutants, cannot be degraded
(Ramadan et al., 2020), therefore their removal is a worry. Adsorption,
ion exchange, chemical precipitation, and other strategies for heavy metal
removal have been cited (Zhu et al., 2012), but adsorption from aqueous
solution/effluent has become the most popular due to its economic viabil-
ity (Guo et al., 2018). Adsorbents such as activated carbon, flat iron oxide,
silica gel, zeolite, and attapulgite, as well as carbon based nanofibers, have
a few drawbacks, including limited adsorbent capacity, oxidation and
assimilation ability, cost ineffectiveness, and lower selectivity (Gan et al.,
2015; Ramadan et al., 2020). Biochar is currently being investigated as a
promising adsorption agent for eliminating pollutants, which may also be
useful in water pollution prevention (Tan et al., 2015). Advanced tech-
nologies that incorporate nanoparticles into biochar improved its charac-
teristics and function for a variety of applications, including wastewater
remediation and carbon sequestration (Ramadan et al., 2020; Zhang et al.,
2013). Notable in particular was the simultaneous adsorption and catalytic
degradative action of catalytic material coated biochar for the removal of

34 Perry Law Nyuk Khui et al.



organic pollutants (Tan et al., 2016). However, conventional biochar
showed a limited ability to absorb ionic contaminants (Yao et al., 2013).
Current research has demonstrated numerous techniques for synthesizing
various types of nanobiochar to increase its adsorption ability for aqueous
and ionic contaminants (Ramadan et al., 2020).

Industrialization, deforestation, overgrazing, and various soil tillage
activities have dramatically lowered soil nitrogen levels. Nutrient deple-
tion reduced production and plant development, threatening food security
(Ramadan et al., 2020). Chemical fertilizers have been used extensively to
maintain soil nutrients. Nutrient leaching and runoff, on the other hand,
reduced bioavailability in soil and promoted chemical based fertilizers.
This was the cause of soil pollution and a negative impact on soil biota in
several regions (Bah et al., 2014). Biochar had a favorable impact on soil
properties because it not only increased water retention, permeability, and
soil fertility, but its high charge density also carried large amounts of nutri-
ents, enhancing crop output(Braghiroli et al., 2019; Liu et al., 2016).

Biochar made from lignocellulosic biomass contains not only carbon rich
products, but also higher concentrations of other macronutrients such as nitro-
gen (N), phosphorous (P), magnesium (Mg), potassium (K), calcium (Ca), and
sulfur (S), as well as micronutrients such as copper (Cu), manganese (Mn), iron
(Fe), zinc (Zn), and ash (Hossain et al., 2011), making it a high performance
organic fertilizer. Total P and N were found to be higher in biochar produced
from animal feedstock such as grill litter and sewage sludge than in biochar pro-
duced from plant biomass such as wood and green garbage (Bopp et al., 2016).
Combining biochar with other fertilizers, such as urea, revealed a significant
increase in yield while reducing N input (Joseph et al., 2013; Qian et al., 2014).

In addition, biochar composites which contain minerals and organic com-
ponents could enhance fertilizer utilization. Biochar derived nanocarbons
have piqued the interest of researchers due to their ability to store water and
nutrients (Joseph et al., 2013; Manyà, 2012) and can be used as nanofertilizers
(Manyà, 2012; Tiwari et al., 2014). Furthermore, according to Zhang et al.
2020, the researchers demonstrated that the use of biochar carbon nanoparti-
cles significantly boosted wheat crop development and productivity (Zhang
et al., 2020). Lateef et al. investigated if a biochar nanocomposite derived
from maize cob helped to safeguard the environment by transforming trash
into a valuable product while also addressing traditional fertilizer leaching
issues (Lateef et al., 2019). However, the efficiency of biochar based fertilizers
in immobilizing heavy metals while also supplying nitrogen requires addi-
tional investigation (Chausali et al., 2021; Ramadan et al., 2020).
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2.6 Conclusion

In conclusion, the incorporation of nanocarbon materials derived/
synthesized from pine wood sawdust offers great potential for the produc-
tion of sophisticated polymer composites with several applications.
Converting sawdust into nanocarbons such as activated carbon, carbon
nanotubes, or graphene is an environmentally beneficial and sustainable
method of obtaining these important materials. Overall, the use of nanocar-
bon compounds produced from sawdust in polymer composites holds great
promise for a variety of sectors. These composites are very appealing for
improving technologies in the waste and wastewater treatment, energy stor-
age, electronics, agriculture and environmental sectors due to their sustain-
ability and advantageous properties. More research and development in this
subject will definitely lead to even more inventive applications, paving the
way for a more sustainable and technologically advanced future.
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