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ABSTRACT 

Accurate assessment of suicide ideation (SI) risk in depressed young adults remains a critical 

challenge, with existing methods exhibiting limited effectiveness. This study proposes a 

novel machine learning approach leveraging Evolving Spiking Neural Networks (ESNN) to 

enhance SI risk detection utilizing structural magnetic resonance imaging (sMRI) data. 

ESNNs, inspired by the brain's information processing mechanisms, excel at capturing 

temporal and spatial patterns in data, making them well-suited for modeling the complex 

dynamics of SI risk factors. Unlike traditional neural networks, ESNNs employ spiking 

neurons and adaptive learning mechanisms that continuously update internal representations, 

enhancing their robustness to changing risk factors and individual SI trajectories. However, 

their application in SI detection has been largely underexplored, creating a gap in leveraging 

their unique capabilities for this critical task. 

To address this gap, the self-AM-ESNN model is introduced, which integrates self-attention 

mechanisms (self-AM) with ESNN to enable effective feature extraction and learning from 

sMRI data. By integrating self-AM with ESNN's dynamic learning capabilities, the model 

can capture complex neuroanatomical patterns associated with SI risk while adapting to 

individual variations. Evaluated on a dataset of 20 depressed individuals and 60 healthy 

controls, the self-AM-ESNN model demonstrated exceptional performance in classifying 

depression, achieving 94% test accuracy, 100% sensitivity, 92% specificity, and an area 

under the curve of 0.96.  

These promising results highlight the potential of ESNN-based approaches to augment 

clinical decision-making and mental health interventions for SI risk assessment. 

Furthermore, the study incorporates a user-centric evaluation framework that enables mental 
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health professionals and service users to assess the model's detections and rationale, 

facilitating informed decision-making processes. By providing interpretable insights into the 

underlying factors contributing to SI risk, this approach empowers stakeholders to make 

more informed choices and tailor interventions accordingly. 

 

Keywords: Suicide ideation; evolving spiking neural networks; structural MRI; 

depression; clinical decision-making  
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Memanfaatkan sMRI, Mekanisme Perhatian Kendiri, dan Rangkaian Neural Berduri 

Berubah untuk Meningkatkan Pengesanan Ideasi Bunuh Diri dalam Kalangan Dewasa 

Muda yang Mengalami Kemurungan 

ABSTRAK 

Penilaian yang tepat terhadap risiko ideasi bunuh diri (SI) dalam kalangan dewasa muda 

yang mengalami kemurungan masih menjadi cabaran kritikal, dengan kaedah sedia ada 

menunjukkan keberkesanan yang terhad. Kajian ini mencadangkan pendekatan 

pembelajaran mesin baharu yang memanfaatkan Rangkaian Neural Berduri Berubah 

(ESNN) untuk meningkatkan pengesanan risiko SI menggunakan data pengimejan resonans 

magnetik struktur (sMRI). ESNN, yang diilhamkan oleh mekanisme pemprosesan maklumat 

otak, cemerlang dalam menangkap corak temporal dan spatial dalam data, menjadikannya 

sesuai untuk memodelkan dinamik kompleks faktor risiko SI. Tidak seperti rangkaian neural 

tradisional, ESNN menggunakan neuron berduri dan mekanisme pembelajaran adaptif yang 

sentiasa mengemas kini representasi dalaman, meningkatkan ketahanannya terhadap faktor 

risiko yang berubah-ubah dan trajektori SI individu. Walau bagaimanapun, penggunaannya 

dalam pengesanan SI sebahagian besarnya belum diterokai, mewujudkan jurang dalam 

memanfaatkan kemampuan unik mereka untuk tugas kritikal ini. 

Untuk mengatasi jurang ini, model self-AM-ESNN diperkenalkan, yang mengintegrasikan 

mekanisme perhatian kendiri (self-AM) dengan ESNN untuk membolehkan pengekstrakan 

ciri dan pembelajaran yang berkesan daripada data sMRI. Dengan mengintegrasikan self-

AM dengan keupayaan pembelajaran dinamik ESNN, model ini dapat menangkap corak 

neuroanatomi kompleks yang berkaitan dengan risiko SI sambil menyesuaikan diri dengan 

variasi individu. Dinilai berdasarkan dataset yang terdiri daripada 20 individu yang 

mengalami kemurungan dan 60 kawalan yang sihat, model self-AM-ESNN menunjukkan 
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prestasi yang luar biasa dalam mengklasifikasikan kemurungan, mencapai ketepatan ujian 

sebanyak 94%, sensitiviti 100%, kekhususan 92%, dan kawasan di bawah lengkung 

sebanyak 0.96. 

Hasil yang menjanjikan ini menonjolkan potensi pendekatan berasaskan ESNN untuk 

meningkatkan proses membuat keputusan klinikal dan intervensi kesihatan mental untuk 

penilaian risiko SI. Selain itu, kajian ini menggabungkan rangka kerja penilaian 

berpusatkan pengguna yang membolehkan profesional kesihatan mental dan pengguna 

perkhidmatan menilai pengesanan dan rasional model, memudahkan proses membuat 

keputusan yang lebih berinformasi. Dengan menyediakan wawasan yang boleh ditafsirkan 

mengenai faktor-faktor asas yang menyumbang kepada risiko SI, pendekatan ini 

memperkasakan pihak berkepentingan untuk membuat pilihan yang lebih berinformasi dan 

menyesuaikan intervensi dengan sewajarnya. 

         

Kata kunci: Ideasi bunuh diri; Rangkaian neural berduri berubah; MRI struktur; 

kemurungan; Membuat keputusan klinikal  
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Overview 

This study aims to improve suicide ideation (SI) assessment accuracy in depressed 

young adults by integrating machine learning (ML) methods such as Attention Mechanism 

(AM) and Spiking Neural Network (SNN) on structural magnetic resonance imaging (sMRI) 

data. The model involves the integration of self-AM and evolving SNN (ESNN), filling a 

critical gap in mental health assessment and offering insights for better intervention and 

support. 

 

1.2 Study Background 

The coronavirus disease (COVID-19) pandemic has intensified mental health issues, 

contributing to increased suicidal tendencies (Sher, 2020a; Sher, 2020b). Suicide ideation 

(SI), characterized by distressing death-related thoughts, predicts suicide attempts across 

various age groups (Harmer et al., 2020; Cheung et al., 2021). Additionally, Moller et al. 

(2023) found a correlation between SI and depression, highlighting the interconnectedness 

of these mental health issues. Since the onset of the pandemic, the prevalence of depression 

has remarkably increased, affecting over 8% of the US population, with nearly 17% affected 

in the 18 – 25 age group (Wang et al., 2024). Existing SI assessment tools lack accuracy, 

necessitating a novel method focusing on the SI-depression association (Deming et al., 

2021). 
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ML has become foundational in suicide detection, offering faster and more accurate 

detection of SI (Yang et al., 2024). Models such as K-Nearest Neighbor (KNN), Support 

Vector Machine (SVM), and Neural Networks show promise in classifying mental illnesses 

such as depression (Barua et al., 2024). KNN, in particular, demonstrated exceptional 

accuracy of 91.45% in predicting SI among university students (Sara et al., 2024). Moreover, 

ML's ability to integrate diverse data sources enhances detection accuracy, emphasizing its 

importance in future research (Pigoni et al., 2024). Thus, integrating ML with diverse data 

sources is crucial for refining SI detection models and guiding future investigations in this 

critical area. 

Understanding the neural underpinnings of psychiatric disorders is important in 

mental health research (Hauser et al., 2022). sMRI data, as depicted in Figure 1.1, provides 

insights into depression's biomarkers (Schmaal et al., 2020; Guy-Evans, 2023). However, 

existing studies utilizing sMRI and ML for SI detection have limitations (Weng et al., 2020; 

Chen et al., 2021a; Hong et al., 2021; Bajaj et al., 2023; Hu et al., 2023). These studies lack 

crucial performance metrics such as sensitivity, specificity, and area under the curve (AUC) 

(Suragala et al., 2021; Carrington et al., 2022). Thus, further research and methodological 

advancements are needed to improve SI detection accuracy in depressed individuals. 
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Figure 1.1: sMRI visualization - potential biomarkers for depression (Wu & Mori, 

2023) 

 

This study employed an integrated ML model called self-AM-ESNN to perform SI 

assessment based on the sMRI data of depressed young adults. The self-AM component 

emphasized crucial features within the input images (Choi & Yang, 2024), aiding ESNN in 

classification. Inspired by the brain's adaptability, ESNN continuously evolves to capture 

meaningful patterns (Kasabov, 2019). Integrating self-AM enhances feature focus, 

improving prediction accuracy. 

The self-AM-ESNN model was trained on datasets from publicly available 

repositories of OpenNeuro1 and the International Neuroimaging Data-Sharing Initiative 

(INDI)2. It primarily integrates selected data from studies focusing on depression within 

OpenNeuro (Bezmaternykh, 2021a; Bezmaternykh, 2021b; Manelis et al., 2021). The data 

 
1 https://openneuro.org/ 
2 https://fcon_1000.projects.nitrc.org/ 
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for healthy controls (HC) were sourced from the Southwest University Longitudinal Imaging 

Multimodal (SLIM) dataset within INDI, as detailed in Liu et al. (2017). To address 

imbalances in the datasets, various techniques are employed, including stratified train-test 

split, Synthetic Minority Over-sampling Technique (SMOTE), stratified 5-fold cross-

validation, and data augmentation (Brownlee, 2020c; Singh, 2020; Muralidhar, 2021; 

Mathews & Seetha, 2022). 

Moreover, hyperparameter tuning utilizing the Genetic Algorithm (GA) was 

employed to optimize the configuration of the self-AM-ESNN model (Nikbakht et al., 2021). 

GAs, inspired by natural selection (Mehdary et al., 2024), excel in exploring vast solution 

spaces (Díaz-Álvarez et al., 2022). Performance evaluation employs metrics such as 

accuracy (ACC), sensitivity (SEN), specificity (SPEC), and AUC. Furthermore, comparative 

analyses include established ML classifiers such as ESNN, KNN, Logistic Regression (LR), 

and SVM (Kharel, 2020; Das, 2024; GeeksforGeeks, 2024), along with key studies (Weng 

et al., 2020; Chen et al., 2021a; Hong et al., 2021; Bajaj et al., 2023; Hu et al., 2023). 

In essence, this study aims to improve SI detection accuracy among depressed young 

adults by utilizing ML models and their sMRI data. By leveraging advanced ML models, 

such as self-AM and ESNN, and employing techniques for handling imbalanced data, the 

research seeks to develop a more precise method for detecting SI. Comprehensive 

evaluations, including comparisons with traditional classifiers, key studies, and a thorough 

literature review, will advance intervention strategies at the intersection of mental health and 

technology. 

 


