

Comparative Aspects of the Ecology of Four Syntopic Species of Angleheaded Lizards, Genus *Gonocephalus* (Reptilia: Agamidae: Draconinae)

Wong Jye Wen

Master of Science 2023

Comparative Aspects of the Ecology of Four Syntopic Species of Angleheaded Lizards, Genus *Gonocephalus* (Reptilia: Agamidae: Draconinae)

Wong Jye Wen

A thesis submitted

In fulfillment of the requirements for the degree of Master of Science

(Animal Ecology)

Institute of Biodiversity and Environmental Conservation UNIVERSITI MALAYSIA SARAWAK

2023

DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

.

Signature

Name: Wong Jye Wen

Matric No.: 18020079

Institute of Biodiversity and Environmental Conservation

Universiti Malaysia Sarawak

Date: 02/08/2023

ACKNOWLEDGEMENT

Professor Indraneil Das, my supervisor, deserves my sincerest appreciation for his continuous support, trust, patience, guidance, and advice throughout my endeavour. His immense knowledge and plentiful experience have encouraged me in all the time of my research and daily life. Also, my sincere thanks are extended to Dr. Reuben Sharma and his laboratory assistant Abang Rashid who have taken out hours from their busy schedule to assist and mentor me on how to identify parasites. I would like to offer my special thanks to my research team, colleagues, and friends Veronica Martin, Izneil Nashriq, Veronica Leah, Khairul Ikhwan, Victor Cheah, Ting Kai Jin, Kok Cze Jhin, Cheok Yin Hui, Kushaal Selvarajah, Pang Sing Tyan, and Sally Soo Kaicheen for a cherished time spent together in the field, lab, and office. They have undoubtedly supported and helped me in every way, at every stage of the research project. I also appreciate all the financial support, understanding and encouragement received from my family in the past few years.

My gratitude extends to the Ministry of Higher Education, Government of Malaysia and Sarawak Energy Berhad for the funding opportunity (Grant No. NRGS/1087/2013(01) and GL/101/UBHEP/2019) to undertake my studies at the Institute of Biodiversity and Environmental Conservation (IBEC), Universiti Malaysia Sarawak. I thank Professor Dr. Gabriel Tonga Noweg, former Director and Associate Professor Dr Mohd Azlan Jayasilan, current Director of IBEC, the head of Niche Research Grant Scheme (NRGS) Subproject, Professor Dr Andrew Alek Tuen, Associate Professor Dr Mohd Khairuddin Md. Arshad, Director of Centre for Graduate Studies (CGS), and Senior Director of Research Innovation and Enterprise Centre (RIEC), Professor Lo May Chiun for permitting this project to run smoothly. Support from all staffs of IBEC was also vital for this research, I would like specially thanks Felicia anak Anthony Reyap, Senior Assistant Administrative Officer, Siti Maimunah, Personal Assistant to the Director, Rahah Binti Mohamad Yakup, Assistant Science Officer, Mohamad Hasri Al-Hafiz bin Haba, Senior Laboratory Assistant, and Ketty Daun, Administrative Assistant, for their assistance in providing administrative advice, field and lab equipment required for the project period.

Finally, thanks are due to the Controller of Wild Life/ Controller of National Parks and Nature for Sarawak Forest Department, Engkamat Lading for issuing the permission to conduct this research (Permit no: (135) JHS/NCCD/600-7/2/107 and Park permit no. WL73/2018) in Kubah National Park. I am also grateful for the kind assistance offered by Park Wardens and Rangers of Kubah National Park throughout the research period. Special thanks to Park Warden Stephen Antang and Wildlife Officer Siti Wahdaniyah binti Mohdmad Ismail.

This project was approved by the Universiti Malaysia Sarawak Animal Ethics Committee 2019-2020 (dated 2 October 2019) and all procedures are in compliance with the rules.

ABSTRACT

Investigations on coexistence and resource partitioning among sympatric species of reptilians have been widely conducted in other parts of the world but remain poorly studied in Borneo and other parts of south-east Asia. While some generalisations of ecological aspects may be applicable to local reptilian species, species interactions may differ, depending on geographical location and environment conditions. In the present study, four Gonocephalus species (G. bornensis, G. liogaster, G. doriae and G. grandis) were selected for a study of their comparative biology, the rationale being their perceived ecological similarity and syntopic occurrence, to develop a better insight of the ecological phenomena of resource partitioning. Studies on ecology, specifically on home range, habitat preference, diet and thermal biology, with additional records of parasite, colouration and predation of populations at Kubah National Park, Sarawak, East Malaysia (north-western Borneo) were carried out from June 2018 to December 2019. A total of 16 lizards, representing four species, were equipped with temperature sensitive radio-transmitters, permitting the collection of data on movement and body temperature. Species of Gonocephalus generally occupy similar microhabitats, favouring areas with gentle to moderate slope, high canopy cover, are plastic in their usage of trees in terms of sizes or height, moderate distance to waterbodies, on tree trunk, tree branch, moderate to high humidity, moderate to high ambient temperature, low to median light intensity and low to median perch surface temperatures. All had moderate home range sizes that were similar across species and sexes. Nonetheless, species of Gonocephalus diverge slightly along the spatial dimension of their ecological niches by exhibiting different levels of preference towards aspects of microhabitats utilised, while the lack of interspecific home range overlaps propose that these species are occupying different parts of the forest, although a more extensive sampling that include more

individuals may be needed to confirm this. The four species were primarily shade-dwellers and have relatively low mean body temperatures. They exploit the thermal niche differently which are reflected from the spatial niche, and are likely influenced by the trophic niche. G. bornensis was overall a habitat generalist compared to its congeners, whereas G. doriae are relatively specialised. A total of 13 prey types were identified, consisting mainly of insects and other non-insect arthropod groups (earthworms and snails). However, there was insufficient evidence to conclude unequivocally that trophic resource partitioning contributed to coexistence among these species. Additionally, four nematode and three acarid species were successfully identified in these lizards. G. doriae serve as new host for Orneoascaris sp., and both G. bornensis and G. liogaster serve as new hosts for Strongyluris sp. Species of Gonocephalus displayed sexual dichromatism, where males are generally more colourful and vibrant compared to females. Individuals of the genus are able to quickly change skin colouration from dull to bright or vice versa for social interaction and thermoregulation. Furthermore, a G. liogaster was also found preyed upon by a Ptyas carinata, contributing to the list of predators of Gonocephalus. Overall, this study adds to the knowledge of these species and expands current understanding of resource partitioning and mechanisms of coexistence of lizard populations in Borneo's tropical rainforest, which may be beneficial for both conservation and management as well as future studies on other Bornean ectothermic species.

Keywords: Resource partitioning, coexistence, niche, lizard, Borneo

Perbandingan Aspek Ekologi Empat Spesies Sintopik Biawak Kepala Segi Besar, Genus Gonocephalus (Reptilia: Agamidae: Draconinae)

ABSTRAK

Kajian tentang spesis simpatrik dari segi pembahagian sumber dan perkongsian habitat masih kekurangan terutamanya di Borneo dan Asia Tenggara apabila dibandingkan dengan benua lain di dunia. Interaksi antara spesis mungkin berbeza dan bergantung kepada geografi dan kawasan sekitar. Bagi tujuan ini, empat spesis Gonocephalus (G. bornensis, <u>G. liogaster</u>, <u>G. doriae</u> dan <u>G. grandis</u>) telah dikenalpasti berdasarkan persamaan dari segi ekologi dan tindanan sintopic. Kajian telah dijalakan dari Jun 2018 sehingga Disember 2019 (18 bulan) khususnya atas julat pergerakan, keutamaan habitat, diet dan biologi haba. Tambahan pula, pembezaan dari segi warna spesis, jenis parasit dan kesan populasi dari pemangsaan di Taman Negara Kubah telah dikaji. Sebanyak 16 individu dipasangkan dengan pemancar radio sensitif suhu dimana bacaan pergerakan serta suhu badan telah dicatat. Spesis Gonocephalus yang dikaji secara umum memilih mikrohabitat yang serupa, dimana mereka mengutamakan kawasan yang mempunyai kecuraman cerun antara yang agak landai sehingga kecuraman yang sederhana serta kawasan penutupan kanopi yang tinggi, pokok yang berlainan saiz dan ketinggian, berdekatan dengan sumber air, di atas dahan atau batang pokok, kelembapan udara yang sederhana hingga tinggi, suhu kawasan sekitar yang sederhana hingga tinggi, kekuatan sumber cahaya yang sederhana hingga tinggi dan suhu permukaan tempat hinggap adalah rendah hingga sederhana. Semua spesis yang dikaji mempunyai jarak julat pengerakan yang serdehana tidak kira jantina. Namun, spesis <u>Gonocephalus</u> yang dikaji menyimpang sedikit dari sudut ruang dimensis relung ekologi masing-masing, dimana boleh dikatakan keempat-empat spesis ini mempunyai perbezaan dalam pengkhususan dan pemilihan habitat mereka. Kekurangan tindanan julat pergerakan spesis yang dikaji mencadangkan bahawa mereka menduduki sudut dan bahagian yang berlainan dalam hutan yang sama. Semua spesis yang dikaji kerap memilih kawasan yang berteduh dan mempunyai purata suhu badan yang agak rendah. Spesis Gonocephalus ini berkemungkinan menggunakan pengkhususan terma secara berlainan yang barangkali dipengaruhi oleh pengkhusuan ruang dan trofik. Sebanyak 13 jenis spesis mangsa telah dikenalpasti yang kebesarannya adalah serangga dan arthropod seperti cacing tanah dan siput. Namun, data yang dikumpul tidak mencukupi bagi menjelaskan hubungan pembahagian sumber trofik dan perkongsian habitat. Selain itu, empat spesis nematod dan tiga spesis akarid telah dijumpai dalam spesis yang dikaji. <u>G. doriae</u> yang dijadikan inang bagi <u>Orneoascaris</u> sp. dan <u>G. bornensis</u> serta <u>G. liogaster</u> berfungsi sebagai inang bagi Strongyluris sp. Spesis Gonocephalus menunjukkan perbezaan luaran dari segi jantina, secara umumnya jantan mempunyai lebih banyak warna dari betina. Individu dalam genus mampu menukar warna kulit dengan cepat daripada kusam kepada cerah atau sebaliknya untuk interaksi sosial dan pentermokawalaturan. Satu rekod dimana, <u>G. liogaster</u> telah ditemui dibaham oleh <u>Pytas carinata</u>, menyumbang kepada senarai pemangsa Gonocephalus. Kajian ini telah menambah pengetahuan tentang spesies ini dan meluaskan pemahaman semasa tentang pembahagian sumber dan mekanisme kewujudan Bersama populasi biawak di hutan hujan tropika Borneo.

Kata kunci: Pembahagian sumber, kewujudan bersama, niche, biawak, Borneo

TABLE OF CONTENTS

		Page
DECI	LARATION	i
ACK	NOWLEDGEMENT	ii
ABST	TRACT	iv
ABST	TRAK	vi
TABI	LE OF CONTENTS	viii
LIST	OF TABLES	xiii
LIST	OF FIGURES	xvi
LIST	OF ABBREVIATIONS	xix
CHA	PTER 1 INTRODUCTION	1
1.1	General Introduction	1
1.2	Problem Statement	3
1.3	Objectives	4
CHA	PTER 2 MATERIALS AND METHODS	5
2.1	Study Site	5
2.2	Study Species	8
2.2.1	Genus Gonocephalus Kaup, 1825	8
2.2.2	Gonocephalus bornensis (Schlegel, 1851)	10
2.2.3	Gonocephalus doriae Peters, 1871	10

2.2.4	Gonocephalus grandis (Gray,1845)	10
2.2.5	Gonocephalus liogaster (Günther, 1872)	11
2.2.6	Gonocephalus mjobergi Smith, 1925	12
2.2.7	Key to Bornean species of Gonocephalus.	13
2.3	General Sampling Period and Methods	13
2.3.1	Challenges of Adopting Radiotelemetry	15
CHAI	PTER 3 SPATIAL ECOLOGY AND MOVEMENT	19
3.1	Introduction	19
3.2	Specific Objectives	21
3.3	Specific Methodology	22
3.3.1	Transmitter Used	22
3.3.2	Transmitter Attachment	22
3.3.3	Microhabitat Data Collection	25
3.3.4	Data Analyses	26
3.4	Results	28
3.4.1	Home Range Analysis	28
3.4.2	Movement Analysis	31
3.4.3	Habitat Preference Analysis	33
3.4.4	Niche breadth and Niche Overlap	43
3.5	Discussion	44

3.6	Conclusions	49
CHAI	PTER 4 TROPHIC ECOLOGY	50
4.1	Introduction	50
4.2	Specific Objectives	53
4.3	Specific Methodology	54
4.3.1	Dietary Data Collection	54
4.3.2	Stomach Flushing	55
4.3.3	Data Analyses	56
4.4	Results	58
4.4.1	Diet Composition	58
4.4.2	Niche Breadth and Niche Overlap	63
4.4.3	Predator-prey Body Size Relationships	64
4.4.4	In-situ Feeding Observations	65
4.5	Discussion	67
4.6	Conclusions	73
CHAI	CHAPTER 5 THERMAL ECOLOGY	
5.1	Introduction	74
5.2	Specific Objectives	77
5.3	Specific Methodology	78
5.3.1	Thermal Data Collection	78

5.3.2	Non-invasive Methods to Measure Body Temperature	78
5.3.3	Data Analyses	80
5.4	Results	82
5.4.1	Body Temperature, Tb of Gonocephalus	82
5.4.2	Relationship of T _b and Ambient Temperature, T _a	85
5.4.3	Relationship of T _b and Substrate Temperature, T _s	90
5.4.4	Relationship of T _b and State of Activity	95
5.4.5	Relationship of T _b and Relative Humidity, RH	98
5.4.6	Multiple Regression	100
5.5	Discussion	101
5.6	Conclusions	110
CHAI	PTER 6 MISCELLANEOUS ASPECTS OF FIELD BIOLOGY	111
6.1	Parasites	111
6.1.1	Introduction	111
6.1.2	Specific Objective	119
6.1.3	Specific Methodology	121
6.1.4	Results	121
6.2	Colouration	125
6.2.1	Introduction	125
6.2.2	Specific Methodology	128

6.2.3	Sexual Dichromatism in the Four Species of Gonocephalus	128
6.2.4	Discussion	
6.3	Predation	
CHA	PTER 7 GENERAL CONCLUSION AND RECOMMENDATIONS	141
REFF	CRENCES	143
APPENDICES		204

LIST OF TABLES

Table 2.1	Habitat descriptions for trails in Kubah National Park, Sarawak	7
Table 2.2	IUCN Red List Assessment of the 16 Gonocephalus species	9
Table 2.3	Microhabitat habitat variables of reptile sightings to be recorded	16
Table 3.1	Summary of radio telemetered <i>Gonocephalus</i> . Species abbreviations as in Figure 3.4 caption	30
Table 3.2	Home range overlap between four sympatric species of <i>Gonocephalus</i> with MCP analysis of home range overlap (ha), percentage of overlap (%) and means	31
Table 3.3	Spearman correlation coefficients (r) among 9 microhabitat variables. (**) indicate that correlation is significant at the 0.01 level (2-tailed), (*) correlation is significant at the 0.05 level (2-tailed). CC = canopy cover (%); S = slope (°); VP = vertical position (m); CT = circumference of tree (m); DW = distance to nearest waterbody (m); LI = light intensity (lux); RH = relative humidity (% RH); AT = ambient temperature (°); PST = perch surface temperature (°)	34
Table 3.4	Summary statistics of the 6 structural microhabitat variables and 4 environmental microhabitat variables recorded for the radio tracked <i>Gonocephalus</i> ($\overline{x} \pm SE$). CC = canopy cover (%); S = slope (°); VP = vertical position (m); CT = circumference of tree (m); DW = distance to nearest waterbody (m); PS = perch surface (0 = Tree Trunk; 1 = Tree Branch; 2 = Stem of leaf; 3 = Leaf; 4 = Wooden Plank; 5 = Ground; 6 = Vine; 7 = Rock; 8 = Buttress of tree; 9 = Tree Stump; 10 = Fallen log); LI = light intensity (lux); RH = relative humidity (%RH); AT = ambient temperature (°); PST = perch surface temperature (°)	36
Table 3.5	Pairwise comparison of Morista's Similarity Index of microhabitat utilization among radio-tracked <i>Gonocephalus</i> species and gender	37
Table 3.6	Levin's standardised niche breadth and Pianka's niche overlap of microhabitat utilization of telemetered <i>Gonocephalus</i>	43
Table 4.1	Dietary composition the four syntopic species of <i>Gonocephalus</i> . OTUs = operational taxonomic units; $n = abundance$; $v = volume$ (mL); FO = frequency of occurrence; IRI = index of relative importance; all percentages in parentheses	60

Table 4.2	Results of Spearman rank correlation coefficients (r_s) comparing percentage of abundance (% N), percentage of volume (% V) and percentage of frequency of occurrence (% FO) as indices of prey importance for species of <i>Gonocephalus</i> . (**) indicate that correlation is significant at the 0.01 level (2-tailed), (*) correlation is significant at the 0.05 level (2-tailed)	61
Table 4.3	Results of Spearman rank correlation coefficients (r_s) comparing index of relative importance (IRI) rankings for prey types of four species of <i>Gonocephalus</i>	61
Table 4.4	Levin's standardised niche breadth and Pianka's symmetrical niche overlap based on prey composition in <i>Gonocephalus</i>	63
Table 5.1	Games-Howell post hoc comparisons of mean body temperature, T_b between species of <i>Gonocephalus</i> . (*) mean difference is significant at the 0.05 level	83
Table 5.2	Body temperature, T_b of four species of <i>Gonocephalus</i> measured via two non-invasive methods. n = total individual; N = total individual of species; SD = standard deviation; SE = standard error; Juv = juvenile	84
Table 5.3	Pearson correlation coefficients (r) for the relation of log body temperature, T_b and log ambient temperature, T_a by species of <i>Gonocephalus</i> using two non-invasive methods to measure T_b . N = number of pairs of data; p = p-value	86
Table 5.4	Differences between body temperature, T_b and ambient temperature, T_a (T_b - T_a) of the four species of <i>Gonocephalus</i> measured via two non- invasive methods. < 0 = difference less than zero; = 0 = difference equals zero; > 0 = difference more than zero; percentages in parentheses	86
Table 5.5	Day and night body temperature, T_b of the four species of <i>Gonocephalus</i> measured via two non-invasive methods. n = total individual; N = total individual of species; SD = standard deviation; SE = standard error	89
Table 5.6	Pearson correlation coefficients (r) for the relation of log body temperature, T_b and log substrate temperature, T_s by each species of <i>Gonocephalus</i> using two non-invasive methods to measure T_b . N = number of pairs of data; p = p-value	91
Table 5.7	Differences between body temperature, T_b and substrate temperature, T_s (T_b - T_s) of four species of <i>Gonocephalus</i> measured via two non-invasive methods. N = total individual of species; SD = standard deviation; < 0 = difference less than zero; = 0 = difference equals zero;	
	> 0 = difference more than zero; percentages in parentheses	92

temperature, T_b between species of <i>Gonocephalus</i> . (*) mean difference is significant at the 0.05 level	96
Table 5.9Games-Howell post hoc comparisons of night sedentary mean body temperature, Tb between species of Gonocephalus. (*) mean difference is significant at the 0.05 level	96
Table 5.10 Sedentary and active body temperature, T_b of the four species of <i>Gonocephalus</i> measured via two non-invasive methods. $n = total$ individual; $N = total$ individual of species; $SD = standard$ deviation; SE = standard error	97
Table 5.11Games-Howell post hoc comparisons of relative humidity, RH between species of Gonocephalus. (*) mean differece is significant at the 0.05 level	98
Table 5.12Multivariable regression equations used to predict body temperatures in each species of <i>Gonocephalus</i> 1	00
Table 6.1Host list for the seven species of Gonocephalus found in Peninsular Malaysia and Borneo1	20
Table 6.2Number of parasites (n) and site of infection found in Gonocephalus host from this study1	22

LIST OF FIGURES

Page

Figure 2.1	Map of Kubah National Park, in Western Sarawak, Borneo	6
Figure 2.2	Wound on dorsal crest and inner thigh caused by rigid harness (nylon coated fishing wire fitted into a neoprene rubber tube) to a telemetered <i>Gonocephalus grandis</i> (Tracking number 150.150)	18
Figure 3.1	Compressing crimp sleeves with a flat-nose plier after fishing wire was fitted through	24
Figure 3.2	Taping electric tape around the compressed crimp sleeve and cut wires	24
Figure 3.3	Male <i>Gonocephalus bornensis</i> fitted with temperature-sensitive radio transmitter (Holohil BD-2)	25
Figure 3.4	Map showing the locations of the 16 tracked individuals of <i>Gonocephalus</i> . Polygon shapes indicate the Minimum Convex Polygon (MCP, 100%, ha)	29
Figure 3.5	Maps showing the six overlaps of MCP home ranges. Species abbreviations as in Figure 3.4 caption	32
Figure 3.6	Dendrogram of Morista's Similarity Index resulting from a hierarchical cluster analysis using unweighted pair group method with arithmetic mean (UPGMA) based on sighting counts of Gonocephalus species associated with microhabitat. Species abbreviations as in Figure 3.4 caption	38
Figure 3.7	An nMDS analysis ordination biplot based on Bray-Curtis coefficient of similarities between individual number of <i>Gonocephalus</i> species and habitat variables	41
Figure 3.8	Shepard plot of nMDS ordination distance against the observed dissimilarity. Red line denotes the best-fit monotonic regression of y on x; Blue circles defines the nMDS stress	42
Figure 4.1	Stomach flushing a female <i>Gonocephalus liogaster</i> after capture in Kubah National Park	55
Figure 4.2	Bar chart showing the total amount of stomachs flushed and positive regurgitated and scat samples that were collected from June 2018 to December 2019	58

Figure 4.3	Prey items collected from regurgitated and scat samples of species of <i>Gonocephalus</i>	62
Figure 4.4	Scatter plots showing log prey estimated full size against log predator snout-to-vent length, SVL	65
Figure 4.5	An adult female <i>G. bornensis</i> masticating a <i>Dinomyrmex gigas</i> (giant forest ant) on 12 August 2018, at 1330 h	66
Figure 5.1	Measuring surface body temperature, T_b and perch surface temperature, T_s using a handheld infrared laser thermometer (Fluke 62 MAX)	81
Figure 5.2	The single red laser emitted from the handheld infrared laser thermometer pinpoints the target for accurate temperature readings. Picture shows an adult female <i>Gonocephalus bornensis</i>	81
Figure 5.3	Boxplots used to visualise differences between T_b in the four species of <i>Gonocephalus</i> . (A) T_b measured via temperature-sensitive radio transmitter (B) T_b measured via infrared laser thermometer. GG: <i>Gonocephalus grandis</i> ; GD: <i>Gonocephalus doriae</i> ; GB: <i>Gonocephalus bornensis</i> ; GL: <i>Gonocephalus liogaster</i> ; Thick line in the middle represents median; Top and bottom box lines show first and third quartiles; Whiskers show the maximum and minimum values; (°) defines outliers; (*) denotes extremes	83
Figure 5.4	Regression of log body temperature, T_b of <i>Gonocephalus</i> on log ambient temperature, T_a . (A) T_b measured via temperature-sensitive radio transmitter (B) T_b measured via infrared laser thermometer. R^2 = Coefficient of determination	87
Figure 5.5	Regression of log body temperature, T_b of each <i>Gonocephalus</i> on log ambient temperature, T_a . (A) T_b measured via temperature-sensitive radio transmitter (B) T_b measured via infrared laser thermometer. R^2 = Coefficient of determination	88
Figure 5.6	Regression of log body temperature, T_b of <i>Gonocephalus</i> on log substrate temperature, T_s . (A) T_b measured via temperature-sensitive radio transmitter (B) T_b measured via infrared laser thermometer. R^2 = Coefficient of determination	93
Figure 5.7	Regression of log body temperature, T_b of each <i>Gonocephalus</i> on log substrate temperature, T_s . (A) T_b measured via temperature-sensitive radio transmitter (B) T_b measured via infrared laser thermometer. R^2 = Coefficient of determination	94

Figure 5.8	Regression of relative humidity, %RH on log body temperature, T_b of <i>Gonocephalus</i> . (A) T_b measured via temperature-sensitive radio transmitter (B) T_b measured via infrared laser thermometer. R^2 = Coefficient of determination	99
Figure 6.1	Parasites collected from species of Gonocephalus	123
Figure 6.2	Site of infection on <i>Gonocephalus</i> by three species of ascarids. (A) species 1 (mite) attach to parietal region of head; (B) species 2 (tick) attach to neck; (C) <i>Amblyomma</i> sp. attach to gular sac	124
Figure 6.3	A pair of adult male <i>Gonocephalus doriae</i> displaying conspicuous colouration during competition	134
Figure 6.4	Adult Female <i>Gonocephalus bornensis</i> day colouration. (A) Colouration in shade; (B) Colouration under direct sunlight	135
Figure 6.5	Stress colouration resulted from handling. (A) Adult Male Gonocephalus grandis; (B) Adult Female Gonocephalus doriae	135
Figure 6.6	Adult female <i>Gonocephalus bornensis</i> observed in Palmetum trail at Kubah National Park showed umber (Colour No. 23) markings and transverse bands	
Figure 6.7	Dynamic physiological colour change in adult male <i>G. doriae</i> . (A) Natural colouration; (B) Partially breeding colouration; (C) Colouration associated to courtship or intrasexual interactions	
Figure 6.8	Microhabitats associated with radio signals related to predation on <i>Gonocephalus liogaster</i> by <i>Ptyas carinata</i> . (A) Within the root mass of an uprooted tree, showing the caudal region of the snake; (B) Inside a rock fissure along a stream bank, also showing the caudal region of the snake; and (C) the excreted transmitter hanging on a vine associated with saplings	140

LIST OF ABBREVIATIONS

%FO	Percentage of Frequency of Occurrence
%N	percentage of abundance
% V	percentage of volume
°C	Degree Celsius
asl	Above sea level
AT	Ambient Temperature
ca.	Circa
CC	Canopy Cover
СТ	Circumference of Tree
df	Degrees of freedom
DSLR	digital single-lens reflex camera
DW	Distance to Waterbody
e.g.	exempli gratia
et al.	et alia
F	Test statistic for a One-Way ANOVA
FG	Female Gonocephalus
g	Gram(s)
GB	Gonocephalus bornensis
GD	Gonocephalus doriae
GG	Gonocephalus grandis
GL	Gonocephalus liogaster
h	Hour
ha	Hectare

Index of Relative Importance
International Union for Conservation of Nature
Kernel Density Estimation
Kilometer(s)
Light Intensity
Meter(s)
Minimum Convex Polygon
Mean Distance travelled between location
Mean Daily Displacement
Male Gonocephalus
Millimeter(s)
Melanophore Stimulating Hormone
No Date
Non-metric Multidimensional Scaling
Number
National Park
Operational Taxonomic Units
P-value
Perch Surface
Perch Surface Temperature
Gut Passage Time
Pearson Correlation Coefficient
Coefficient of Determination
Relative Humidity
Slope

SD	Standard Deviation
SE	Standard Error
SVL	Snout-vent length
t	Computed t-test statistic
Ta	Ambient Temperature
T _b	Body Temperature
T _s	Perch Surface Temperature
UPGMA	Unweighted Pair Group Method with Arithmetic mean
VES	Visual Encounter Survey
VP	Vertical Position
WT	Weight

CHAPTER 1

INTRODUCTION

1.1 General Introduction

Many ecologists have examined spatial, feeding, and thermal patterns to understand how animals interact among each other and/or with their environment (e.g., MacArthur, 1958; Pianka, 1969; Ballinger et al., 1970; Pianka, 1971a; Cooke et al., 2016; Klenovšek et al., 2013). Species commonly coexist in populations with two or more closely related species (Sillero & Gomes, 2016), and in many of these studies, closely related species in the same community have shown to utilise some of their environmental resources differently, indicating the presence of niche segregation. Hutchinson (1957) regarded niche as a multidimensional space formed by axes corresponding to the environmental factors, where a species can successfully survive and reproduce. Similar species coexist through partitioning resources along certain axes of the multidimensional niche space, while competing over other axes. In other words, they differentiate themselves in one or more aspects of their ecology, which are presumably caused, maintained and/or reinforced by interspecific competition (Hutchinson, 1959; Pianka, 1973; Schoener, 1974). Hutchinson (1978) later defined these axes as "scenopoetic" axes, that included physical and chemical variables, and "bionomic" axes, which are resources that can be competed for (spatial and trophic niches). For species to coexist, some environmental variables or resources from these axes can sometimes interact and influence each another (Tracy & Christian, 1986). Additionally, closely related species were also said to exhibit character displacement to coexist in a community, whereby they acquire distinct observable functional features overtime that is believed to be developed from specialisation on different resources (Brown