
Faculty of Engineering 

Accelerated Thermal Ageing on Electrical and Physicochemical 

Performance of Palm Oil Methyl Ester-Based Nanofluids as Liquid 

Insulation in Transformers 

Sharifah Masniah Wan Masra 

Doctor of Philosophy 

2024 



Accelerated Thermal Ageing on Electrical and Physicochemical Performance 

of Palm Oil Methyl Ester-Based Nanofluids as Liquid Insulation in 

Transformers 

Sharifah Masniah Wan Masra 

A thesis submitted 

In fulfillment of the requirements for the degree of Doctor of Philosophy 

(Electrical Engineering) 

Faculty of Engineering 

UNIVERSITI MALAYSIA SARAWAK 

2024 



i 

DECLARATION 

I declare that the work in this thesis was carried out in accordance with the regulations of 

Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the 

work is that of the author alone. The thesis has not been accepted for any degree and is not 

concurrently submitted in candidature of any other degree. 

…………………………… 

Signature 

 

Name: Sharifah Masniah Wan Masra 

Matric No.: 20010186 

Faculty of Engineering 

Universiti Malaysia Sarawak 

Date : 28th June 2024



ii 

ACKNOWLEDGEMENT 

First and foremost, all praises go to Allah for giving me the opportunity, determination, and 

strength to complete my studies. Thank you UNIMAS for the scholarship. I want to express 

my profound appreciation to my supervisor, Ir Ts Dr Yanuar Zulardiansyah Arief for his 

continuous support, encouragement, and invaluable expertise throughout this study. To my 

co-supervisors, Prof Ir Dr Andrew Ragai Henry Rigit, Assoc Prof Ir Ts Dr Siti Kudnie 

Sahari, and Assoc Prof Dr Md. Rezaur Rahman, I am highly grateful for their motivation, 

insightful feedback, constructive criticism, and encouragement during the various stages of 

my study. Their collective expertise and dedication have undoubtedly enriched the quality 

of my work.  

I am indebted to all my colleagues, friends, and lab mates for their support and exciting 

discussions, which have fostered an environment of intellectual exchange and growth. I want 

to extend my gratitude to En Wahap Marni, En Shafri Senawi, and En Benedict Samling 

from the Faculty of Resource Science and Technology (FRTS) and En Airul Azhar Jitai from 

the Department of Chemical Engineering and Energy Sustainability for their valuable 

assistance in operating the equipment in the laboratory. I would like to thank the staff and 

technicians of the Faculty of Engineering for assisting me throughout my study. 

My heartfelt thanks go to my husband, Mohd Saufee Muhammad; my daughters, Sofea 

Miyuki and Shaza Mizuki; and my parents and siblings for their love, understanding, belief, 

and moral support throughout this long journey. Thank you all for being an integral part of 

my pursuit of a PhD. 

 



iii 

ABSTRACT 

The paradigm shift from non-biodegradable and non-renewable mineral oil to acceptable 

biodegradable, renewable, and safer alternatives has prominently emerged in response to the 

United Nations Sustainable Development Goal (SDG)-7. However, their high viscosity, low 

dielectric strength, and poor oxidation stability prevent the broader usage as a replacement 

for dielectric liquid in transformers. Driven by the need for elevated properties of vegetable 

oils to align with the industry standards, the conversion process of the triglycerides, 

combined with modifications through the addition of nanoparticles and a surfactant, has been 

investigated.  This thesis proposes enhancing the properties of refined, bleached, and 

deodorised palm oil olein (RBDPOo) through chemical modification using a 

transesterification process to produce palm oil methyl ester (POME) as the base fluid. 

Additionally, semiconductive titanium dioxide (TiO2) and conductive multi-walled carbon 

nanotube (MWCNT) nanoparticles, along with the hexadecyltrimethylammonium bromide 

(CTAB) surfactant, are added. Accelerated ageing experiments were conducted in a sealed 

condition at a temperature of 130 oC over a duration ranging from 0 to 1000 h for 0.01−0.10-

g/L concentrations to understand their degradation behaviour. Overall, the findings 

demonstrated that all POME-based nanofluids showed an increase in AC BDV during the 

accelerated thermal ageing study, with the highest average value recorded at 57.08 kV, 

indicating a remarkable increment of 157.7% for POME-based TiO2 nanofluid at a 

concentration of 0.05-g/L. After being subjected to accelerated thermal ageing, the BDV of 

POME-based TiO2 nanofluids revealed a consistent trend across various doping 

concentrations. It was demonstrated that the proposed POME-based nanofluids performed 

comparably with other types of methyl ester oils in terms of breakdown voltage, kinematic 

viscosity, and flash point.  
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Penuaan Terma Dipercepat ke atas Sifat-sifat Elektrik dan Kimiafizik Nanobendalir 

Berasaskan Ester Metil Minyak Sawit sebagai Cecair Penebat di dalam Transformer 

ABSTRAK 

Anjakan paradigma dari minyak galian yang tidak terurai secara biologi dan tidak 

diperbaharui kepada alternatif yang boleh terurai secara biologi, boleh diperbaharui dan 

lebih selamat telah muncul sebagai tindak balas kepada Matlamat Pembangunan Mampan 

ke-7 (SDG-7) Pertubuhan Bangsa-bangsa Bersatu (PBB). Walaubagaimanapun, kelikatan 

tinggi, kekuatan elektrik rendah, dan kestabilan oksidasi yang lemah menghalang 

penggunaan meluas sebagai pengganti cecair dielektrik di dalam transformer. Dipacu oleh 

keperluan untuk meningkatkan sifat-sifat minyak sayuran agar selaras dengan piawaian 

industri, proses penukaran trigliserida, digabungkan dengan pengubahsuaian melalui 

penambahan nanopartikel dan surfaktan telah dikaji. Tesis ini mencadangkan peningkatan 

sifat-sifat olein minyak sawit ditapis, diluntur, dan dinyahbau (RBDPOo), melalui 

pengubahsuaian kimia menggunakan proses transesterifikasi untuk menghasilkan ester 

metil minyak sawit (POME) sebagai cecair asas. Selain itu, nanopartikel semikonduktif 

titanium dioksida (TiO2) dan nanopartikel konduktif nanotiub karbon berbilang dinding 

(MWCNT), beserta surfaktan CTAB, ditambahkan. Eksperimen penuaan dipercepat telah 

dijalankan dalam keadaan tertutup pada suhu 130 oC selama tempoh antara 0 sehingga 

1000 jam pada kelikatan 0.01−0.10-g/L untuk memahami tingkah-laku degradasi mereka.  

Secara keseluruhan, dapatan kajian menunjukkan bahawa semua nanobendalir berasaskan 

POME menunjukkan peningkatan dalam AC BDV semasa kajian penuaan terma dipercepat, 

dengan nilai purata tertinggi yang direkodkan pada 57.08 kV, menunjukkan peningkatan 

luar biasa sebanyak 157.7% bagi nanobendalir berasakan POME-TiO2 pada kelikatan 0.05-

g/L. Setelah menjalani penuaan terma dipercepat, BDV nanobendalir berasaskan POME-
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TiO2 mendedahkan trend yang konsisten pada pelbagai kelikatan. Ini telah ditunjukkan 

bahawa nanofluid berasaskan POME yang dicadangkan menunjukkan prestasi yang 

standing dengan jenis minyak ester metal yang lain dari segi voltan keruntuhan, kelikatan 

kinematik, dan titik kilat.   

Kata kunci: Pengubahsuain kimia, nanobendalir, metil ester minyak sawit, penuaan 

terma, transesterifikasi 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Study Background 

Petroleum-based oil, so-called mineral oil, has been utilised conventionally as a 

transformer liquid for decades and is widely established (Asano and Page, 2014; Fofana, 

2013; Lv et al., 2017). It has emerged as the predominant insulating liquid of transformers 

due to its availability, good performance, low viscosity, and low cost. It is excellent as both 

a cooling and insulating liquid.  However, the usage of mineral oil derived from non-

renewable energy sources is affecting the environment because of its non-biodegradability 

properties, inflammable, and toxicity owing to its polyaromatic hydrocarbons content, which 

are potentially carcinogenic (Fofana, 2013; Jacob et al, 2020; Srivastava et al., 2021). In 

pursuit of a safer, non-flammable, and environmentally friendly insulating liquid for 

transformer applications, scholars and researchers have explored innumerable alternatives to 

mineral oil and have demonstrated significant results (Abdelmalik, 2014; Boss and 

Oommen, 1999; Mentlik et al., 2018; Stockton et al., 2007; Tokunaga et al., 2019; Totzauer 

and Trnka, 2019).  

The shift of researchers’ interest from conventionally nonbiodegradable mineral oil 

to biodegradable and renewable alternatives has greatly stood out as the most promising and 

directly relevant initiative in supporting the United Nations (UN) Sustainable Development 

Goal (SDG)-7, which aims to provide access to affordable, clean, and modern energy 

services, as illustrated in Figure 1.1. 
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Figure 1.1: UN’s SDG-7 (https://www.globalgoals.org/goals/7-affordable-and-clean-

energy) 

 

Researchers have recently made notable attempts to develop high-performance, eco-

friendly, or fully biodegradable insulating liquids that can substitute conventional mineral 

oil.  A paradigm shift is sufficiently evident with tremendous attention, and many researchers 

redirecting their interests to biodegradable and renewable alternatives. Most biodegradable 

oil research for transformer applications has focused on vegetable oil or natural ester oil 

derived from seeds or other parts of plants. According to Suhaimi et al. (2022a), an aggregate 

of 900 articles was obtained between 2013 and 2022 from the IEEE Xplore database related 

to transformer oil based on vegetable or natural ester oils, as shown in Figure 1.2. 
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 Figure 1.2: Number of publications related to vegetables- and natural ester oils-based 

transformer oil [adapted from (Suhaimi et al., 2022a)] 

 

Around the early 1900s, experimental exploration of vegetable oils as dielectric 

coolants began (Fofana, 2013; McShane, 2002). Meanwhile, in the mid-1990s, Research and 

Development (R&D) laboratories commenced investigations to develop a fully 

biodegradable liquid (Oommen, 2002). Vegetable oil was considered the leading candidate 

and most promising option for such an insulating liquid (Fofana, 2013; Rafiq et al., 2015). 

As a non-fossil liquid alternative, vegetable oil offers a renewable, cost-saving, 

environment-friendly, fully biodegradable, sustainable, and safer alternative for 

transformers as an insulating and cooling medium (Amin et al., 2019; Fofana, 2013; Mahanta 

and Laskar, 2017; Rafiq et al., 2015; Shen et al., 2021). 

The first commercial ester-based insulating liquid was BIOTEMP®, which was 

derived from high oleic sunflower or rapeseed oil and patented in 1999 by ABB in the USA 

(Boss and Oommen, 1999; Oommen et al., 1997). It was followed by Envirotemp FR3® from 

soybean oil by Cooper Industries Inc. a year later (McShane et al., 2000). BIOTEMP®, 


