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ABSTRACT 

The development of automatic speech recognition (ASR) systems for under-resourced 

languages poses challenges due to the lack of written resources required to train such 

systems. Traditionally, researchers have used language models to improve ASR model 

accuracy, some also resorts to the integration of pronunciation dictionaries, but these 

methods require abundance of written resources, which under-resourced languages often 

lack. The Iban language, spoken by the majority people of Sarawak in Malaysia, is an 

example of an under-resourced language for which previous attempts at developing an ASR 

system involved building a pronunciation dictionary and language model, transfer learning, 

and using DNN-HMM acoustic models. However, these methods proved challenging and 

costly. In this research, we propose a framework that uses a convolutional neural network 

(CNN) as an acoustic model to build an end-to-end ASR model for the Iban language. Three 

techniques are proposed to optimize the model without requiring additional data resources, 

including hyperparameter optimization, data augmentation and transfer learning. We report 

a significant reduction in word error rate (WER) in our experiments, demonstrating the 

effectiveness of our techniques. Overall, the proposed framework offers a promising 

approach for developing ASR systems for under-resourced languages that lack the necessary 

written resources for traditional methods. 

Keywords: End-to-end, speech recognition, low-resource language, convolutional neural 

network, parameter optimization 
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Rangka Kerja untuk Pengoptimuman Parameter dan Pembelajaran Pemindahan pada 

Quartznet untuk Pengecaman Pertuturan Automatik Iban 

ABSTRAK 

Pembangunan sistem pengecaman pertuturan automatik (ASR) untuk bahasa bersumber 

rendah menimbulkan cabaran kerana kekurangan sumber bertulis yang diperlukan untuk 

melatih sistem tersebut. Secara tradisinya, penyelidik telah menggunakan kamus sebutan 

atau model bahasa untuk meningkatkan ketepatan model ASR, tetapi kaedah ini memerlukan 

banyak sumber bertulis yang sering bahasa sumber rendah tidak miliki. Bahasa Iban, yang 

digunakan oleh penduduk Sarawak di Malaysia adalah contoh bahasa sumber rendah yang 

mana percubaan sebelumnya untuk membangunkan sistem ASR melibatkan pembinaan 

kamus sebutan dan model bahasa, pemindahan pembelajaran, dan menggunakan model 

akustik DNN-HMM . Walau bagaimanapun, kaedah ini terbukti mencabar dan mahal. 

Dalam penyelidikan ini, kami mencadangkan rangka kerja yang menggunakan rangkaian 

neural konvolusi (CNN) sebagai model akustik untuk membina model ASR hujung ke hujung 

untuk bahasa Iban. Tiga teknik dicadangkan untuk mengoptimumkan model tanpa 

memerlukan sumber data tambahan, termasuk pengoptimuman hiperparameter, 

penambahan data dan pembelajaran pemindahan. Kami melaporkan pengurangan ketara 

dalam kadar ralat perkataan (WER) dalam eksperimen kami, menunjukkan keberkesanan 

teknik kami. Secara keseluruhan, rangka kerja yang dicadangkan menawarkan pendekatan 

yang menjanjikan untuk membangunkan sistem ASR untuk bahasa bersumber rendah yang 

tidak mempunyai sumber bertulis yang diperlukan untuk kaedah tradisional.  

Kata kunci: Hujung ke hujung, pengecaman pertuturan, bahasa sumber rendah, 

rangkaian neural konvolusi, pengoptimuman parameter 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background 

The development of Automatic Speech Recognition (ASR) system has been trending 

in these recent years and it has been implemented in many software and applications such as 

Google Assistant and Amazon Siri, whereby this system receives our audio speech and 

translate it into text data for the system to recognize as input before handling out its 

programmed tasks. However, building an ASR for under-resourced language is still a 

challenge as under-resourced languages suffers the issue of data scarcity, causing the ASR 

developed to have low prediction accuracy due to insufficient training data. The Iban 

language is an under-resourced language spoken mainly in Sarawak, Malaysia and West 

Kalimantan, Indonesia (Aman et al., 2019). The local people of Sarawak use Iban a lot in 

terms of daily communication, however, written data on the language are lacking. To this 

day, the most prominent work in the development of Iban ASR was done by Juan (2015), in 

which the author initiated the development of the very first Iban ASR using Deep Neural 

Network (DNN). Aside from the works done by Juan (2015), no other committed effort 

involving the Iban language in ASR development was done. Meanwhile, research gaps 

regarding the studies of Iban ASR development are still many.  

1.2 Convolutional Neural Network in Speech Recognition 

Typically, three components are required to build a statistical ASR, these are 

Acoustic Model, Pronunciation Dictionary and Language Model. Each of these three crucial 

components is required to be developed using and trained with abundance speech data to 

help an ASR model to achieve excellent prediction accuracy. This requirement, however, is 
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an issue for under-resourced language such as Iban as they do not possess enough language 

resources. CNN is a neural network that recently has present itself as a solution to overcome 

the issue of data scarcity faced by under-resourced languages in building ASR models by 

being its acoustic model (Arnel Fajardo, 2020; Lekshmi & Sherly, 2021; Thai et al., 2020). 

With end-to-end architecture and CNN excellent feature extraction capabilities, it helps 

researcher to exclude the necessity for the integration of pronunciation dictionary and 

language model into ASR system while still producing high accuracy predictions (Alsayadi 

et al., 2021; Parry et al., 2019; Yu et al., 2019; Zhang et al., 2021). However, no studies 

using CNN in the development of Iban ASR system has ever been conducted previously and 

no data discussing about its performance as an acoustic model for Iban ASR model, whether 

it is able to overcome Iban language’s data scarcity, has ever been recorded yet. With that 

said, it serves as our motivation to conduct research on the CNN for Iban ASR to analyse its 

capability as an acoustic model for under-resourced language and to fill this study gap. 

1.3 Problem Statement  

As mentioned previously, developing an ASR model using the end-to-end CNN 

architecture for the Iban language has never been conducted yet and it is known that under-

resourced language suffers a lack of language resource in building a statistical ASR. The 

proper steps to build an Iban ASR using CNN as acoustic model while excluding the 

integration of pronunciation dictionary and language model in the system and still achieving 

excellent prediction accuracy has never been documented previously and no framework 

describing its process has ever been proposed. Furthermore, it was required that for a CNN 

ASR model to perform well, its network structure has to be optimized (Aszemi & Dominic, 

2019; Xie & Yuille, 2017). Currently, there is no known systematic way of building an 

optimized CNN ASR model for the under-resourced Iban language. Investigating this 
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research gap would help us to identify a proper method to develop an end-to-end CNN Iban 

ASR with optimized model structure and propose its systematic framework which will act 

as a document for future references. 

1.4 Research Questions and Objectives 

In response to the problem statement described earlier, we have listed out several 

research questions and objectives as a guideline for the research to investigate the previously 

mentioned study gap. The details are as follows: 

Research Questions:  

1. How to obtain a CNN acoustic model for Iban ASR? 

2. How to determine the parameters that can influence the performance of CNN 

acoustic modelling in Iban ASR? 

Research Objectives: 

I. To study the general architecture of CNN acoustic modelling in ASR and its benefits 

for under-resourced language. 

II. To propose a CNN acoustic modelling framework for investigating the WER in Iban 

ASR. 

III. To investigate the WERs obtained by the CNN-based Iban ASR model through 

hyperparameter optimization, spectrogram augmentation, and transfer learning and 

analyse its performance. 

1.5 Scope of Research 

Two constraints have been defined to help us focus on our scope when carrying out 

experiments that covers a wide field of knowledge. Although this research aims to study the 

ways on how to improve ASR for under-resourced language, only the Iban language that 
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will be used as the target language in this research. The main corpus that is going to be used 

for the experiment will be the Iban corpus that was previously collected by (Juan, 2015). 

Other corpus may be imported but only for the sole purpose of improving the performance 

of the Iban ASR model (e.g., for transfer learning). Secondly, as the title of the research 

implies, studies on Neural Network model will be conducted only on the CNN. The scope 

of our research experiment will focus on the development of ASR model using end-to-end 

CNN model only and without the integration of pronunciation dictionary and the language 

model. Despite having to do comparison between CNN and other ANN models in the 

evaluation stage, thorough analysis and investigation will be done only for the CNN model. 

The focus of this research will follow these two rules; Iban language being the targeted 

under-resourced language and CNN being the only neural network model to be investigated, 

as its core to prevent straying away from the main purpose and the objectives of this research. 

1.6 Significance of Study 

Through the conduct of this research, we will be able to contribute an improvement 

towards ASR advancement specifically, for the Iban language, generally, for under-

resourced language. First of all, we would be able to document our setup on the CNN 

architecture that will be used and be presented generally as a reference for future under-

resourced language research that wants to implement the same architecture. In addition, this 

research would be beneficial to researcher as its baseline results produced during the research 

experiments can be taken for the conduct of comparison between different variant of Iban 

CNN models in the future. By doing this research, we would be able to identify which 

hyperparameters in CNN that may affect the performance of an ASR in training the Iban 

language, beneficially and detrimentally. We would also be able to identify what may be the 

weakness of CNN as an acoustic model through the conduct of this research experiment. 



5 

Moreover, this research would also help us analyse the potential of CNN in overcoming data 

scarcity issue of under resourced language in the development of ASR without the 

integration of pronunciation dictionary and language model. Furthermore, it is in our 

expectation that the very first framework to develop an end-to-end CNN Iban-ASR system 

will be proposed at the end of this research, thus, it will serve as a reference for future CNN 

Iban ASR model development and fine-tuning. The result and protocol obtained from this 

research experiment would also be prove useful for future analysis and reference for 

identifying effective fine-tuning techniques on the CNN architecture. Finally, this research 

will help us to set a new benchmark for Iban ASR model performance as we attempt to 

further improve the accuracy of speech recognition models while implementing other 

various method of algorithm in predicting Iban words.  

1.7 Research Outlines 

The thesis is organized into five chapters. Chapter 1 introduces the research work 

which includes our problem statement, research questions and objectives, as well as scope 

and significance of research. Chapter 2 discusses the literature review and previous existing 

works that has been done in improving under-resourced ASR model performance, as well as 

exploring currently trending CNN techniques while promoting the relevancy of conducting 

this research. Chapter 3 introduces our methodology and the description of our proposed 

framework to develop the first optimized Iban end-to-end CNN ASR model. The chapter 

explains our experimental steps and procedure in developing and optimizing our CNN model 

which includes implementing different model improvement techniques. Chapter 4 presents 

the results obtained from the experiments conducted in Chapter 3 as well as its analysis and 

discussion. Chapter 5 concludes the research thesis with a summary of the work that has 


