

Engineering Properties of Solid and Laminated Glulam of Acacia mangium superbulk Planted in Sarawak

Nur Syahina binti Yahya

Doctor of Philosophy 2024

Engineering Properties of Solid and Laminated Glulam of Acacia mangium

superbulk Planted in Sarawak

Nur Syahina binti Yahya

A thesis submitted

In fulfillment of the requirements for the degree of Doctor of Philosophy

(Civil and Structural Engineering)

Faculty of Engineering UNIVERSITI MALAYSIA SARAWAK 2024

DECLARATION

I declare that the work in this thesis entitled "Engineering Properties of Solid and Laminated Glulam of *Acacia mangium* superbulk Planted in Sarawak" was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Expect where due acknowledgements have been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Northin

Signature

Name: Nur Syahina binti Yahya

Matric No.: 15010149

Faculty of Engineering

Universiti Malaysia Sarawak

Date: 12th January 2024

ACKNOWLEDGEMENTS

With grateful and praise to Al-Mighty Allah S.W.T. with His companion, guidance, and Allah's wishes that this research has been completed successfully. The author would like to extend her gratitude to her supervisor Dr. Gaddafi bin Haji Ismaili, the most dedicated and supportive mentor. Your full attention and integrity in accomplishing this study are muchly appreciated. The author would like to express her sincere appreciation and thankfulness also to her co-supervisor, Dr. Haji Iskanda bin Haji Openg, for the support and advice. Much appreciation is given to the late Dr. Alik Duju who passed away on 26 July 2023, our expert from Applied Forest Science and Industry Development Division (AFSID) at Sarawak Forestry Corporation (SFC), who gave the author the best opportunity to conduct the research at SFC, may God blessed your soul. Not forgotten other SFC staff, including Mr. Nungah Liang, Mr. Willies Chin, Mr. Wong, Mr. Ibrahim, Mr. Teng Xin Yao, Mr. Simon, and Mr. Lai Jiew Kok, who assisted her in preparing samples, running the experiments, and even sharing their priceless experiences and knowledge. Utmost appreciation and thanks to Mr. Takeda on behalf of Daiken Plantation Bintulu Sdn. Bhd. for preparing logs samples for the research. The author would also likes to thank all plantation and sawmill staff from Samling Timber Sdn. Bhd. lead by Mr. Lionel Liew for his undivided support and contribution during sample preparation. Sincere gratitude to the all staffs of Civil Engineering Department, Faculty of Engineering and Centre of Graduate Studies, Universiti Malaysia Sarawak for assisting and giving the author opportunities to further her PhD studies. Thanks also to the Ministry of Higher Education (MoHE) MyBrain15 MyPhD for providing scholarships for the author's first three years of study. Finally, the author would like to express special thanks to her beloved husband, Mr. Mohd. Irshad Syafiq bin Azemi, daughter, Zarith Maryam binti Mohd. Irshad Syafiq, son, Luth Mateen bin Mohd. Irshad Syafiq, father, Mr. Yahya bin Seman, mother, Madam Paridah binti Mustapha, brothers, Mr. Mohammad Zeirie bin Yahya and Mr. Mohammad Ruzaidie bin Yahya, sisters, Madam Nur Ezathul Faridza binti Yahya and Madam Nur Syahida binti Yahya and her younger brother, Mr. Mohammad Azwan bin Yahya, other family members, family in-laws, friends, and colleagues. Thank you for all the prayers, support, and sacrifices.

ABSTRACT

The slow growth rate of primer species has had an impact on the quantity available to meet market demand. To address this issue, a study was conducted to fully employ fast-growing timber as the principal resource in order to ensure that demand for timber logs remains stable. The purpose of this research was to study the engineering properties of Acacia mangium superbulk, a fast-growing timber species that planted in Daiken Plantation Bintulu, Sarawak with age groups of 7, 10 and 13 years old at air-dry moisture content. The small-clear samples were prepared in the form of solid and laminated (same age groups and different age groups) and set into untreated and treated for both solid and laminated sample products. The type of preservative and adhesive glue that have been used are *Copper Chrome Arsenic* (CCA) and *Phenol-resorcinol Formaldehyde* (PRF), respectively. The mechanical strength testing conducted are modulus of rupture (MOR), modulus of elasticity (MOE), compression parallel to grain and shear parallel to grain. This study also established the end-user applications in the timber industry based on density, hardwood category, strength grouping and hazard class. From the study, the maximum strength value of solid untreated is obtained by 10 years old, which is recorded the MOR, MOE, compression parallel to grain and shear parallel to grain are 115.11 N/mm², 14945 N/mm², 57.57 N/mm² and 14.24 N/mm², respectively. Besides that, the maximum strength value of solid treated is also obtained by 10 years old, which is recorded 118.76 N/mm², 15020 N/mm², 57.82 N/mm² and 13.67 N/mm² for MOR, MOE, compression parallel to grain and shear parallel to grain, respectively. For laminated samples, there is no significant difference in strength from laminated untreated products 10 // 10 years old when compared to solid untreated 10 years old, and the percentage differences obtained by MOR, MOE, compression parallel to grain and shear parallel to grain are 2.45%, 0.31%, 3.58% and 3.37%, respectively. Meanwhile,

the strength properties between laminated treated products 10 // 13 years old and solid treated 10 years old do not have any significant difference, and the percentage differences obtained by MOR, MOE, compression parallel to grain and shear parallel to grain are 3.37%, 0.06%, 3.91% and 1.17%, respectively. The treatment by CCA preservative shows the *Acacia mangium* superbulk is classified as moderately difficult to treat and hazard class of H4 (±14 litre/m³). The density of *Acacia mangium* superbulk at air- dry condition is 0.61 g/cm³ and its categorised as light hardwood. Moreover, the *Acacia mangium* superbulk is classified as Group B based on compression strength and Group A based on basic grading. The end-user utilisations of *Acacia mangium* superbulk are recommended for structural components, roofing, staircase, flooring, walling, door, window, and decorative panelling.

Keywords: fast-growing timber, small-clear, laminated glulam, modulus of rupture, modulus of elasticity, compression parallel to grain, shear parallel to grain, *Copper Chrome Arsenic* (CCA), *Phenol-resorcinol Formaldehyde* (PRF)

Sifat Kejuruteraan Pepejal dan Glulam Berlamina Acacia mangium superbulk yang ditanam di Sarawak

ABSTRAK

Kadar pertumbuhan perlahan species primer telah memberi kesan kepada kuantiti yang tersedia untuk memenuhi permintaan pasaran. Untuk menangani isu ini, satu kajian telah dijalankan untuk menggunakan sepenuhnya kayu yang tumbuh cepat sebagai sumber utama bagi memastikan permintaan terhadap kayu balak kekal stabil. Tujuan penyelidikan ini adalah untuk mengkaji sifat kejuruteraan Acacia mangium superbulk, species kayu yang cepat tumbuh yang ditanam di Daiken Plantation Bintulu, Sarawak dengan kumpulan umur 7, 10, dan 13 tahun pada kandungan lembapan kering udara. Sampel-sampel ini disediakan dalam bentuk pepejal, berlamina (produk berlamina dengan kumpulan umur yang sama dan produk berlamina dengan kumpulan umur yang berbeza) dan juga disediakan dalam keadaan tidak dirawat dan dirawat. Bahan kimia yang digunakan untuk proses merawat sampel ialah Copper Chrome Arsenic (CCA) dan bahan gam yang digunakan untuk proses lamina ialah Phenol-resornicol Formaldehdye (PRF). Ujian-ujian mekanikal yang dijalankan ke atas sampel kayu adalah modulus pecah, modulus keanjalan, mampatan ira selari dan ricih ira selari. Kajian ini juga menetapkan aplikasi penggunaan kayu dalam industri kayu berdasarkan kepada ketumpatan kayu, kategori kayu keras, kumpulan kekuatan kayu dan kelas bahaya. Daripada kajian ini, nilai kekuatan maksimum sampel pepejal yang tidak dirawat adalah diperoleh daripada kumpulan umur 10 tahun yang masing – masing mencatatkan modulus pecah, modulus keanjalan, mampatan ira selari dan ricih ira selari sebanyak 115.11 N/mm², 14945 N/mm², 57.57 N/mm² dan 14.24 N/mm². Selain itu, nilai kekuatan maksimum bagi sampel pepejal yang dirawat juga diperoleh daripada kumpulan umur 10 tahun dengan mencatatkan nilai masing-masing iaitu 118.76

N/mm², 15020 N/mm², 57.82 N/mm² dan 13.67 N/mm² untuk modulus pecah, modulus keanjalan, mampatan ira selari dan ricih ira selari. Untuk sampel berlamina, tiada perbezaan sifat kekuatan yang signifikan diantara sampel tidak dirawat yang berumur 10 // 10 tahun dengan sampel pepejal yang tidak dirawat yang berumur 10 tahun dan peratusan perbezaan kekuatan tersebut ialah 2.45%, 0.31%, 3.58% dan 3.37% masing-masing untuk modulus pecah, modulus keanjalan, mampatan ira selari dan ricih ira selari. Sementara itu, sifat kekuatan diantara sampel produk berlamina dirawat yang berumur 10 // 13 tahun dan sampel pepejal dirawat yang berumur 10 tahun juga tidak mempunyai perbezaan yang signifikan, dan perbezaan peratusan yang diperoleh oleh modulus pecah, modulus keanjalan, mampatan ira selari dan ricih ira selari adalah 3.37%, 0.06%, 3.91% dan 1.17%. Disamping itu, rawatan yang menggunakan CCA menunjukkan Acacia mangium superbulk diklasifikasikan sebagai kelas agak sukar dirawat dan kelas bahaya H4 (\pm 14 liter/m³). Ketumpatan Acacia mangium superbulk dalam keadaan udara kering adalah 0.61 g/cm³ dan dikategorikan sebagai kayu keras ringan. Pokok Acacia mangium superbulk dikelaskan dalam kumpulan kekuatan B berdasarkan kekuatan mampatan dan kumpulan A berdasarkan gred asas. Penggunaan Acacia mangium superbulk di dalam industri perkayuan disyorkan untuk digunakan sebagai komponen struktur, atap, tangga, lantai, dinding, pintu, tingkap dan panel hiasan.

Kata kunci: kayu cepat tumbuh, pepejal, glulam berlamina, modulus pecah, modulus keanjalan, mampatan ira selari dan ricih ira selari, Copper Chrome Arsenic (CCA), Phenol-resorcinol Formaldehyde (PRF)

TABLE OF CONTENTS

		Page
DEC	CLARATION	i
ACK	KNOWLEDGEMENTS	ii
ABS	TRACT	iv
ABS	TRAK	vi
TAB	BLE OF CONTENTS	ix
LIST	Γ OF TABLES	xiii
LIST	Γ OF FIGURES	xxvi
LIST	Γ OF ABBREVIATION	xli
CHA	APTER 1: INTRODUCTION	1
1.1	Background	1
1.2	Problem Statement	3
1.3	Objectives of Study	5
1.4	Chapter Outline	6
CHA	APTER 2: LITERATURE REVIEW	7
2.1	Background	7
2.2	Acacia mangium	9
2.3	Physical Properties of Acacia mangium	13
2.4	Mechanical Properties of Acacia mangium	18
2.5	Strength Group	20
2.6	Treatment of Acacia mangium	23
2.7	Lamination of Acacia mangium	27

2.8	Decay and Damage Protection	31
2.9	The Applications of Acacia mangium	37
CHAF	PTER 3: METHODOLOGY	40
3.1	Background	40
3.2	E-numeration and Selection of Trees	40
3.3	Preparation of Sample	48
3.4	Physical Testing	58
3.5	Mechanical Testing	61
3.5.1	Static Bending	63
3.5.2	Compression Parallel to Grain	65
3.5.3	Shear Parallel to Grain	66
3.6	Treatability	68
3.7	Lamination	73
3.7.1	Tree's Pairing	78
3.8	Method to Rank the Strength Differences	79
3.9	Method of Analysis	79
CHAI	PTER 4: RESULTS, ANALYSIS AND DISCUSSIONS	81
4.1	Background	81
4.2	Solid-untreated of Acacia mangium superbulk	83
4.2.1	Moisture Content	83
4.2.2	Density	86
4.2.3	Basic Density	88
4.2.4	Static Bending	90
4.2.5	Compression Parallel to Grain	99

4.2.6	Shear Parallel to Grain	105
4.3	Solid-treated of Acacia mangium superbulk	113
4.3.1	Moisture Content	114
4.3.2	Density	114
4.3.3	Static Bending	118
4.3.4	Compression Parallel to Grain	126
4.3.5	Shear Parallel to Grain	132
4.4	Laminated-untreated Products of Acacia mangium superbulk	142
4.4.1	Moisture Content	143
4.4.2	Density	147
4.4.3	Basic Density	150
4.4.4	Static Bending by the Same Age Groups	155
4.4.5	Static Bending by the Different Age Groups	163
4.4.6	Compression Parallel to Grain by the Same Age Groups	171
4.4.7	Compression Parallel to Grain by the Different Age Groups	177
4.4.8	Shear Parallel to Grain by the Same Age Groups	182
4.4.9	Shear Parallel to Grain by the Different Age Groups	189
4.5	Laminated-treated Products of Acacia mangium superbulk	194
4.5.1	Moisture Content	194
4.5.2	Density	195
4.5.3	Static Bending by the Same Age Groups	202
4.5.4	Static Bending by the Different Age Groups	213
4.5.5	Compression Parallel to Grain by the Same Age Groups	223
4.5.6	Compression Parallel to Grain by the Different Age Groups	230

4.5.7	Shear Parallel to Grain in Tangential Direction by the Same Age Groups	236
4.5.8	Shear Parallel to Grain in Tangential Direction by the Different Age Groups	242
4.6	Treatability Retention of Acacia mangium superbulk	248
4.6.1	Solid	248
4.6.2	Laminated	252
4.7	Summary of Results	257
4.8	Factors Affecting Mechanical Strength Properties	260
4.8.1	Effect of Physical Properties	260
4.8.2	Effect of Maturity	264
4.8.3	Effect of Miscellaneous	265
4.9	Treatability Evaluation and Hazard Classification	266
CHAI	PTER 5: UTILISATION OF ACACIA MANGIUM SUPERBULK	271
5.1	Background	271
5.2	Percentage Difference of Mechanical Strength Properties to the	271
	Reference Point	
5.3	Strength Grouping	275
5.3.1	Strength Grouping Based on Compression Parallel to Grain (Burgess, 1958)	275
5.3.2	Strength Grouping Based on Basic Grade (Air-dry Condition) (Chik, 1988)	276
5.4	The Recommendation for End-user Applications	277
CHAI	PTER 6: CONCLUSION AND RECOMMENDATION	283
6.1	Conclusions	283
6.2	Recommendations	287
REFE	REFERENCES 2	
APPE	APPENDICES 30	

LIST OF TABLES

Page

Table 2.1	Classification of Malaysian Hardwood (Malaysia Timber Industry	8
	Board, 2019c)	
Table 2.2	Growth characteristics of Acacia mangium superbulk at Different	14
	Ages (Adam et al., 2012)	
Table 2.3	Mechanical Properties of Acacia mangium and Acacia mangium	19
	superbulk from Prior Study	
Table 2.4	Dry-grade Stress for Various Strength Groups of Timber	20
Table 2.5	Strength Grouping (Burgess, 1958; Ashaari, 2017)	20
Table 2.6	Probability Values for Determination of Basic Stresses (Chik, 1988a)	21
Table 2.7	Factors of Safety for Determining Basic Stresses (Chik, 1988a)	21
Table 2.8	Strength Ratio (Pun et al., 1997)	22
Table 2.9	Strength Groups Based on Basic Grade (Air-dry Condition)	23
	(Chik, 1988a)	
Table 2.10	Treatability Classification (Malaysian Standard, 2006)	24
Table 2.11	Hazard Class Selection Guide Extracted from Malaysian	25
	Standard (2003) and Malaysian Standard (2006)	
Table 2.12	Treatability Retention of Acacia mangium (Lai and Sammy, 2014)	26
Table 2.13	Treatability Retention of Acacia mangium (Salmiah et al., 2011)	26
Table 2.14	Mechanical Properties of Lamination of Acacia mangium	31
	(Suryono, 2015)	
Table 2.15	Strength Groups of Timber and Applications, (Malaysia Timber	38

Industry Board, 2019b)

Table 2.16	Density Groups of Hardwood and its Applications (Sulaiman	39
	and Lim, 2004)	
Table 3.1	Description of Locality and Plot Area of 7, 10, and 13 Years Old	43
Table 3.2	Summary of the Inventoried Trees	44
Table 3.3	Grouping and Batches of Acacia mangium superbulk Plot 1	45
Table 3.4	Grouping and Batches of Acacia mangium superbulk Plot 2	46
Table 3.5	Grouping and Batches of Acacia mangium superbulk Plot 3	47
Table 3.6	Tree's Pairing for Lamination	78
Table 4.1	Moisture Content (Solid-untreated) of Acacia mangium superbulk	84
Table 4.2	One-way ANOVA Moisture Content (Solid-untreated) of Acacia	84
	mangium superbulk	
Table 4.3	DMRT of Moisture Content (Solid-untreated) of Acacia mangium	85
	superbulk	
Table 4.4	DMRT of Moisture Content (Solid-untreated) of Acacia mangium	86
	superbulk	
Table 4.5	One-way ANOVA Density (Solid-untreated) of Acacia mangium	87
	superbulk	
Table 4.6	DMRT of Density (Solid-untreated) of Acacia mangium superbulk	87
Table 4.7	One-way ANOVA of Basic Density (Solid-untreated) of Acacia	89
	mangium superbulk	
Table 4.8	DMRT of Basic Density (Solid-untreated) of Acacia mangium	89
	superbulk	
Table 4.9	One-way ANOVA of MOR and MOE (Solid-untreated) of Acacia	92

mangium superbulk

Table 4.10	DMRT of MOR (Solid-untreated) of Acacia mangium superbulk	93
Table 4.11	DMRT of MOE (Solid-untreated) of Acacia mangium superbulk	93
Table 4.12	Maximum Load of Static Bending (Solid-untreated) of Acacia	94
	mangium superbulk	
Table 4.13	Comparison of Static Bending between Acacia mangium and Acacia	98
	mangium superbulk (Solid-untreated)	
Table 4.14	One-way ANOVA of Compression Parallel to Grain (Solid-	101
	untreated) of Acacia mangium superbulk	
Table 4.15	DMRT of Compression Parallel to Grain (Solid-untreated) of Acacia	101
	mangium superbulk	
Table 4.16	Maximum Load of Compression Parallel to Grain (Solid-untreated)	102
	of Acacia mangium superbulk	
Table 4.17	Comparison of Compression Parallel to Grain between Acacia	104
	mangium and Acacia mangium superbulk (Solid-untreated)	
Table 4.18	One-way ANOVA of Shear Parallel to Grain (Solid-untreated)	108
	of Acacia mangium superbulk	
Table 4.19	DMRT of Shear Parallel to Grain in Radial Plane (Solid-untreated)	108
	of Acacia mangium superbulk	
Table 4.20	DMRT of Shear Parallel to Grain in Tangential Plane	109
	(Solid-untreated) of Acacia mangium superbulk	
Table 4.21	Maximum Load of Shear Parallel to Grain (Solid-untreated)	109
	of Acacia mangium superbulk	
Table 4.22	Density Before and After Treatment (Solid-treated) of	115

Acacia mangium superbulk

Table 4.23	One-way ANOVA of Density Before Treatment (Solid-treated)	116
	of Acacia mangium superbulk	
Table 4.24	DMRT of Density Before Treatment (Solid-treated) of	116
	Acacia mangium superbulk	
Table 4.25	One-way ANOVA of Density After Treatment (Solid-treated)	117
	of Acacia mangium superbulk	
Table 4.26	DMRT of Density After Treatment (Solid-treated) of	117
	Acacia mangium superbulk	
Table 4.27	One-way ANOVA of MOR and MOE (Solid-treated) of	120
	Acacia mangium superbulk	
Table 4.28	DMRT of MOR (Solid-treated) of Acacia mangium superbulk	120
Table 4.29	DMRT of MOE (Solid-treated) of Acacia mangium superbulk	120
Table 4.30	Maximum Load of Static Bending (Solid-treated) of	121
	Acacia mangium superbulk	
Table 4.31	One-way ANOVA of Compression Parallel to Grain (Solid-treated)	128
	of Acacia mangium superbulk	
Table 4.32	DMRT of Compression Parallel to Grain (Solid-treated) of	128
	Acacia mangium superbulk	
Table 4.33	Maximum Load of Compression Parallel to Grain (Solid-	129
	treated) of Acacia mangium superbulk	
Table 4.34	One-way ANOVA of Shear Parallel to Grain (Solid-treated)	134
	of Acacia mangium superbulk	
Table 4.35	DMRT of Shear Parallel to Grain in Radial Plane (Solid-	135

treated) of Acacia mangium superbulk

Table 4.36	DMRT of Shear Parallel to Grain in Tangential Plane (Solid-	135
	treated) of Acacia mangium superbulk	
Table 4.37	Maximum Load of Shear Parallel to Grain (Solid-treated) of	136
	Acacia mangium superbulk	
Table 4.38	Moisture Content of the Same Age Groups of Acacia	144
	mangium superbulk (Laminated-untreated Products)	
Table 4.39	One-way ANOVA of Moisture Content by the Same Age Groups	144
	(Laminated-untreated Products) of Acacia mangium superbulk	
Table 4.40	DMRT of Moisture Content by the Same Age Groups	145
	(Laminated-untreated Products) of Acacia mangium superbulk	
Table 4.41	Moisture Content of the Different Age Groups (Laminated-	145
	untreated Products) of Acacia mangium superbulk	
Table 4.42	One-way ANOVA of Moisture Content by the Different Age Groups	146
	(Laminated-untreated Products) of Acacia mangium superbulk	
Table 4.43	DMRT of Moisture Content by the Different Age Groups	146
	(Laminated-untreated Products) of Acacia mangium superbulk	
Table 4.44	One-way ANOVA of Moisture Content by the Same Age Groups	148
	(Laminated-untreated Products) of Acacia mangium superbulk	
Table 4.45	DMRT of Density by the Same Age Groups (Laminated-untreated	148
	Products) of Acacia mangium superbulk	
Table 4.46	One-way ANOVA of Density by the Different Age Groups (Laminated-	150
	untreated Products) of Acacia mangium superbulk	
Table 4.47	DMRT of Density by the Different Age Groups (Laminated-	150

untreated Products) of Acacia mangium superbulk

Table 4.48	One-way ANOVA of Basic Density by the Same Age Groups	152
	(Laminated-untreated Products) of Acacia mangium superbulk	
Table 4.49	DMRT of Basic Density by the Same Age Groups (Laminated-	152
	untreated Products) of Acacia mangium superbulk	
Table 4.50	One-way ANOVA of Basic Density by the Different Age Groups	154
	(Laminated-untreated Products) of Acacia mangium superbulk	
Table 4.51	DMRT of Basic Density by the Different Age Groups (Laminated-	154
	untreated Products) of Acacia mangium superbulk	
Table 4.52	One-way ANOVA of MOR and MOE by the Same Age Groups	157
	(Laminated-untreated Products) of Acacia mangium superbulk	
Table 4.53	DMRT of MOR by the Same Age Groups (Laminated-untreated	158
	Products) of Acacia mangium superbulk	
Table 4.54	DMRT of MOE by the Same Age Groups (Laminated-untreated	158
	Products) of Acacia mangium superbulk	
Table 4.55	Maximum Load of Static Bending by the Same Age Groups	158
	(Laminated-untreated Products) of Acacia mangium superbulk	
Table 4.56	One-way ANOVA of MOR and MOE by the Different Age Groups	166
	(Laminated-untreated Products) of Acacia mangium superbulk	
Table 4.57	DMRT of MOR by the Different Age Groups (Laminated-	167
	Untreated Products) of Acacia mangium superbulk	
Table 4.58	DMRT of MOE by the Different Age Groups (Laminated-	167
	Untreated Products) of Acacia mangium superbulk	
Table 4.59	Maximum Load of Static Bending by the Different Age Groups	167

	(Laminated-untreated Products) of Acacia mangium superbulk	
Table 4.60	One-way ANOVA of Compression Parallel to Grain by the Same	173
	Age Groups (Laminated-untreated Products) of	
	Acacia mangium superbulk	
Table 4.61	DMRT of Compression Parallel to Grain by the Same Age Groups	173
	(Laminated-untreated Products) of Acacia mangium superbulk	
Table 4.62	Maximum Load of Compression Parallel to Grain by the Same	174
	Age Groups (Laminated-untreated Products) of	
	Acacia mangium superbulk	
Table 4.63	One-way ANOVA of Compression Parallel to Grain by the Same	178
	Age Groups (Laminated-untreated Products) of	
	Acacia mangium superbulk	
Table 4.64	DMRT of Compression Parallel to Grain by the Same Age Groups	179
	(Laminated-untreated Products) of Acacia mangium superbulk	
Table 4.65	Maximum Load of Compression Parallel to Grain by the Same Age	180
	Groups (Laminated-untreated Products) of	
	Acacia mangium superbulk	
Table 4.66	One-way ANOVA of Shear Strength by the Same Age Groups	184
	(Laminated-untreated Products) of Acacia mangium superbulk	
Table 4.67	DMRT of Shear Strength by the Same Age Groups (Laminated-	185
	untreated Products) of Acacia mangium superbulk	
Table 4.68	Maximum Load of Shear Strength by the Same Age Groups	186
	(Laminated-untreated Products) of Acacia mangium superbulk	
Table 4.69	One-way ANOVA of Shear Strength by the Different Age Groups	191

(Laminated-untreated Products) of Acacia mangium superbulk

Table 4.70	DMRT of Shear Strength by the Different Age Groups (Laminated-	192
	untreated Products) of Acacia mangium superbulk	
Table 4.71	Maximum Load of Shear Strength by the Different Age Groups	192
	(Laminated-untreated Products) of Acacia mangium superbulk	
Table 4.72	One-way ANOVA of Density Before Treatment by the Same	196
	Age Groups (Laminated-treated Products) of	
	Acacia mangium superbulk	
Table 4.73	DMRT of Density Before Treatment by the Same Age Groups	197
	(Laminated-treated Products) of Acacia mangium superbulk	
Table 4.74	One-way ANOVA of Density After Treatment by the Same	198
	Age Groups (Laminated-treated Products) of	
	Acacia mangium superbulk	
Table 4.75	DMRT of Density After Treatment by the Same Age Groups	198
	(Laminated-treated Products) of Acacia mangium superbulk	
Table 4.76	One-way ANOVA of Density Before Treatment by the	200
	Different Age Groups (Laminated-treated Products) of	
	Acacia mangium superbulk	
Table 4.77	DMRT of Density Before Treatment by the Different Age Groups	200
	(Laminated-treated Products) of Acacia mangium superbulk	
Table 4.78	One-way ANOVA of Density After Treatment by the Different	202
	Age Groups (Laminated-treated Products) of	
	Acacia mangium superbulk	
Table 4.79	DMRT of Density After Treatment by the Different Age Groups	202

(Laminated-treated Products) of Acacia mangium superbulk

Table 4.80	One-way ANOVA of MOR and MOE by the Same Age Groups	205
	(Laminated-treated Products) of Acacia mangium superbulk	
Table 4.81	DMRT of MOR by the Same Age Groups (Laminated-treated	205
	Products) of Acacia mangium superbulk	
Table 4.82	DMRT of MOE by the Same Age Groups (Laminated-treated	206
	Products) of Acacia mangium superbulk	
Table 4.83	Maximum Load of Static Bending by the Same Age Groups	206
	(Laminated-treated Products) of Acacia mangium superbulk	
Table 4.84	One-way ANOVA of MOR and MOE by the Different Age Groups	215
	(Laminated-treated Products) of Acacia mangium superbulk	
Table 4.85	DMRT of MOR by the Different Age Groups (Laminated-treated	216
	Products) of Acacia mangium superbulk	
Table 4.86	DMRT of MOE by the Different Age Groups (Laminated-treated	216
	Products) of Acacia mangium superbulk	
Table 4.87	Maximum Load of Static Bending by the Different Age Groups	217
	(Laminated-treated Products) of Acacia mangium superbulk	
Table 4.88	One-way ANOVA of Compression Parallel to Grain by the	225
	Same Age Groups (Laminated-treated Products) of	
	Acacia mangium superbulk	
Table 4.89	DMRT of Compression Parallel to Grain by the Same Age Groups	225
	(Laminated-treated Products) of Acacia mangium superbulk	
Table 4.90	Maximum Load of Compression Parallel to Grain by the Same	226
	Age Groups (Laminated-treated Products) of	

Acacia mangium superbulk

Table 4.91	One-way ANOVA of Compression Parallel to Grain by the	231
	Different Age Groups (Laminated-treated Products) of	
	Acacia mangium superbulk	
Table 4.92	DMRT of Compression Parallel to Grain by the Different	232
	Age Groups (Laminated-treated Products) of	
	Acacia mangium superbulk	
Table 4.93	Maximum Load of Compression Parallel to Grain by the Different	233
	Age Groups (Laminated-treated Products) of	
	Acacia mangium superbulk	
Table 4.94	One-way ANOVA of Shear Parallel to Grain in Tangential Direction	237
	by the Same Age Groups (Laminated-treated Products) of	
	Acacia mangium superbulk	
Table 4.95	DMRT of Shear Parallel to Grain in Tangential Direction by the	238
	Same Age Groups (Laminated-treated Products) of	
	Acacia mangium superbulk	
Table 4.96	Maximum Load of Shear Parallel to Grain in Tangential Direction by	238
	The Same Age Groups (Laminated-treated Products) of	
	Acacia mangium superbulk	
Table 4.97	One-way ANOVA of Shear Parallel to Grain in Tangential Direction	244
	by the Different Age Groups (Laminated-treated Products) of	
	Acacia mangium superbulk	
Table 4.98	DMRT of Shear Parallel to Grain in Tangential Direction by the	244
	Different Age Groups (Laminated-treated Products) of	

Acacia mangium superbulk

Table 4.99	Maximum Load of Shear Parallel to Grain in Tangential Direction	245
	by the Different Age Groups (Laminated-treated Products) of	
	Acacia mangium superbulk	
Table 4.100	Treatability Retention Level on Solid Acacia mangium superbulk	249
Table 4.101	Dry-salt Retention on Solid Acacia mangium superbulk	249
Table 4.102	One-way ANOVA of Treatability Retention on Solid	250
	Acacia mangium superbulk	
Table 4.103	DMRT of Treatability Retention on Solid Acacia mangium superbulk	251
Table 4.104	Comparison of Treatability Retention between Solid Acacia	251
	and Acacia mangium superbulk	
Table 4.105	Treatability Retention Level on Laminated Products by the Same	252
	Age Groups of Acacia mangium superbulk	
Table 4.106	Dry-salt Retention on Laminated Products by the Same Age Groups	253
	Acacia mangium superbulk	
Table 4.107	One-way ANOVA of Treatability Retention on Laminated Products	254
	by the Same Age Groups of Acacia mangium superbulk	
Table 4.108	DMRT of Treatability Retention on Laminated Products by the	254
	Same Age Groups of Acacia mangium superbulk	
Table 4.109	Treatability Retention Level on Laminated Products by the	255
	Different Age Groups of Acacia mangium superbulk	
Table 4.110	Dry-salt Retention on Laminated Products by the Different Age	255
	Groups of Acacia mangium superbulk	
Table 4.111	One-way ANOVA of Treatability Retention on Laminated Products	256