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ABSTRACT 

Single Perceptron Smart Sensor (SPSS) is a new Ultra-High Frequency (UHF) sensor 

developed to significantly improve the pre-fault monitoring system for early detection, 

localization, and identification of the Corona and Arcs Electric Discharges (EDs) in an 

indoor substation. Corona and Arcs ED constitute a significant threat to electrical safety, the 

apparatus, and the stability of a power system due to the aging and material degradation in 

the power apparatus. Hence, an early preventive approach must be performed effectively for 

pre-fault threat detection. In this research, a novel pre-fault monitoring system utilizing SPSS 

is developed, embedding a novel Signal Identifier Technique for the Corona and Arcs ED 

detection, localization, and identification. The SPSS formation integrates a 2-element Linear 

Array Antenna with a Single Perceptron-Artificial Neural Network (SP-ANN). It detects and 

localizes the Corona and Arc ED signals based on the Direction of Arrival (DOA) angle. The 

SP-ANN utilizes a single-layer neuron with less complexity, speedy detection, and 

localization within seconds. The waveform-based signal feature extraction uses the Signal 

Identifier Technique for signal identification. Since the frequency range of the Corona and 

Arcs is undecidable, the accuracy of the pre-fault monitoring is tested for the Corona and 

Arcs ED at a sampling frequency of 300 MHz to 3 GHz. The SPSS has revealed an accuracy 

of 99.86% for signal identification with minimal computational complexity, thus giving 

another practical wireless technique for UHF signal interpretation. 

Keywords: Single Perceptron-Artificial Neural Network, UHF Sensor, Corona 

discharge, Arcs discharge, Pre-fault monitoring 
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Sebuah Sensor Pintar Perceptron Tunggal Teknik Untuk Sistem Pemantauan Pra-

Kerosakan Dalam Sebuah Pencawang Dalaman 

ABSTRAK 

Pengesan Pintar Perceptron Tunggal daripada Rangkaian Saraf Tiruan (SPSS) merupakan 

sebuah Pengesan Frekuensi Ultra Tinggi dihasilkan untuk meningkatkan keberkesanan 

sistem pra-pemantauan kerosakan bagi tujuan pengesanan, penyetempatan dan 

pengecaman isyarat Nyahcas Elektrik jenis Corona dan Arcs di dalam sesebuah Pencawang 

Dalaman. Nyahcas Elektrik memberi ancaman yang besar terhadap keselamatan serta 

kestabilan perkakasan elektrik sistem kuasa di dalam sesebuah pencawang di mana ianya  

terhasil disebabkan oleh keusangan bahan pada perkakasan elektrik sistem kuasa. Ia boleh 

mempengaruhi kebolehpercayaan sesebuah peralatan voltan  tinggi. Oleh yang demikian, 

tindakan pencegahan awalan perlu dirancang dengan berhati-hati dan pemantauan 

kerosakan harus dilaksanakan secara berkesan bagi mengesan ancaman awal kerosakan. 

Di dalam kajian ini, sebuah sistem pra-pemantauan yang baru telah dihasilkan 

menggunakan sebuah Pengesan Pintar Perceptron Tunggal daripada Rangkaian Saraf 

Tiruan  serta menyematkan sebuah Teknik Pengecam Isyarat yang baru bagi pengesanan, 

penyetempatan dan pengecaman terhadap isyarat Nyahcas Elektrik jenis Corona dan Arcs. 

SPSS  ini dihasilkan melalui gabungan sebuah Antenna Tatasusun Lelurus 2-elemen dengan 

Perceptron Tunggal-Rangkaian Saraf Tiruan (SP-ANN) untuk membentuk sebuah Pengesan 

Pintar Frekuensi Ultra Tinggi. Ianya berkebolehan untuk mengesan, menyetempat serta 

mengecam isyarat nyahcas elektrik jenis Corona dan Arcs berdasarkan Sudut Arah 

Ketibaan (DOA) isyarat. SP-ANN ini terdiri daripada satu lapisan neuron yang boleh 

mengurangan kesukaran serta meningkatkan kepantasan proses pengesanan serta 
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penyetempatan isyarat dalam tempoh milisaat. Pengekstrakan ciri-ciri isyarat melalui 

bentuk gelombang isyarat dilaksanakan menggunakan Teknik Pengecam Isyarat. 

Memandangkan tiada penentuan yang khusus terhadap julat frekuensi bagi Nyahcas 

Elektrik jenis Corona dan Arcs, maka kejituan sistem pra-pemantauan ini telah dijuji 

menggunakan sampel isyarat Nyahcas Elektrik jenis Corona dan Arcs berfrekuensi sekitar 

nilai  300 MHz hingga 3 GHz. SPSS telah menunjukkan tahap kejituan sebanyak 99.86% 

terhadap pengecaman isyarat menggunakaan kekompleksan pengiraan yang minimun, 

dengan itu juga memberi satu teknik tanpa wayar yang practikal untuk pentaksiran isyarat 

Frekuensi Ultra Tinggi.  

Kata kunci: Perceptron tunggal-rangkaian saraf tiruan, pengesan frekuensi ultra tinggi, 

nyahcas elektrik corona, nyahcas elektrik arcs, pra-pemantauan kerosakan 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background 

Over the years, many smart sensors have been developed to improve the detection, 

localization, and recognition techniques of Electromagnetic (EM) signals. Most of these 

sensors are engaged with the digital and wireless communication system and are highly 

implemented in the fault monitoring system in power substations. Recently, Ultra-High 

Frequency (UHF) sensors have been among the famous techniques for EM measurement, 

especially in power substations due to the congregation of High Voltage (HV) power 

apparatuses in the substations. Playing an essential role in the power systems, the 

transmission, generator, and distribution station substations perform important power 

generation, transmission, and distribution tasks. Therefore, substation fault monitoring must 

be conducted speedily, accurately, and effectively to maintain the performance and 

reliability of the system (Fauzi et al., 2018; Guozhi et al., 2019; Lv et al., 2017; Tang et al., 

2021; Zhu et al., 2018; Wang et al., 2017). 

For the past years, many researchers have successfully discovered methods to 

improve the fault monitoring system for conventional substations (Gaouda et al., 2018; 

Mas’ud et al., 2014; Robles et al., 2016; Sarkar et al., 2016; Sima et al., 2017; Tan et al., 

2017; Yongxiang et al., 2017). However, there is still room for improvement since many 

conventional substations are now slowly being converted into digital substations (Froese, 

2017). Note that going digital means digitizing the protection, measurement, and control 

units. Conventional sensors are replaced by modern digital sensors that allow direct digital 

communication to the process bus. Copper wires connected point-to-point to the Current 
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Transformers (CTs) or Potential Transformers (PTs) are replaced by electronic voltage/CTs 

and fiber optics cables to minimize the exposure to HV electricity and the risk of damage to 

the equipment. Nevertheless, having this key substation equipment digitized, including 

sensor data, communications, and sensor signal processing, the substation may still be 

exposed to the risk of potential hazards such as Electric Discharges (EDs). Therefore, pre-

breakdown and pre-fault monitoring is still required to detect the existence of EDs in the 

substations, which may lead to a complete breakdown of the system (Gataullin, 2020; 

Kumbhar et al., 2017; Polyakov et al., 2018; Ryan, 2001).  

Many approaches to fault detection in substation monitoring have been reported, with 

simulation results suggesting effective detection, localization, and recognition of the 

substation faults caused especially by Dielectric Breakdown (Arias et al., 2018; Christina et 

al., 2018; Moreira et al., 2020; Srisongkram et al., 2019). However, it is still a major issue 

in power systems, originating mostly in insulation degradation, thus producing EDs such as 

Corona and Arc discharges. The application of sensors from the groups of Photodetector and 

Ultraviolet sensors is still preferred by some researchers to get a rapid diagnosis and 

prognosis of the causes of faults, which enables appropriate measures to be taken. The 

common sensors used for fault detection are Acoustic Emission, Radio Interference Voltage 

(RIV) Measurement, Infrared (IR) Thermography, Electric Field Measurement, Visual 

Observation, and Ultraviolet Camera. However, these sensors depend on the visibility of the 

light emitted by EDs and the use of the EM spectrum, which is limited to 1014 Hz (100 THz) 

(P. R. Hoole et al., 2013). Currently, sensors such as array antennas and UHF sensors have 

been used to replace the conventional sensors in detecting and localizing the ED to improve 

the efficiency of substation fault monitoring (Azam et al., 2022; Ghanakota et al., 2022; 

Nobrega et al., 2019; Rhamdhani et al., 2022; Uwiringiyimana et al., 2021; Wu et al., 2022; 
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Xavier et al., 2021; Yadam et al., 2021, 2022; Zhu et al., 2019). In general, an ED in a 

substation indicates the presence of cracks, voids, or other insulation degradation within the 

electrical equipment. It can lead to equipment failure, serious accidents, and electric 

breakdown of the power distribution system (Mohan et al., 2019; Shahsavarian et al., 2020; 

Tsyokhla et al., 2019a; Zamudio-Ramirez et al., 2019; Zhang et al., 2019). When an open 

circuit occurs at a conventional CT, for example, the inductive circuit can produce hazardous 

conditions. HV on the secondary load (depending on the load) may develop and lead to ED 

in the form of flashovers and arcing, which put the substation or personnel at great risk, and 

the stability of electrical equipment could be disturbed. The most common EDs are Electric 

Corona Discharge and Electric Spark/Arc, which can be detected not only on the overhead 

HV power transmission lines but also frequently inside substations that consist of substation 

equipment like transformers, circuit breakers, and switches. Moreover, the ED measurement 

techniques rely on the different physical activities of the ED. Many factors affect the ED 

activities, such as environmental temperature, humidity, voltage, and load. Therefore, the 

ED frequency spectrums also vary depending on different environmental conditions. Based 

on the antenna characteristics and background noise for the detection, the frequency 

spectrums of the ED, such as Corona and Arc, are widely distributed across a range of 300 

MHz – 3 GHz with various types (Affendi et al., 2020; Bruzzone, 2021; Chai et al., 2018; 

Dukanac, 2018; Hamdani et al., 2018; Laksono et al., 2020; Li et al., 2018; Thiviyanathan et 

al., 2022).   

1.2 Problem Statement  

In the past, researchers have successfully developed high-performance and ultra-

modern techniques to provide a better way for HV equipment insulation condition 

monitoring systems. However, these techniques do not include a pre-monitoring system for 
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the entire substation environment at a time. Mostly, the monitoring system focuses on 

individual equipment such as transformers, Gas Insulated Switchgear (GIS), or transmission 

cables, and frequently, the insulation condition is only realized when the damage has already 

long occurred on the equipment due to lack of pre-monitoring action. Although the designed 

systems include high performance, efficient, and smart characteristics for insulation 

condition monitoring of ED detection, localization, and recognition, there are constraints in 

the implementation. This is due to the extensive data and memory system required for smart 

signal recognition. Hence, multiple applications of sensors are required to improve signal 

detection and localization from multi-ED sources concurrently. Furthermore, the 

implementation requires high costs for new upgrading works and installation to replace the 

existing monitoring system.  

The smart signal recognition technique requires an extensive data system, such as 

data storage and memory for the dataset libraries, to support recognition methods for 

multiple ED sources. When the processed sample data does not match any of the datasets in 

the data libraries system, the recognition is considered to fail. This is the drawback of the 

modern signal recognition. Hence, conventional methods and techniques are still preferable. 

However, a conventional periodic manual checking system is time-consuming and is less 

practical, especially for substations in rural areas. Based on the limitations, a novel pre-fault 

monitoring system utilizing a wireless smart sensor called a Single Perceptron Smart Sensor 

(SPSS) is developed to detect and localize the early formation of Corona or Arcs ED signals 

based on its single source direction of arrival angle (DOA), embedding a novel SP-Identifier 

Technique for Corona or Arcs ED signal identification.  


