

Computational Analysis of Epstein-Barr Virus *Bam*H1 A Rightward Transcript (BART) MicroRNA (miRNA) Regulation on Messenger and Long Non-Coding RNAs in Nasopharyngeal Cancer

Daphne Olivia Jawai Anak Sadai

Master of Science 2024

Computational Analysis of Epstein-Barr Virus *Bam*H1 A Rightward Transcript (BART) MicroRNA (miRNA) Regulation on Messenger and Long Non-Coding RNAs in Nasopharyngeal Cancer

Daphne Olivia Jawai Anak Sadai

A thesis submitted

In fulfillment of the requirements for the degree of Master of Science

(Genetics)

Faculty of Resource Science and Technology UNIVERSITI MALAYSIA SARAWAK 2024

### **DECLARATION**

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

ohn

Signature

Name:

Daphne Olivia Jawai Anak Sadai

Matric No.: 20020007

Faculty of Resource Science and Technology

. . . . . . . . . . . . . . .

Universiti Malaysia Sarawak

Date : 19/3/2024

### ACKNOWLEDGEMENT

First and foremost, I would like to express my gratitude to my supervisor, Prof. Dr. Edmund Sim Ui Hang, for his invaluable supervision and guidance in completing this study. Besides, I appreciate the knowledge he shared with me and his assistance in writing my thesis throughout this study. Without his help, this study would not have been a success and completed.

Next, special thanks to my fellow labmates and friends, Ms. Adrianne Vong, Ms. Alyaa Syafiqah, and Mr. Alvin Wee, for sharing the knowledge and have consistently and patiently helped and guided me throughout my study. It was soothing to have them to confide in when I felt like giving up and I was also grateful for the emotional support they gave me during the ups and downs in completing this study. I am thankful for the times we have spent together and the safety they offered throughout this journey.

Furthermore, I would like to thank the Faculty of Resource Science and Technology of UNIMAS for providing access to the facilities, particularly the Immunology Laboratory and Animal and Tissue Culture Laboratory, which enabled me to learn and gain new knowledge by giving me the opportunity to conduct laboratory-based experiments.

Lastly, I would like to thank my parents, Mrs. Pepiet and Mr. Sadai, for their endless support and monetary. My mother, especially, for her endless emotional support, understanding, and words of encouragement, which have been fuelling me to complete this study when I feel hopeless. Thank you so much for allowing this journey to happen.

### ABSTRACT

The interaction and regulation amongst messenger RNA (mRNA), microRNA (miRNA) and long non-coding RNA (lncRNA) have been identified as causative of nasopharyngeal cancer (NPC) when their expression levels are dysregulated by each other and affecting the biological and molecular functions of affected nasopharynx cells. This interaction is known as competing endogenous RNA (ceRNA) regulatory activity. However, the study of regulation mechanisms of BamHI A rightward transcript (BART) miRNAs encoded by Epstein-Barr virus (EBV) on ceRNA in the pathogenesis of NPC is unavailable. According to previous studies, the Epstein-Barr virus was deemed one of NPC causative factors through its regulation of ceRNA activity using BART miRNAs. Therefore, in this study, candidate BART miRNAs, mRNAs, miRNAs and lncRNAs were obtained by integrating multi-level RNAs expressions data through bioinformatics analysis by constructing the cross-regulatory network. The cross-regulatory network was the combination of mRNAmiRNA-lncRNA ceRNA network with EBV miRNAs-mRNAs network. The results revealed six EBV miRNAs (ebv-miR-BART21-3p, ebv-miR-BART19-3p, ebv-miR-BART15, ebv-miR-BART2-5p, ebv-miR-BART20-3p and ebv-miR-BART11-5p) were interacting with four mRNAs (EYA4, EYA1, EBF1 and MACROD2). In addition, these mRNAs were interacting with six miRNAs (hsa-miR-1246, hsa-miR-93-5p, hsa-miR-16-5p, hsa-miR-135b-5p, hsa-miR-211-5p and hsa-miR-1305) where these miRNAs were interacting with three lncRNAs which are CASC2, TPTE2P1 and ARHGEF26-AS1. The data attained showed that these BART miRNAs may deregulate these mRNAs and affect the expressions of both miRNAs and lncRNAs. This gives insight into understanding the regulatory mechanisms of BART miRNAs on ceRNA activity. This study also revealed the potential functions of BART miRNAs and lncRNAs acting similarly as either tumour suppressors or oncogenes. Furthermore, the data obtained suggested that BART miRNAs affect DNA repair regulation and apoptosis in NPC by down-regulating the mRNAs, which pertains to poor overall survival (OS) in NPC patients. Overall, these findings exhibited the potential role of these BART miRNAs, mRNAs and lncRNAs as diagnostic and prognostic biomarkers in EBV-induced NPC carcinogenesis based on their ability to target and regulate the expressions of each other.

# Keywords: Nasopharyngeal Cancer, EBV, Bioinformatics, BART miRNAs, Long Non-Coding RNA

### Analisis Komputasi ke atas Pengawalan MikroRNA (miRNA) Transkrip BamHI A Rightward (BART) Diekrespikan Oleh Virus Epstein-Barr Ke atas RNA Bukan Pengekodan yang Panjang Dalam Kanser Nasofarink

### ABSTRAK

Interaksi dan pengawalan di antara pengutus RNA (mRNA), mikroRNA (miRNA) dan RNA bukan pengekodan yang panjang (lncRNA) telah dibuktikan sebagai penyebab dalam pembentukan kanser nasofarink (NPC) apabila tahap ekpresi mereka disregulasi oleh sama sendiri dan hal ini didapati memberi kesan terhadap fungsi-fungsi biologikal dan molekular di dalam sel-sel nasofarink yang terkesan. Interaksi ini dikenali sebagai aktiviti pengawalan persaingan asid ribonukleik yang berasal dari dalam (ceRNA). Walau bagaimanapun, kajian terhadap mekanisma pengawalan oleh miRNA transkrip BamHI A rightward (BART) yang diekspreskan oleh virus Epstein-Barr (EBV) keatas ceRNA didalam pembentukkan NPC belum pernah dikaji. Menurut kajian-kajian terdahulu, Epstein-Barr virus merupakan salah satu faktor penyebab kepada NPC melalui pengawalan keatas aktiviti ceRNA dengan menggunakan miRNA BART. Oleh itu, kajian ini calon miRNA BART, mRNA, miRNA dan lncRNA mampu didedahkan dengan mengabungkan data ekpresi berbilang peringkat asid ribonukleik (RNA) melalui analisa bioinformatik dengan membina rangkaian silang kawal selia. Rangkaian silang kawal selia ini merupakan pengabungan antara rangkaian mRNA-miRNA-lncRNA ceRNA dengan rangkaian EBV miRNA-mRNA. Hasil kajian ini menunjukkan bahawa enam miRNA EBV (ebv-miR-BART21-3p, ebv-miR-BART19-3p, ebv-miR-BART15, ebv-miR-BART2-5p, ebv-miR-BART20-3p dan ebv-miR-BART11-5p) berinteraksi dengan empat mRNA (EYA4, EYA1, EBF1 dan MACROD2). Sehubungan dengan itu, mRNA tersebut juga berinteraksi dengan enam miRNA (hsa-miR-1246, hsa-miR-93-5p, hsa-miR-16-5p, hsamiR-135b-5p, hsa-miR-211-5p dan hsa-miR-1305) dimana miRNA tersebut juga

berinteraksi dengan tiga lncRNA iaitu CASC2, TPTE2P1 dan ARHGEF26-AS1. Data yang diperolehi ini menunjukkan bahawa miRNA BART mendisregulasi mRNA tersebut dan memberi kesan terhadap ekspresi-ekpresi miRNA dan lncRNA. Ini memberi pengertian terhadap kefahaman tentang mekanisma pengawalan miRNA BART ke atas aktiviti pengawalan ceRNA. Kajian ini juga telah mendedahkan potensi miRNA BART dan lncRNA berfungsi menyerupai pembantut tumor dan onkogene. Tambahan pula, data yang diperolehi mencadangkan bahawa miRNA BART memberi kesan terhadap pengawalan pemulihan asid deoksiribonukleik (DNA) dan apoptosis di dalam NPC dengan menurunkan ekspresi mRNA dan hal ini dikaitkan dengan kelangsungan hidup secara keseluruhan yang buruk di dalam pesakit-pesakit NPC. Secara keseluruhannya, penemuan-penemuan ini mempamerkan potensi miRNA BART, mRNA, miRNA dan lncRNA sebagai biomarker diagnostik dan prognostik dalam NPC karsinogensis yang disebabkan oleh EBV berdasarkan keupayaan mereka dalam mensasarkan dan mengawal ekspresi satu sama lain.

# Kata kunci: Kanser nasofarinks, virus Epstein-Barr, mikroRNA BART, RNA bukan pengekodan yang panjang

# TABLE OF CONTENTS

|       |                                         | Page |
|-------|-----------------------------------------|------|
| DECI  | LARATION                                | i    |
| ACK   | NOWLEDGEMENT                            | ii   |
| ABST  | ГКАСТ                                   | iii  |
| ABST  | <b>TRAK</b>                             | v    |
| TABI  | LE OF CONTENTS                          | vii  |
| LIST  | OF TABLES                               | xii  |
| LIST  | OF FIGURES                              | XV   |
| LIST  | OF ABBREVIATIONS                        | XX   |
| CHA   | PTER 1 INTRODUCTION                     | 1    |
| 1.1   | Study Background                        | 1    |
| 1.2   | Problem Statement                       | 2    |
| 1.3   | Objectives and Hypothesis               | 3    |
| CHA   | PTER 2 LITERATURE REVIEW                | 5    |
| 2.1   | Nasopharyngeal Cancer                   | 5    |
| 2.1.1 | Histopathology of Nasopharyngeal Cancer | 6    |
| 2.1.2 | Epidemiology of Nasopharyngeal Cancer   | 7    |
| 2.1.3 | Etiology of Nasopharyngeal Cancer       | 8    |

| 2.1.4 | Diagnosis, Prognosis and Treatment of Nasopharyngeal Cancer | 10 |
|-------|-------------------------------------------------------------|----|
| 2.2   | Epstein-Barr Virus                                          | 13 |
| 2.2.1 | Epidemiology of Epstein-Barr Virus                          | 14 |
| 2.2.2 | Etiology of Epstein-Barr Virus                              | 15 |
| 2.2.3 | Lytic and Latent Cycle of Epstein-Barr Virus                | 17 |
| 2.2.4 | Epstein-Barr Virus Induced Nasopharyngeal Cancer            | 18 |
| 2.2.5 | Epstein-Barr Virus MicroRNA                                 | 20 |
| 2.2.6 | BamH1 Fragment A Rightward Transcript MicroRNA              | 21 |
| 2.3   | Competing Endogenous RNA (ceRNA)                            | 23 |
| 2.3.1 | MicroRNA (miRNA)                                            | 26 |
| 2.3.2 | Long Non-Coding RNA (IncRNA)                                | 28 |
| 2.4   | Bioinformatics                                              | 30 |
| 2.4.1 | The GEO (Gene Expression Omnibus) Database                  | 30 |
| 2.4.2 | The GEO2R                                                   | 30 |
| 2.4.3 | The miRWalk 2.0 Database                                    | 31 |
| 2.4.4 | MicroRNA Target Interaction Database (miRTarBase)           | 31 |
| 2.4.5 | DIANA-LncBase V2 and V3 database                            | 32 |
| 2.4.6 | StarBase V2                                                 | 33 |
| 2.4.7 | miRcode Database                                            | 34 |
| 2.4.8 | TFcheckpoint database                                       | 34 |

| 2.4.9  | ViRBase                                                                  | 35 |
|--------|--------------------------------------------------------------------------|----|
| 2.4.10 | The Search Tool for Retrieval of Interacting Genes (STRING) Database     | 35 |
| 2.4.11 | Cytoscape Software                                                       | 36 |
| 2.4.12 | The Database of Annotation, Visualization and Discovery software (DAVID) | 38 |
| 2.4.13 | Kaplan-Meier (KM) Plotter                                                | 39 |
| CHAF   | PTER 3 MATERIALS AND METHODS                                             | 42 |
| 3.1    | Microarray Dataset Retrieval                                             | 42 |
| 3.2    | Differential Expressed Gene, lncRNA and miRNAs Identification            | 42 |
| 3.2.1  | Differential Expressed Gene, lncRNA, miRNA Visualization                 | 43 |
| 3.3    | Target mRNA and Target lncRNA of DEmiRNA Identification                  | 43 |
| 3.3.1  | DEmiRNA-Target mRNA Interaction Identification                           | 43 |
| 3.3.2  | DEmiRNA-Target IncRNA Interaction Identification                         | 44 |
| 3.4    | Competing Endogenous RNA (ceRNA) Network Construction                    | 44 |
| 3.5    | Epstein-Barr Virus miRNA-mRNA Interaction                                | 45 |
| 3.5.1  | Epstein-Barr Virus miRNAs-mRNAs Interaction Identification               | 45 |
| 3.5.2  | Epstein-Barr Virus miRNA-mRNA Interaction Network Construction           | 45 |
| 3.6    | Protein-Protein Interaction (PPI)                                        | 46 |
| 3.6.1  | Protein-Protein Interaction (PPI) Network Retrieval and Construction     | 46 |
| 3.6.2  | Hub Genes Identification from The PPI                                    | 46 |
| 3.6.3  | Gene Modules Identification                                              | 47 |

| 3.7   | Transcription Factors (TF)-mRNAs Interaction and Network    | 47 |
|-------|-------------------------------------------------------------|----|
| 3.7.1 | Transcription Factors Identification                        | 47 |
| 3.7.2 | Transcription Factors (TF)-mRNAs Network Construction       | 47 |
| 3.8   | Cross Regulatory Networks Construction                      | 48 |
| 3.9   | Functional and Pathway Enrichment Analysis of mRNAs         | 48 |
| 3.10  | Survival Curve Analysis                                     | 48 |
| CHAI  | PTER 4 RESULTS                                              | 51 |
| 4.1   | Microarray Dataset                                          | 51 |
| 4.2   | Differential Expressed Gene, lncRNA and miRNA               | 52 |
| 4.2.1 | Differential Expressed Gene, IncRNA and miRNA Visualization | 53 |
| 4.2.2 | Differential Expressed Gene, lncRNA and miRNA Overlapping   | 56 |
| 4.3   | Target mRNA and Target lncRNA Interaction with DEmiRNA      | 59 |
| 4.3.1 | DEmiRNA-Target mRNA Interaction                             | 59 |
| 4.3.2 | DEmiRNA-Target IncRNA Interaction                           | 65 |
| 4.4   | mRNA-miRNA-lncRNA Competing Endogenous RNA (ceRNA) Network  | 67 |
| 4.5   | Epstein-Barr Virus miRNA-mRNA Interaction                   | 68 |
| 4.5.1 | Epstein-Barr Virus miRNAs-mRNAs Interaction                 | 68 |
| 4.5.2 | Epstein-Barr Virus miRNA-mRNA Interaction Network           | 69 |
| 4.6   | Protein-Protein Interaction (PPI)                           | 70 |
| 4.6.1 | Protein-Protein Interaction (PPI) Network                   | 70 |

| 4.6.2                | Hub Genes from The Protein-Protein Interaction (PPI)          | 72  |
|----------------------|---------------------------------------------------------------|-----|
| 4.6.3                | Gene Modules from The Protein-Protein Interaction (PPI)       | 76  |
| 4.7                  | Transcription Factors (TF)-mRNAs Interaction                  | 78  |
| 4.7.1                | Transcription Factors (TF)-mRNAs Network                      | 78  |
| 4.8                  | Cross-Regulatory Network (ceRNA and EBV miRNAs-mRNAs network) | 79  |
| 4.9                  | Functional and Pathway Enrichment Analysis                    | 82  |
| 4.10                 | Survival Curve                                                | 84  |
| CHAPTER 5 DISCUSSION |                                                               | 86  |
| 5.1                  | Competing Endogenous RNA (CeRNA) Network                      | 86  |
| 5.2                  | Cross-Regulatory Network                                      | 94  |
| 5.2.1                | Functional and Pathway Enrichment Analysis of The Four DEGs   | 98  |
| 5.3                  | Overall Survival                                              | 108 |
| CHAI                 | PTER 6 CONCLUSIONS AND RECOMMENDATIONS                        | 112 |
| 6.1                  | Conclusion                                                    | 112 |
| 6.2                  | Recommendations                                               | 113 |
| <b>REFERENCES</b> 11 |                                                               | 115 |
| APPENDICES           |                                                               | 159 |

## LIST OF TABLES

|           |                                                                                                                        | Page |
|-----------|------------------------------------------------------------------------------------------------------------------------|------|
| Table 2.1 | The functions of each EBV protein, miRNAs and snRNAs transcribed during both latent and infection of EBV in host cells |      |
|           | (Farell. 2019)                                                                                                         | 16   |
| Table 2.2 | The latency patterns of gene expression in EBV-infected cells during                                                   |      |
|           | latent infection (Farrell, 2019)                                                                                       | 18   |
| Table 4.1 | The information of the NPC RNAs microarray datasets for each of                                                        |      |
|           | the five mRNAs, miRNAs and lncRNAs datasets.                                                                           | 51   |
| Table 4.2 | The number of the up-regulated and down-regulated RNAs in each of                                                      |      |
|           | the five microarray datasets curated from the GEO database. The                                                        |      |
|           | number of the up-regulated and down-regulated RNAs in each of the                                                      |      |
|           | five microarray datasets curated from the GEO database.                                                                | 52   |
| Table 4.3 | The lists of common up-regulated and down-regulated mRNAs                                                              |      |
|           | between the datasets GSE95166, GSE126683 and GSE61218.                                                                 | 57   |
| Table 4.4 | Target mRNAs of up-regulated DEmiRNAs which were overlapped                                                            |      |
|           | with the common down-regulated GEO DEGs from the three mRNA                                                            |      |
|           | datasets (GSE64634, GSE126683 and GSE61218).                                                                           | 60   |
| Table 4.5 | Target mRNAs of down-regulated DEmiRNAs which were                                                                     |      |
|           | overlapped with the common up-regulated GEO DEGs from the                                                              |      |

## three mRNA datasets (GSE64634, GSE126683 and GSE61218). 63

xii

- Table 4.6Target lncRNA of up-regulated DEmiRNAs which were overlappedwith the common down-regulated GEO lncRNAs from the threelncRNAs datasets (GSE95166, GSE126683 and GSE61218).
- Table 4.7 The top 20 DEGs with connectivity degree more than 5 from the PPI ranked according to connectivity degree by CytoHubba. The score showed the number of connections of each DEG with other DEGs in the PPI. DNAH5 was ranked 1<sup>st</sup> with 21 connections to other DEGs in the PPI, and in the contrary DNAAF1 was ranked last with seven connections to other DEGs in the PPI.
- Table 4.8 The 18 DEGs with connectivity degree more than 5 excluding self-loop among the Top 20 DEGs. The connectivity degree showed the number of connections of each of the 18 DEGs amongst each other. It showed DNAH5 has the most connection with a connectivity degree of 18 with the other DEGs, whereas DNAAF1 and TEKT1 have the lowest connection with the other DEGs with only 6 interactions.
- Table 4.9 The list of DEGs in Module 1 and Module 2, extracted from the PPI network. Module 1 consisted of 9 DEGs with 36 interactions between them, with the highest score of 9.000, whereas Module 2 consisted of 4 DEGs with only six interactions between them, thus a low score of 4.000.
- Table 4.10The interaction between BART miRNAs and RNAs in the cross-<br/>regulatory network. The down-regulation of the four mRNAs

ı

66

73

(EYA4, EYA1, EBF1 and MACROD2) due to BART miRNAs caused the up-regulation of the six miRNAs. This also caused the down-regulation of the three lncRNAs.

#### LIST OF FIGURES

5

6

- Figure 2.1 The location of nasopharynx which is located behind of the nose, in the upper part of pharynx. Adapted from https://www.nhs.uk/conditions/nasopharyngeal-cancer (The National Health Center, 2018).
- Figure 2.2 The location of the fossa of Rosenmüller which is the origin of NPC. Adopted from https://www.entspecialist.sg/doctors-corner/a-new-screening-tool-for-nose-cancer/ (The ENT Clinic, n.d).
- Figure 2.3 The structure of enveloped Epstein-Barr virus. The double stranded DNA is encapsulated by nucleuocapsid and the enveloped is surrounded encapsulated by spiked glycoprotein. Retrieved from https://commons.wikimedia.org/wiki/File:Viral\_Tegume (Taylor, 2017).
- Figure 2.4 The pri-miRNAs of the BHRF1 and BART clusters. Adopted from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062708/ (Lizasa et al., 2020).
- 21

13

Figure 2.5 The effect of dysregulated lncRNA (miRNA sponge). The upregulation of lncRNA (miRNA sponge) causes dysregulation of miRNAs and mRNAs where miRNAs are sequestered by lncRNAs leading to up-regulation of mRNAs. Retrieved from:

XV

https://hereditasjournal.biomedcentral.com/articles/10.1186/s41065-021-00208-7 (Shi et al., 2021).

- Figure 4.1 The volcano plots of all the five GEO RNAs datasets. The red dots represent the significantly up-regulated and down-regulated RNAs whereas the gray dots represent the not significantly deregulated RNAs. The RNAs on the left side are the down-regulated ones and the up-regulated ones are on the right side. The Y axis presents the negative logarithm of the p-value in base 10 and the X axis is the logarithm of the fold change between the up-regulated and down-regulated expression levels.
- Figure 4.2 The Venn diagram of up-regulated and down-regulated mRNAs between the three mRNA datasets (GSE64634, GSE126683 and GSE61218). The Venn diagrams showed 65 common up-regulated and 123 common down-regulated mRNAs between the three datasets.
- Figure 4.3 The Venn diagram of up-regulated and down-regulated lncRNAs between the three lncRNA datasets (GSE95166, GSE126683 and GSE61218). The Venn diagrams showed 0 common up-regulated lncRNAs and three common down-regulated lncRNAs between the three datasets.
- Figure 4.4 The lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network. The ceRNA network consisted of 58 down-regulated mRNAs (red eclipse), 17 up-regulated miRNAs (yellow rectangle),

56

57

59

xvi

and three down-regulated lncRNAs (purple diamond). It showed the interactions between the RNAs and the deregulation in one of the RNAs affecting the regulation of other RNAs interacting with it.

- Figure 4.5 The Venn diagram of mRNAs between EBV miRNAs mRNAs with ceRNA DEGs. It exhibited four common mRNAs between the mRNAs targeted by BART miRNAs with the DEGs in the ceRNA, which were EBF1, MACROD2, EYA1 and EYA4.
- Figure 4.6 The interactions of ceRNA mRNAs with EBV BART miRNAs. The four mRNAs (EBF1, MACROD2, EYA1 and EYA4) which were indicated by the red eclipse revealed to be targeted and downregulated by six BART miRNAs (ebv-miR-BART19-3p, ebv-miR-BART15, ebv-miR-BART21-3p, ebv-miR-BART12-5p, ebv-miR-BART20-3p and ebv-miR-BART11-5p) which were indicated by green V.
- Figure 4.7 The protein-protein interaction (PPI) between the down-regulated common DEGs from the three GEO datasets (GSE64634, GSE126683 and GSE61218). constructed using the Cytoscape plugin. The PPI exhibited 123 nodes and 179 edges, with 77 of the DEGs interacting with each other, represented by the red ellipse.
- Figure 4.8 The top 20 DEGs with connectivity degree more than 5 from the PPI ranked according to connectivity degree by CytoHubba. DNAH5 was ranked 1<sup>st</sup> indicated by the red colour, and DNAAF1 was ranked last indicated by the yellow colour. The colour gradient with red

xvii

68

69

70

indicated the connectivity degree ranks represented DEGs with high connectivity degree, and the colour scheme changes to orange and yellow as the connectivity degree decreases. The yellow represented the lowest connectivity degree.

- Figure 4.9 The DEGs with connectivity degree more than 5 amongst the Top 20 DEGs. It showed 18 DEGs of the top 20 DEGs were interacting with each other. These DEGs are deemed as hub genes due to their ability to regulate multiple genes, and their expressions are affecting the expressions of those DEGs interacting with them.
- Figure 4.10 The two modules in the PPI network with scores greater than or equal to 4 and nodes greater than or equal to 4. In Module 1, all the DEGs are hub genes with connectivity degree more than 5, whereas, in Module 2, all the DEGs are not hub genes. Both modules are essential in proper cilia functions and motility.
- Figure 4.11 The Venn diagram of transcription factors (TFs) from the TFcheckpoint database overlapped with common down-regulated mRNAs from the three GEO datasets (GSE64634, GSE126683 and GSE61218). Two TFs were found amongst the 123 GEO down-regulated mRNAs, which are EBF1 and NR2F2.
- Figure 4.12 The TFs, EBF1 and NR2F2 in the PPI network. Both TFs indicated by the green eclipse do not interact with other down-regulated mRNAs indicated by the red eclipse and they were also not interacting with each other.

77

73

75

79

- Figure 4.13 The cross-regulatory network. It was merged from competing endogenous RNA network (ceRNA) and EBV miRNAs-mRNAs network. Only BART11-5p was targeting and down-regulating TF, which was EBF1 (purple eclipse), and none of the hub genes (green eclipse) was targeted by BART miRNAs.
- Figure 4.14 The Gene Ontology (GO) enrichment result for EYA4, EYA1, EBF1 and MACROD2 by using DAVID. The count means the total number of DEGs involved in each of the GO terms. Only EYA4 and EYA1 were involved in all the Biological Processes (BP). For Molecular Functions (MF), only EYA4 and EYA1 were involved in protein tyrosine phosphatase activity, whereas in metal ion binding EYA4, EYA1 and EBF1 were involved. All the four DEGs were located in nucleus as indicated by the Cellular Component (CC).
- Figure 4.15 The Kaplan Meier survival curve for EYA1, EYA4, EBF1 and MACROD2. The Y axis represented the probability of surviving, and the X axis represented the duration of the study or survival.

85

83

# LIST OF ABBREVIATIONS

| 2D               | Two-dimensional                                           |
|------------------|-----------------------------------------------------------|
| 3D               | Three-dimensional                                         |
| ανβ              | Alpha v beta                                              |
| ADP-ribosylation | Adenine dinucleotide phosphate-ribosylation               |
| AGO2             | Human Argonaute 2                                         |
| AKR1B1           | Aldo-keto reductase family 1 member B1                    |
| ARHGEF26-AS1     | Rho guanine Nucleotide exchange factor 26 antisense RNA 1 |
| ASOs             | Antisense oligonucleotides                                |
| ATM              | Ataxia-telangiectasia-mutated                             |
| BART             | BamHI fragment A rightward                                |
| BC               | Breast cancer                                             |
| BHRF1            | BamHI fragment H rightward open reading frame 1           |
| BL               | Burkitt lymphoma                                          |
| BP               | Biological Processes                                      |
| CASC2            | Cancer susceptibility candidate 2                         |
| CC               | Cellular Component                                        |
| ceRNA            | Competing endogenous RNA                                  |
| ceRNET           | ceRNA network                                             |
| CCDC113          | Coiled-Coil Domain Containing 113                         |
| CCRT             | Chemoradiotherapy                                         |
| circRNA          | circular RNA                                              |
| CLASH-seq        | Cross-linking, ligation, and sequencing of hybrids        |

| CLASH-seq  | Cross-linking, ligation, and sequencing of hybrids                   |
|------------|----------------------------------------------------------------------|
| CLEAR-CLIP | Covalent ligation and endogenous Argonaute-bound RNA                 |
| CLIP-seq   | Cross-linking and immunoprecipitation and high-throughput sequencing |
| CMTM3      | CKLF-like MARVEL transmembrane domain containing 3                   |
| СТ         | Computed tomography                                                  |
| CR2        | Complement receptor type 2                                           |
| CRC        | Colorectal cancer                                                    |
| CTL        | Cytotoxic T-lymphocytes                                              |
| cvhRNAs    | Competitive viral and host RNAs                                      |
| DAVID      | Database of Annotation, Visualization and Discovery software         |
| DBD        | DNA-binding domain                                                   |
| DEG        | Differentially expressed gene                                        |
| DEL        | Differentially expressed lncRNA                                      |
| DEmiRNA    | Differentially expressed miRNA                                       |
| DDR        | DNA damage response                                                  |
| DICE1      | Deleted in cancer 1                                                  |
| DLBCL      | Diffuse large B-cell lymphoma                                        |
| DNA        | Deoxyribonucleic acid                                                |
| DNAH       | Dynein axonemal heavy chain                                          |
| DNAI       | Dynein Axonemal Intermediate Chain                                   |
| DNALI1     | Dynein light intermediate polypeptide 1                              |
| DSB        | Double-stranded break                                                |
| DYNLRB2    | Dynein light chain roadblock-type 2                                  |
| DYNC2H1    | Cytoplasmic Dynein 2 Heavy Chain                                     |

| E2F3      | E2F transcription factor 3                      |
|-----------|-------------------------------------------------|
| EA        | Early antigen                                   |
| EAd/BMRF1 | Early antigen diffuse                           |
| EBNA1     | Epstein-Barr nuclear antigen-1                  |
| EBV       | Epstein-Barr virus                              |
| EBVaGC    | EBV-associated gastric cancer                   |
| EGA       | European Genome-phenome Archive                 |
| ENKUR     | Enkurin                                         |
| EBERs     | Epstein-Barr small encoded RNAs                 |
| EBF1      | Early B-cell factor transcription factor 1      |
| EGFR      | Epidermal growth factor receptor                |
| ESCC      | Esophageal squamous cell carcinoma              |
| EYA       | Coactivator and phosphatase                     |
| FANK1     | Fibronectin type 3 and ankyrin repeat domains 1 |
| GC        | Gastric cancer                                  |
| GENCODE   | Genome ENCyclopedia Of DNA Elements             |
| GEO       | Gene Expression Omnibus                         |
| GEO2R     | Gene Expression Omnibus to R language           |
| gB        | Glycoprotein B                                  |
| gH        | Glycoprotein H                                  |
| gL        | Glycoprotein L                                  |
| gp42      | Glycoprotein 42                                 |
| GC        | Gastric cancer                                  |
| GO        | Gene Ontology                                   |
| GWAS      | Genome-wide association studies                 |