OUT OF PLANE BEHAVIOUR OF PROFILED STEEL SHEET

DRY BOARD (PSSDB) SQUARE PANEL

WALTER ANAK LAWRENCE

This thesis submitted to

Faculty of Engineering University Malaysia Sarawak

in partial fulfillment of the requirement for the award of the degree of Bachelor of Engineering with Honours

(Civil Engineering)

	UNIV	ERSITI MA	LAYSIA SARAWAK
			R13a
	ВО	RANG PENGES	AHAN STATUS TESIS
ludul : <u>Ol</u>	UT OF PLANE BEHAVIOU	R OF PROFILEI	D STEEL SHEET DRY BOARD (PSSDB) SQUARE
		P /	ANEL
		SESI PENGA	JIAN: <u>2008/2009</u>
Saya			ANAK LAWRENCE
		(HU	RUF BESAR)
	ku membenarkan tesis * ini di 1 syarat-syarat kegunaan seper		Khidmat Maklumat Akademik, Universiti Malaysia Sarawak
1. 2. 3. 4. 5.	tujuan pengajian sahaja. Membuat pendigitan untuk 1	Akademik, Univer membangunkan Pa akademik, Univers atara institusi peng	rsiti Malaysia Sarawak dibenarkan membuat salinan untuk angkalan Data Kandungan Tempatan. siti Malaysia Sarawak dibenarkan membuat salinan tesis ini ajian tinggi.
	SULIT		aklumat yang berdarjah keselamatan atau kepentingan yang termaktub di dalam AKTA RAHSIA RASMI 1972).
	TERHAD		aklumat TERHAD yang telah ditentukan oleh organisasi/ nyelidikan dijalankan).
	✓ TIDAK TERHAD		
			Disahkan oleh
-	(TANDATANGAN PI	ENULIS)	(TANDATANGAN PENYELIA)
Al	amat tetap: <u>Kampung Korar</u> 94700 Serian	n Mawang	
-	Sarawak.		AP Dr Ehsan Ahmed
			Nama Penyelia
Tarikh:			Tarikh:

CATATAN

* ** Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah, Sarjana dan Sarjana Muda. Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD. "I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in term of scope and quality for the award of the Degree of Civil Engineering".

Signature	:	
Name of supervisor	:	PROF MADYA DR EHSAN AHMED
Date	:	

I declare that this thesis entitled "OUT OF PLANE BEHAVIOUR OF PROFILED STEEL SHEET DRY BOARD (PSSDB) SQUARE PANEL" is the result of my own research except as cited in the reference. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	: WALTER ANAK LAWRENCE
Date	:

Especially to my beloved parent, Mr Lawrence Anak Juwum and Mrs Miderdine Anak Lamit, to my beloved sibling, Priscilla, Prissy Talesy and Petty Talesy Thanks for all your support.

ACKNOWLEGMENT

First of all, I would like to thanks all the people who contribute in writing this project. Thanks a lot to mu supervisor, Dr Ehsan Ahmed for his advice, guidance, encouragement, critics and support. Without his contribution, this project would not finish written and produces. Beside that, not forget also to Steelon Roofing Systems Sdn Bhd, for supplying the steel sheet to carry out the project.

I would like to thanks to all my friends for support and advice in written this project especially To Jocelyn Jonip. Not forget also to Ngoh Fei Phing, Stephen Nyambar, Mike Jackson Tsai, Edward, Leum, and Mike Hudson for the valuable support.

Last but not least, I would like to devote the utmost thankfulness to my beloved family for the valuable support. Without support from them, this project would not finish written. Thanks you very much.

ABSTRACT

Profiled steel sheet dry board as a floor slab and it is a new innovation of composite slab structure in construction industry. It is consists of profiled steel sheet, dry board and screw as a connector. This study is to investigate the behavior of profiled steel sheet dry board (PSSDB) square panel. Plywood was chosen as dry board, SDP - 51 chosen as profiled steel sheet and self-drilling and self-tapping screw is used for connector. The component material was selected from the local market. This study consists of two part of analysis which is the theoretical analysis study for deflection of PSSDB and the experimental study for deflection of PSSDB at center point load mid span. Vibration test is also conducted in experimental study to investigate the damping effect of PSSDB. In theoretical analysis study, slip and strain at everywhere of connection between plywood and steel sheet is zero and assumed the plane section remains plane. This situation is knows as full interaction. The transformed section method was used to analyses PSSDB since it created from different material as raw material. The result of analysis pointed out that the deflection of PSSDB is increase when the load pointed on the PSSDB was increased. From experiment study, the first deflection was 1.86 mm at 1.55 kN. The maximum deflection was 47.83 mm at 21.7 kN. It was found that, damping ratio for the flooring system is 0.00045. A natural frequency, f_n was 86 Hz and damped frequency was 85.9 Hz. The specimen stiffness was 26.78×10^6 N/m. The value of critical damping coefficient and actual damping coefficient was respectively 99110.56 Ns/m and 44.60 Ns/m.

ABSTARK

Papan kering plat keluli berprofil sebagai kepingan lantai merupakan inovasi baru struktur kepingan komposit dalam industri pembinaan. Ia terdiri daripada plat keluli berprofil, papan kering dan skru sebagai penyambung. Kajian ini bertuluan untuk mengkaji cirri-ciri jalur jalur kayu segi empat papan kering plat keluli berprofil (PSSDB). Kepingan papan lapis digunakan sebagai papan kering, plat keluli berprofil mengunakan SDP-51 dan skru benam dan tebuk sendiri digunakan sebagai penyambung. Bahan komponen dipilih dari pasaran tempatan. Kajian ini terdiri daripada dua bahagian analisis iaitu kajian analisis teori terhadap kekuatan lentur PSSDB dan kajian secara eksperiman kekuatan lentur PSSDB pada beban runcing di tengah-tengah rentangan. Kajian getaran juga dijalankan dalam kajian eksperiman untuk mankaji kesan getaran terhadap PSSDB. Dalam kajian analisis teori, gelinciran dan regangan pada setiap sambungan diantara kepingan papan lapis dan plat kekuli berprofil adalah diabaikan dan permukaan dianggap kekel rata. Keadaaan ini dikenali sebagai tindak balas penuh. Kajian ini dibuat mengunakan teknik penukaran keratan untuk menanalisis PSSDB yang mengunakan bahan yang berbeza sebagai bahan asas. Keputusan dari analisis menunjukkan lenturan PSSDB meningkat apabila beben yang dikenakan pada PSSDB meningkat. Daripada eksperimen yang dijalankan, lenturan pertama adalah 1.86 mm pada 1.55 kN. Lenturan maksimum adalah 47.83 mm pada 21.7 kN. Didapati juga, 'damping ratio' bagi system lantai ini adalah 0.00045. Nilai bagi ' Natural frequency' adalah 86 Hz dan 'damped frequency' adalah 85.9 Hz. Nilai kekakuan bagi specimen adalah 26.78x 10⁶ N/m. Nilai bagi pekali ' crital damping' dan ' actual damping' adalah masing-masing 99110.56 Ns/m dan 44.60 Ns/m.

TABLE OF CONTENTS

CONTENT	PAGE
Dedication	iv
Acknowledgement	v
Abstract	vi
Abstrak	vii
Table of Contents	viii
List of Figure	xiii
List of Tables	xvi
List of Symbols	xvii
CHAPTER 1 INTRODUCTION	1
1.1 General	1
1.2 Overview	2
1.3 Problem Statement	3
1.4 Aims and Objectives	3
1.5 Scope Of Study	4
1.6 Hypothesis	5
CHAPTER 2 LITERATURE REVIEW	6
2.1 Profiled steel sheet dry board	6
2.2 Research on Profiled steel sheet Dry Board (PSSDB)	8
2.2.1 Profiled steel sheet dry board (PSSDB) flooring panel system.	8

2.2.2 Profiled steel sheet dry board (PSSDB) wall system	10
2.2.3 Composite Floor Vibration test.	14
2.3 Component Material Research	17
2.3.1 Profiled steel sheet	17
2.3.1.1 Bondek II	17
2.3.1.2 Steelon deck Plate SDP- 51	19
2.3.2 Wood properties	21
2.3.2.1 Density	21
2.3.2.2 Strength	21
2.3.3 Plywood Properties	23
2.3.3.1 Description of Plywood	23
2.3.3.2 Plywood Physical Characteristic	23
2.3.3.3 Advantages of plywood	24
2.3.4 Wood connector	25
2.3.4.1 Wood screws	25
2.3.4.2 Withdrawal load	26
2.3.4.3 Connection Spacing	27
2.3.5 Composite timber structure	30
2.3.5.1 Advantages of composite timber structure	30
2.3.5.2 Mechanical Behavior	31
2.3.5.3 Test on connection composite structure	32
2.3.5.4 Composite Timber Structure Performance	33

CHAPTER 3 METHODOLOGY	34	
3.1 Research overview		
3.2 Theoretical study	36	
3.3 Three point bending test	36	
3.3.1 Test on plywood	36	
3.3.2 Test Set-up	37	
3.3.3 Data Analysis	37	
3.4 Push out test	39	
3.4.1 Flexural testing of PSSDB panel	39	
3.4.2 Sample design	39	
3.4.3 Test Set-up	42	
3.4.4 Data analysis	42	
3.5 Vibration Test		
3.5.1 Test on PSSDB	43	
3.5.2 Test Set-up	43	
3.5.3 Data analysis	43	
CHAPTER 4 THEORITICAL ANALYSIS STUDY	44	
4.1 Introduction	44	
4.2 Basic Theory	44	
4.3 Moment Of Inertia	45	
4.3.1 Profiled Steel Sheet	45	
4.3.2 Plywood	47	
4.3.3 Composite Section	48	
4.4 Deflection	52	

CHAPTER 5 EXPERIMENTAL STUDY	54
5.1 Introduction	54
5.2 Sample Description	54
5.3 Material Properties	55
5.3.1 Plywood	55
5.3.2 Profiled steel sheet	55
5.3.3 Self- drilling self tapping Screw	56
5.4 Preparation of sample	56
5.5 Bending test for the sample	57
5.6 Testing equipment for deflection test	57
5.6.1 Data logger	57
5.6.2 Transducer	58
5.6.3 Hydraulic Hand Jack	59
5.6.4 Universal Testing Frame	59
5.7 Testing Procedure	60
5.8 Vibration test for sample	61
5.9 Testing equipment for vibration test	62
5.9.1 Microphone	62
5.9.2 Sound level meter	62
5.9.3 PC oscilloscope	63
5.10 Testing procedure	64
5.11 Bending test for plywood	64
5.12 Testing procedure	65
5.13 Experiment result	65
5.13.1 Plywood bending test result	65

5.13.2 PSSDB Deflection Test Result	66
5.13.3 Discussion of PSSDB deflection result	69
5.13.4 Vibration test result	70
5.13.5 Discussion of PSSDB vibration result	72
CHAPTER 6 CONCLUSION AND RECOMMENDATION	74
6.1 Conclusion	74
6.2 Recommendation	75
REFERENCES	76
APPENDICES	77

LIST OF TABLE

TABLE NO.	TITLE	PAGE
2.1	Sample for the fire performance test	9
2.2	Description of samples	11
2.3	Type of Bondek II profiled steel sheet	19
2.4	The section properties of Steelon deck Plate SDP- 51	20
2.5	Variation of bending strength with grain direction	21
2.6	Effect of moisture content on compressive strength of wood	22
2.7	Minimum nail spacing (Table 53, BS 5268: Part 2)	28
2.8	minimum screw spacing (Table 59, BS 5268: Part 2)	29
2.9	Minimum bolt and dowel spacing (Table 75 and clause 6.6.7.3, BS 5268: Part2)	29
4.1	Calculation to determine centroid of steel sheet section	46
4.2	The theoretical deflection of PSSDB	52
5.1	The experiment deflection of PSSDB	67
5.2	The parameter characteristic of PSSDB against vibtration	71

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	BCCFP panel system developed by Wan Hamidon in 1994.	6
2.2	Relationship between floor stiffness and measured natural frequency	15
2.3	Bondek II profiled steel sheet	18
2.4	Dimension of Bondek II profiled steel sheet	18
2.5	Dimension of Steelon deck Plate SDP- 51 (Steelon Roofing Systems Sdn. Bhd. Catalog)	19
2.6	Shape of Steelon deck Plate SDP- 51	20
2.7	General relationship between strength and moisture content (After Lavers, 1983)	22
2.8	Common type of screw: A, flathead: B, roundhead; C, ovalhead	25
2.9	Load-slip behavior and slip coefficient definition (Thelandersson. S and Larsen H.J, 2003).	31
2.10	A possible test arrangement for determining load-slip behavior of a connection system. (Thelandersson. S and Larsen H.J, 2003).	33

3.1	Methodology flow chart	35
3.2	Arrangement of screws for top layer of plywood	40
3.3	Arrangement of screws for bottom layer of plywood	41
3.4	Layer of Profiled Steel Sheet Dry Board	41
4.1	The sub section of steel sheet	45
4.2	Dimension of cross section of plywood	47
4.3	Dimension of cross section of Profiled steel sheet dry board	48
4.4	Transformed composite section neutral axis.	51
4.5	Graph load versus deflection of profiled steel sheet dry board	53
5.1	Profiled steel sheet dry board	56
5.2	Data logger	58
5.3	Transducer	58
5.4	Hydraulic hand jack	59
5.5	Universal testing frame machines	60
5.6	Set up of deflection test	61

5.7	Sound level meter 1/3 octave band analyzer, NA- 27 RION	63
5.8	The PC oscilloscope ADC-216	63
5.9	Set up of vibration test	64
5.10	Graph Stress versus Strain of plywood	66
5.11	Graph load versus deflection of PSSDB in experimental study.	68
5.12	Graph comparison between experiment deflection and theoretical deflection	68
5.13	Response of amplitude as a function of time for free vibration.	70
5.14	A Frequency Response Curve	70

5.14	A Frequency Response Curve	70
------	----------------------------	----

LIST OF SYMBOLS

PSSDB	Profiled Steel Sheet Dry Board
P_U	Ultimate Load
A _S	Cross Section Area Of PSS
m	Ratio Eb / Es
Eb	Elastic Buckling Load
Es	Modulus Of Elastic of PSS
k'	0.14 For Partial Interaction
k	Reduction Factor
σ_y	Yield Stress Of PSS
Pcr	Euler Bulking Load
П	Phi
Es	Modulus Of Elastic Of PSS
I _C	Moment Of Inertia Of Composite Section
Κ	1.5 For Wall One End Fixed And The Other End Partially Restrained In Direction
Н	Height Of Wall

Р	Maximum Withdrawal Load In Pounds (Ib)
G	Specific Gravity Of Wood
D	Shank Diameter Of Screw In Inch (in)
L	Length Of Penetration Of Threaded Part Of Screw
E	Modulus Of Elasticity
Р'	Force
L	Length Of Sample
,	Displacement
В	Width Of Sample
Н	Thickness Of Sample
М	Gradient
D	Shank Diameter Of Screw
Q	Concentrated Load
K	Slip Modulus
V	Slip Between Two Adjacent Parts
EI	Stiffness Of The System

f	Frequency
W	Mechanical Resonance Frequency
g	Gravity Constants
r	Natural Frequency
Hz	Hertz
Ap	Cross Section
δ	Deflection
dB	Decibel
Δ	Differential
С	Actual Damping Coefficient
Cc	Critical Damping Coefficient
SDP	Steelon Deck Plate
PC	Personal Computer
Σ	Total
BTM	Base Metal Thickness

CHAPTER 1

INTRODUCTION

1.1 General

Construction method play important role in construction project. In Malaysia, construction industry is based on the conventional method which is the traditional method of construction. This method consists of reinforce concrete, timber building construction, masonry construction and precast concrete. This method takes time to carry out, need more workers and it will produce wastage at the construction site. That is some of the disadvantage of using conventional method and it look not too efficient.

In the last few decades, many researches have been done to overcome existing problem and were found new method for construction called Industrial Building System (IBS). Through this system, all the component of building such as concrete floor slab, concrete column and concrete beam was casted or constructed in factory. Beside that, composite structure also initiated for one of structure component which consist of combination of steel sheet, dry board and also concrete. One of the examples of composite structure initiated was Profiled Steel Sheet dry Board (PSSDB). This composite structure was improved to increases the potential of PSSDB in construction industry through research and study.

1

This research presents the Out of plane behavior of Profiled Steel Sheet dry Board (PSSDB) square panel. The study has been carrying out to investigate the structure performance of flooring system square panel.

1.2 Overview

Dry board consists of plywood and chipboard. Plywood made by slicing wood into thin layer and gluing three or more layer of wood slice together to form sheet. Chipboard manufactured by gluing wood particle such as saw mill, saw dust and wood chip under heat and pressure condition. To increase strength and stiffness of profiled steel sheet in floor system, Profiled Steel Sheet Dry Board (PSSDB) has been initiated. The idea was initiated by Wright and Evans (1987) in United Kingdom.

PSSDB is created from profiled steel sheet connected with dry board. The connection is made by self- drilling and self tapping screw between steel sheet and plywood. The main function of steel sheet is to increase strength of dry board in square panel. It is also perform as a joist for small size of building flooring system.

1.3 Problem statement

Dry board such as plywood usually used in flooring system for small building. The strength and stiffness properties of normal plywood still not adequate carry heavy load in flooring system. In this study, profiled steel sheet dry board (PSSDB) will be introduced to improve the performance of plywood as a material for flooring system. A steel sheet is put together at the bottom of plywood sheet and connected using self drilling and tapping screw. This composite structure is known as profiled steel sheet dry board. Steel sheet is probable can used to increase strength and stiffness of plywood in flooring system.

1.4 Aim and objective

The aims of this study are to investigate the shear connection performance using push-out test and evaluate the properties of dry board.

The objectives of this study are:

- i. To determine load carrying capacity and deflection behavior of PSSDB panel.
- To investigate the properties of locally available component material of PSSDB panel.
- iii. To investigate the potential of PSSDB panel toward vibration affect.

1.5 Scope of study

The study consists of two parts which is to predict the deflection of PSSDB panel using theoretical analysis study and carry out experimental study to find out the maximum deflection of PSSDB panel. This study will be carry out in laboratory by using push out test to investigate the performance of PSSDB sample. In addition, vibration test for the PSSDB panel also have been carry out.

1.5.1 Theoretical Analysis Study

Theoretical analysis study is to predict the deflection of PSSDB panel. PSSDB is one of the composite structures and method used to analysis the composite structure is differ from the structure made by only one material because consists of several material. Detail explanation of analysis will be discussed at Chapter 4 of this study.

1.5.2 Experimental Study

- i. Two samples 1500 mm x 1000 mm will be prepared for test.
- ii. Samples will be set as simple supported with two support reaction.
- iii. For the first sample, point load will be applied at the center of the sample tofind out the maximum deflection at the center of the sample.