

GEOTECHNICAL PROPERTIES OF PEAT SOIL

Mohd Rozaidi Bin Ramli

Bachelor of Engineering with Honours (Civil Engineering) 2009 GEOTECHNICAL PROPERTIES OF PEAT SOIL

MOHD ROZAIDI BIN RAMLI

This Thesis Is Proposed To Faculty of Engineering, Universiti Malaysia Sarawak In Fulfillment Of The Requirement. Of Bestowal The Degree of Bacherlor Of Engineering with Honours (Civil Engineering)

2009

UNIVERSITI MALAYSIA SARAWAK

UDUL :		GEOTECHNICAL PRO	PERTIES OF PEAT SOIL
		SESI PENGAJ	IIAN : <u>2008 / 2009</u>
aya		MOHD ROZAL	DI BIN RAMLI
		(HURU	F BESAR)
		s * ini disimpan di Pu t kegunaan seperti berikut	sat Khidmat Maklumat Akademik, Universiti Malaysia :
		ilik Universiti Malaysia S klumat Akademik, Univer	arawak. siti Malaysia Sarawak dibenarkan membuat salinan untu
ti	ujuan pengajian sa	haja.	Pangkalan Data Kandungan Tempatan.
4. P	Pusat Khidmat Ma		rsiti Malaysia Sarawak dibenarkan membuat salinan tesi
		/) di kotak yang berkenaa	
	SULIT		nat yang berdarjah keselamatan atau kepentingan Malaysi 9 di dalam AKTA RAHSIA RASMI 1972).
	TERHAD	(Mengandungi maklur di mana penyelidikan d	nat TERHAD yang telah ditentukan oleh organisasi/bada dijalankan).
\checkmark	TIDAK TERHAI)	
			Disahkan Oleh:
	ATANGAN PENU	 ILIS)	(TANDATANGAN PENYELIA)
	etap: <u>LOT 118, TA</u>		EN. AHMAD KAMAL ABDUL AZIZ
	MUKIM GUA	<u>AL TINGGI</u> AU PANJANG	Nama Penyelia
	<u>17200 RANTA</u> KELANTAN		

۱ (**

Iesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah, Sarjana dan Sarjana Muda. Jika tesis ini SULIT atau TERHAD sila lampirkan surat daripada pihak berkuasa /

Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa / organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD

APPROVAL SHEET

This project report attached here to, entitled "GEOTECHNICAL PROPERTIES OF PEAT SOIL" is prepared and submitted by MOHD ROZAIDI BIN RAMLI (14588) as a partial fulfillment of the requirement for the Degree of Bacherlor of Engineering with Honours in Civil Engineering is hereby read and approved by:

EN AHMAD KAMAL ABD AZIZ SUPERVISOR Date

MAY 2009

" I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the purpose for award of the Degree of Bachelor of Engineering (Civil Engineering) with Honours".

" I hereby declare that this report is prepared personally with my own effort unless references that have been cited accordingly in any part of the report".

Signature:......Name of Author:Mohd Rozaidi Bin RamliDate:...... MAY 2009

This project report is dedicated especially to my beloved father and mother, Mr. Ramli and Mrs. Che Munah. My dearest brother and sisters, Rozvin, Norlizawati and Norziana and my dearest friends. Thanks for all your supports.

ACKNOWLEDGEMENT

I wish to express my deepest gratitude to "ALLAH" the Almighty (SWT) for his blessing that enriches me with health and wisdom throughout my lifetime.

With utmost respect, I would like to convey my sincere thanks and appreciation to my first thesis supervisor Mr Ahmad Kamal Abd Aziz, who endlessly guided and shared his knowledge throughout the completion of my thesis. I am really thankful to him for his encouragement and help in improving my thesis.

Sincere thanks also go to the Geotechnical Laboratory technician; Hj. Affendi Othman for his contribution supports and encouragement in my way to complete this final year project. Without his assistance and help, I will not be able to accomplish this project successfully.

Last but not least, I wish to express my appreciation to my family members for their concern and love, and thank you to my friends for their help and support upon completing this study.

ABSTRACT

Different and excessive settlements are the principal problem confronting engineers working on peat soils. These impose difficult designs and construction conditions, thus it is necessary to know the geotechnical properties of these soils to enable more practical designs to be carried out. Peat and organic soil represent the extreme form of soft soil. They are subject to instability such as sinking and slip failure, and massive primary and long-term settlement when subjected to even moderate load increase. Buildings on peat are usually suspended on piles, but the ground around it may still settle. This study will focus on the properties and consolidation test on peat soils from two areas. Oedometer consolidation test are conducted for both samples taken from Kota Samarahan and Kuching. Several laboratory tests were also conducted for physical, chemical and engineering properties to determine parameters such as coefficient of consolidation, Cv, compression index, Cc and coefficient of volume compressibility, mv. Prior to the experimental tests conducted, the result showed the similar deformation for both areas. The coefficient of consolidation, Cv showed decreasing value when subjected to increment of consolidation pressure with time. Meanwhile, the compression index, Cc was found to have a strong correlation between moisture content and void ratio. However, the properties and characteristics of peat varied with their locations and conditions.

ABSTRAK

Pengukuhan tanah yang terlampau dan berbeza adalah masalah prinsipal yang dihadapi oleh jurutera yang bekerja di atas tanah gambut. Ini disebabkan kesukaran untuk mereka dan pembangunan. Oleh itu, ciri-ciri geoteknik tanah gambut perlu diketahui untuk membolehkan banyak kerja pembangunan dijalankan. Tanah gambut dan tanah organik diumpamakan sebagai tanah yang wujud dari pembentukan tanah yang lembut. Ia menjurus kepada ketidakstabilan seperti termendap dan kegelinciran, dan pengukuhan tanah dalam jangka masa yang lama walaupun apabila dikenakan penambahan beban yang sedikit. Bangunan yang dibina di atas tanah gambut adalah kebiasaannya bergantung kepada cerucuk, tetapi keadaan tanah di sekelilingnya mungkin akan termendap. Kajian yang dijalankan ini akan memberi tumpuan kepada sifat pengukuhan tanah gambut yang diperoleh daripada Ujian Pengukuhan Satu Dimensi. Ujian pengukuhan ini telah dijalankan ke atas sampel tanah yang diambil dari Kota Samarahan dan Kuching. Beberapa ujian makmal telah dijalankan seperti ujian fizikal, kimia dan kejuruteraan untuk menentukan parameter seperti pekali pengukuhan, indeks kemampatan dan pekali pemampatan isipadu. Melalui ujian yang telah dijalankan, keputusan menunjukkan bahawa kedua-dua kawasan mempunyai kadar pengenapan tanah yang hampir sama. Melalui kajian yang dijalankan juga, pekali pengukuhan menunjukkan pengurangan disebabkan oleh peningkatan beban bersama masa. Sementara itu, indeks kemampatan juga menunjukkan hubungkait yang baik antara kandungan air dan nisbah lompang. Walau bagaimanapun, ciri-ciri dan sifat-sifat tanah gambut adalah bergantung kepada kawasan dan keadaan tanah tersebut.

TABLE OF CONTENTS

CONTENT	PAGE
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
ABSTRAK	iv
TABLE OF CONTENT	v
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiv

CHAPTER 1 INTRODUCTION

1.1	General	1
1.2	Problem Statement	3
1.3	Objectives	4
1.4	Scope of Work	4
1.5	Significance of Studies	5

CHAPTER 2 LITERATURE REVIEW

2.1	Peat soil		
	2.1.1 Definition	6	
	2.1.2 Distribution and extent of peat in Sarawak	8	
	2.1.3 Structural arrangement	10	
	2.1.4 Physical and Chemical Characteristics	12	
	2.1.5 Engineering Characteristic	15	
	2.1.6 Classification	17	
2.2	Consolidation Behaviour	28	
2.3	Initial Compression	30	
2.4	Primary Consolidation	30	
2.5	Secondary Consolidation	32	
2.6	Graphical Method for Determining the		
	Coefficient of Consolidation, Cv	33	

CHAPTER 3 METHODOLOGY

3.1	General	39
3.2	Sample Preparation and Collection	40
3.3	Moisture Content	40
3.4	Sieve Analysis	41
3.5	pH Value	41

3.6	Specific Gravity	42
3.7	Liquid Limit	46
3.8	Loss of Ignition and Organic Content	46
3.9	Compaction Test (Standard Proctor Test)	47
3.10	Consolidation Oedometer Test	48

CHAPTER 4 RESULT, ANALYSIS AND DISCUSSION

4.1	General	50
4.2	Moisture Content	50
4.3	Particles Sizes Distribution	52
4.4	pH Value	53
4.5	Lost Ignition and Organic Content	54
4.6	Specific Gravity	55
4.7	Liquid Limit	56
4.8	Engineering Properties	59
4.9	Compaction Characteristic	59
4.10	Coefficient of Consolidation, Cv	62
4.11	Compression Index, Cc	66
4.12	Coefficient of Volume Compressibility, Mv	68

CHAPTER 5 CONCLUSION AND RECOMMANDATIONS

5.1	Conclusion	72
5.2	Recommendations for Futher Studies	74

75

REFERENCES

APPENDICES

LIST OF TABLES

TITLE

PAGES

TABLES

2.1	Areas under peat in the various administrative division	
	in Sarawak	9
2.2	Classification of peat soil from Von Post	19
2.3	Symbols and types of peat according to Von Post	
	degree of humification	21
2.4	Classification of peats and organic soil	22
2.5	Classification of peats structure	23
2.6	Organic soils and peat section of Malaysian Soil	
	Classification System for Engineering Purposes and	
	Field Identification.	27
3.1	Specific gravity reading table	44
4.1	Moisture content of peat samples	51
4.2	pH value for peat samples	53
4.3	Lost of Ignition of peat samples	55
4.4	Organic content of peat sample	55
4.5	Specific Gravity of peat samples	56

4.6	Liquid limit of peat sample for both areas	57
4.7	Optimum moisture content and maximum dry density	
	for peat sample in both areas	61
4.8	Coefficient of consolidation, Cv for each peat sample	
	in both areas	62
4.9	Compression Index, Cc and Void ratio for peat sample	
	in both areas	68
4.10	Coefficient of Volume Compressibility, Mv for peat	
	samples	69
4.11	Summary of peat properties for Kota Samarahan and	
	Kuching areas	71

LIST OF FIGURES

TABLES	TITLE	PAGES
1.0	a) Typical section of a housing estate on peat	
	(immediate after completion of construction)	2
	b) Several years after completion of construction	
	(scale exaggerated)	2
2.1	Distribution of peat soil in Sarawak	8
2.2	Schematic diagram of (a) deposition and (b) multi-	
	phase system of fibrous peat	10
2.3	Scanning Electron Micrograph of Middleton fibrous	
	peat (a) Horizontal plane, (b) Vertical plane	12
2.4	Log time method Cassagrande Method	35
2.5	Typical plot of e against log σ '	36
2.6	Square Root Time Method – Taylor Method	38
3.1	Sample prepared (dry)	42
3.2	Sample prepared (wet)	42
3.3	pH apparatus (Mettler Toledo)	42
3.4	Reading taken	42
3.5	Samples were prepared	45

3.6	Weighing the samples	45
3.7	Samples filled with distilled water	45
3.8	Vacuum desiccators	45
3.9	Oedometer test Apparatus	49
4.1	Particles sizes distribution of peat in Kota Samarahan	
	and Kuching area	52
4.2	Correlation of liquid limit and moisture content for	
	peat in Kota Samarahan	58
4.3	Correlation of liquid limit and moisture content for	
	peat in Kuching	58
4.4	Standard Proctor Compaction curve of peat in	
	Kuching	60
4.5	Standard Proctor Compaction curve of peat in Kota	
	Samarahan	60
4.6	Coefficient of consolidation, Cv versus log pressure	63
4.7	Deformation versus square root of time for peat in	
	Kuching	64
4.8	Deformation versus square root of time for peat in	
	Kota Samarahan	64
4.9	Void ratio versus log pressure for peat in Kuching	66
4.10	Void ratio versus log pressure for peat in Kota	
	Samarahan	67

4.11 Coefficient of volume compressibility, *Mv* versus log

pressure

70

LIST OF SYMBOLS

Φ'	-	Effective internal Friction		
C_{v}	-	Coefficient of consolidation		
C_c	-	Compression index		
e_o	-	Initial void ratio		
H_{dx}	-	Average longest drainage path during consolidation		
W	-	Moisture Content		
m_1	-	Mass of container, Mass of crucible		
m_2	-	Mass of container and wet soil, Mass of crucible + dry soil		
<i>m</i> ₃	-	Mass of container and dry soil, Mass of crucible + dry soil after ignition		
N	-	Loss of Ignition		
Н	-	Organic content		
SG	-	Specific gravity		
\mathbf{W}_{i}	-	Initial moisture content of sample		
\mathbf{W}_{f}	-	Final moisture content of sample		
M_s	-	Mass of dry sample		
H_{s}	-	Height of solid		
σ'	-	Effective pressure		

Cu	-	Copper
Во	-	Boron
Zn	-	Zink
δ_{c}	-	Settlement of consolidation
$\sigma'_{\rm zf}$	-	final vertical stress
σ'_{z_0}	-	Initial vertical stress
σ'_{zc}	-	Preconsolidation stress of the soil
Cα	-	Secondary compression index
С	-	Carbon
Ν	-	Nitrogen

CHAPTER 1

INTRODUCTION

1.1 General

Peat and organic soils represent the extreme form of soft soil. They are subject to instability such as sinking and slip failure, and massive primary and long-term settlement when subjected to even moderate load increase. Buildings on peat are usually suspended on piles, but the ground around it may still settle, creating a scenario as depicted in Figure 1. In addition, there are discomfort and difficulty of access to the site, a tremendous variability in material properties and difficulty in sampling. These materials may also change chemically and biologically with time. For example further humification of the organic constituents would alter the soil mechanical properties such as compressibility, shear strength and hydraulic conductivity. Lowering of ground water may cause shrinking and oxidation of peat leading to humification with consequent increase in permeability and compressibility. Peat actually represents an accumulation of disintegrated plant remains, which have been preserved under condition of incomplete aeration and high water content.

Figure 1 : (a) Typical section of a housing estate on peat (immediately after completion of construction)

(b) Several years after completion of construction (scale exaggerated)

According to Huat (2006), peat was considered as an unsuitable material for engineering construction because of its difficulty to access since the water table is often near, at or above the ground surface as usually found on wetland. Liu (2000), stated that the construction of heavy building over peat soil should be avoided as it is not only costly but also risky. Generally, there are two types of peat soils in Malaysia which was amorphous granular peat and fibrous peat. Although these types of peat have different properties and characteristics, they still posses close similarities in terms of consolidation behaviour. The process of load transfer to the soils as pore water escape is the consolidation process. Theoretically, consolidation behaviours are classified into three stages which are initial compression, primary consolidation and secondary consolidation settlement is likely to occur. An alternative method such as preloading or surcharge, chemical stabilization, pre-fabricated vertical drains, sand or stone column and surface reinforcement will be applied in order to reduce post construction settlement.

1.2 Problem Statement

Peat which is classified as soft soil has become a major concern of construction problem. It is known that construction on peat is difficult due to its nature and characteristics. Engineers are trying to avoid constructions over peat soils as it is subject to problems like high compressibility, low shear strength and long term consolidation settlement. The study on the "Consolidation of Peat Soil" is being undertaken to understand and learn more about unique properties and characteristics of peat soil from various disciplines as well as to determine the various types of consolidation behaviour.