

Performance Testing for Slope Instability due to Suffusion via Site-Specific Response Analysis with Incorporation of Electrical Resistivity Tomography

**Azrin Bin Ahmad** 

Doctor of Philosophy 2024

Performance Testing for Slope Instability due to Suffusion via Site-Specific Response Analysis with Incorporation of Electrical Resistivity Tomography

Azrin Bin Ahmad

A thesis submitted

In fulfillment of the requirements for the degree of Doctor of Philosophy

(Geotechnical Earthquake Engineering)

Faculty of Engineering UNIVERSITI MALAYSIA SARAWAK 2024

### DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

. . . . . . . . . . . Signature

Name:

Azrin Bin Ahmad

Matric No.: 15010146

Faculty of Engineering

Universiti Malaysia Sarawak

Date : 31 May 2024

### ACKNOWLEDGEMENT

I am immensely grateful to my supervisors for their invaluable contributions towards the outcome of this research. My profound gratitude goes to my main supervisor, Dr Raudhah Binti Ahmadi who patiently guided me through consistent meetings in the course of the research and supported me in every form morally possible during the course of my study. I am grateful to Associate Professor Ir Dr Norazzlina M. Sa'don (co-supervisor) for her invaluable roles from the inception of my PhD's journey, her guidance and motivation during my research.

#### ABSTRACT

Soil instability had caused concerned in geotechnical engineering due to its consequences of failure and its effects to the structures above or surrounding it. The instability of soil is caused by either water, critical stress condition, or perilous void within the soil properties. The lack of proper consideration of critical void in soil or suffusion phenomenon causes soil defects and failures in cut-slopes that subsequently damaging to the economy and ecology. Many researches correlated internal soil instability with water or hydraulic conductivity. This research aims to investigate on internal soil instability caused by void limit state and migration of fines characterized by vibration specifically seismic soil amplification that resemble failure criterion caused by hydraulic load. Soil amplification obtained from sensible conversion of apparent resistivity (ohm.m) to shear wave velocity (m/s) captured by electrical resistivity tomography (ERT) experimental result at specific sites with cut slopes at Pan Borneo Highway, Sarawak, has been studied. Archie's law which determines porosity is used in this study, where correlation with experimental results have shown its reliability, proving that volume of void over total volume of soil  $(V_V/V_T)$  from soil phase diagram is attainable with ERT and it is equivalent to liquid limit of soil. Energy based analysis is used to actuate synthetic earthquake from underneath and simulates soil amplification, whether it exceeds design response spectra or within limit. Simplified amplitude limit of failure has been developed to alternate Fourier amplitude to propose ERT data collection and new approach to develop serviceability limit state (SLS) or design response limit. Data acquisition via ERT that sensibly converted to shear wave velocity and soil shear strength has been verified its compliance with the existing guideline for slope design from the public works department of Malaysia. Output of this research improved the reliability of design safety factor for any constructions by integrating advanced technology application. As a result, ERT raw soil properties data that correlated well with soil liquid limit where volume of void over total void ( $V_V/V_T$ ) is in equivalent and soil conductivity ( $\sigma$ ) over soil resistivity ( $\Omega$ ) is consistent with liquidity index. This research also discovered that electrical conductivity against electrical resistivity, 1/Sigma ( $\Sigma^{-1}$ )  $\div$  Ohm ( $\Omega$ ) = 1 and is a threshold index of soil instability. It is also discovered that when the soil instability index higher than 1 the site-specific soil is unstable. Further research on the instability index is potential and beneficial to the geotechnical engineering industry for geo-hazard identification. In conclusion, this research is focused to give clear interpretation to ERT result and proved that it is useful for future diagnostic of soil stability and its optimum treatment required for future land use.

**Keywords:** Peak ground acceleration, soil amplification factor, soil instability, suffusion, design response spectra

### Ujian Prestasi untuk Ketidakstabilan Cerun Akibat Suffusion melalui Analisis Tindak Balas Khusus Tapak dengan Penggabungan Tomografi Kerintangan Elektrik

#### **ABSTRAK**

Ketidakstabilan tanah telah menyebabkan kebimbangan dalam Kejuruteraan Geoteknik kerana akibat kegagalan dan kesannya kepada struktur di atas atau di sekelilingnya. Ketidakstabilan tanah disebabkan oleh sama ada air, keadaan tegasan kritikal, atau lompang berbahaya dalam sifat tanah. Kekurangan pertimbangan yang sewajarnya terhadap kekosongan kritikal dalam tanah atau fenomena suffusion menyebabkan kecacatan dan kegagalan tanah pada cerun-cerun yang kemudiannya merosakkan ekonomi dan ekologi. Banyak penyelidikan mengaitkan ketidakstabilan tanah dalaman dengan air atau kekonduksian hidraulik. Penyelidikan ini bertujuan untuk mengkaji ketidakstabilan dalaman tanah yang disebabkan oleh keadaan had lompang dan penghijrahan denda yang dicirikan oleh getaran khususnya penguatan tanah seismik yang menyerupai kriteria kegagalan yang disebabkan oleh beban hidraulik. Penguatan tanah yang diperolehi daripada penukaran sensitif kerintangan ketara (ohm.m) kepada halaju gelombang ricih (m/s) yang ditangkap melalui keputusan eksperimen tomograf kerintangan elektrik (ERT) di tapak tertentu dengan cerun potong di Lebuhraya Pan Borneo, Sarawak, akan dikaji. Hukum Archie yang menentukan keliangan dalam batuan digunakan dalam kajian ini, di mana korelasi dengan keputusan eksperimen akan menunjukkan kebolehpercayaannya, membuktikan bahawa isipadu lompang atas jumlah isipadu tanah (VV/VT) daripada rajah fasa tanah boleh dicapai dengan ERT dan ia adalah setara. kepada had cecair tanah. Analisis berasaskan tenaga digunakan untuk menggerakkan gempa bumi sintetik dari bawah dan mensimulasikan penguatan tanah, sama ada ia melebihi spektrum tindak balas reka bentuk atau dalam had. Had amplitud mudah kegagalan hendaklah dibangunkan untuk

menggantikan amplitud Fourier untuk mencadangkan pengumpulan data ERT dan pendekatan baharu untuk membangunkan keadaan had kebolehgunaan (SLS) atau had tindak balas reka bentuk. Pemerolehan data melalui ERT yang secara wajar ditukar kepada halaju gelombang ricih dan kekuatan ricih tanah disahkan pematuhannya dengan garis panduan sedia ada untuk reka bentuk cerun daripada Jabatan Kerja Raya. Hasil penyelidikan ini diharapkan dapat meningkatkan kebolehpercayaan faktor keselamatan reka bentuk untuk sebarang pembinaan dengan mengintegrasikan aplikasi teknologi canggih. Hasilnya, data sifat tanah mentah ERT yang berkorelasi baik dengan had cecair tanah di mana isipadu lompang atas jumlah lompang (VV/VT) adalah setara dan kekonduksian tanah ( $\sigma$ ) terhadap kerintangan tanah ( $\Omega$ ) adalah konsisten dengan indeks kecairan. Kesimpulannya, penyelidikan ini difokuskan untuk memberi tafsiran yang jelas kepada hasil ERT dan membuktikan bahawa ia berguna untuk diagnostik masa hadapan kestabilan tanah dan rawatan optimumnya yang diperlukan untuk tanah yang digunakan pada masa hadapan.

*Kata kunci: P*ecutan tanah puncak, faktor penguatan tanah, ketidakstabilan tanah, penyatuan, suffusion, spektrum tindak balas reka bentuk

# TABLE OF CONTENTS

|      |                       | Page |
|------|-----------------------|------|
| DEC  | LARATION              | i    |
| ACK  | NOWLEDGEMENT          | ii   |
| ABS  | ГКАСТ                 | iii  |
| ABS  | ГRАК                  | v    |
| TAB  | LE OF CONTENTS        | vii  |
| LIST | OF TABLES             | x    |
| LIST | OF FIGURES            | xii  |
| LIST | OF ABBREVIATIONS      | xvii |
| LIST | OF SYMBOLS            | xix  |
| СНА  | PTER 1 INTRODUCTION   | 1    |
| 1.1  | Study Background      | 1    |
| 1.2  | Problem Statement     | 6    |
| 1.3  | Aim of Research       | 8    |
| 1.4  | Objectives            | 8    |
| 1.5  | Hypothesis            | 9    |
| 1.6  | Significance of Study | 9    |
| 1.7  | Scope of the Study    | 9    |

| 1.8   | Organization of Thesis                                                           | 10 |
|-------|----------------------------------------------------------------------------------|----|
| CHA   | PTER 2 LITERATURE REVIEW                                                         | 11 |
| 2.1   | Overview                                                                         | 11 |
| 2.2   | Issues Causing Soil Failure                                                      | 11 |
| 2.3   | Common Property Shared within all Causes of Soil Failure                         | 22 |
| 2.4   | Analysis for Soil to Determine Limit State of Soil Stability                     | 27 |
| 2.4.1 | The Verification Methodology Based on the Limit State Theory                     | 27 |
| 2.4.2 | Geophysical Survey for Ground Investigation                                      | 28 |
| 2.4.3 | Probabilistic Seismic Hazard Assessment on Sub-Surface                           | 29 |
| 2.4.4 | Site-Specific PSHA for Identification of Soil Response                           | 31 |
| 2.4.5 | Electrical Resistivity of Soil and Identification of Void Ratio/Porosity of Soil | 34 |
| 2.5   | Finding Gap and Advantages in a Simplified Analysis with ERT Data                |    |
|       | Acquisition to Determine Limit State of Soil Stability                           | 42 |
| 2.6   | Chapter Summary                                                                  | 45 |
| CHA   | PTER 3 RESEARCH METHODOLOGY                                                      | 46 |
| 3.1   | Overview                                                                         | 46 |
| 3.2   | Methodology Flowchart                                                            | 46 |
| 3.2.1 | Collection of Data                                                               | 46 |
| 3.2.2 | Field Investigations                                                             | 47 |
| 3.2.3 | Laboratory Investigation of soil                                                 | 49 |
| 3.2.4 | Site Response Analysis                                                           | 50 |

| 3.2.5         | Correlations and Formulations                                                | 50 |
|---------------|------------------------------------------------------------------------------|----|
| 3.3           | Seismic-Hazard Source of Sarawak                                             | 50 |
| 3.4           | Site-Specific PSHA and Energy-Based Analysis                                 | 51 |
| 3.5           | Shear Wave Velocity, $V_{s30}$ , Via Electrical Resistivity Tomography (ERT) | 54 |
| 3.6           | Liquid Limit via Electrical Resistivity Tomography (ERT)                     | 59 |
| 3.7           | Chapter Summary                                                              | 62 |
| CHAI          | PTER 4 RESULTS AND DISCUSSION                                                | 63 |
| 4.1           | Overview                                                                     | 63 |
| 4.2           | Electrical Resistivity Test Result for Test Site 1, 2 and 3                  | 63 |
| 4.3           | Site-Specific PSHA                                                           | 70 |
| 4.4           | Proposed Soil Instability Index                                              | 72 |
| 4.5           | Soil Amplification                                                           | 79 |
| 4.6           | Site-Specific Suffusion Assessment Framework                                 | 83 |
| 4.6.1         | Methodology to Convert Site-Specific Porosity to Void Ratio                  | 84 |
| 4.7           | Liquid Limit via Electrical Resistivity Tomography (ERT)                     | 87 |
| 4.8           | Chapter Summary                                                              | 90 |
| CHAI          | PTER 5 CONCLUSION AND RECOMMENDATIONS                                        | 91 |
| 5.1           | Conclusion                                                                   | 91 |
| 5.2           | Recommendations                                                              | 93 |
| REFERENCES 94 |                                                                              | 94 |

## LIST OF TABLES

|           |                                                                       | Page |
|-----------|-----------------------------------------------------------------------|------|
| Table 2.1 | Geophysical Investigation/Survey Methods                              | 29   |
| Table 2.2 | Founded Subsurface Insights and Published Refined Electrical          |      |
|           | Resistivity (Palacky, 1987)                                           | 40   |
| Table 2.3 | Equations for Plasticity Index and Field/Laboratory Resistivity Value | 41   |
| Table 2.4 | Soil Porosity                                                         | 42   |
| Table 3.1 | Sources of Data for the Case Study                                    | 46   |
| Table 3.2 | Site-Specific Data used in Correlation and Equation adopted from      |      |
|           | Guidelines for Estimation of Shear Wave Velocity Profiles by Pacific  |      |
|           | Earthquake Engineering Research Centre Headquarters at the            |      |
|           | University of California                                              | 58   |
| Table 4.1 | Results of Soil Properties Data of BH1 and BH2                        | 68   |
| Table 4.2 | Results of Soil Properties Data of BH4 and BH5                        | 68   |
| Table 4.3 | Results of Soil Properties Data of BH6, BH7 and BH8                   | 69   |
| Table 4.4 | Summary of Field Data and Analysis                                    | 69   |
| Table 4.5 | List of Observation Data at 6 Stations in East Malaysia               | 71   |
| Table 4.6 | Caltrans/NEHRP Soil Profile Types                                     | 81   |
| Table 4.7 | Result of Soil Samples taken from Test Site 1, 2 & 3 Including ERT    | 88   |

## LIST OF FIGURES

|            |                                                                          | Page |
|------------|--------------------------------------------------------------------------|------|
| Figure 1.1 | Internal Erosion Process                                                 | 1    |
| Figure 1.2 | Progression of Suffusion; (A) Shows the Fine Particles Attached with     |      |
|            | Coarser Particles with a Seepage Line (B) Shows the Starting of          |      |
|            | Suffusion Influenced by Seepage and (C) Indicates the Suffusion in       |      |
|            | which the Fine Particles Flow with the Seepage Creating the Voids        | 2    |
| Figure 1.3 | Local Earthquakes and Fault Lines in Sarawak                             | 5    |
| Figure 1.4 | (A) Internal Erosion i.e., Suffusion had Caused Migration of Finer       |      |
|            | Particles. Suffusion Process Initiated – Fine Particles Filling the Void |      |
|            | Internally. (B) Slope Failure or Initiation of Breach due to Suffusion   |      |
|            | Observed. Close-Up Observation of Slope Failure or Initiation of         |      |
|            | Breach. (C) Suffusion Failure Final Settlement Measured at 1.4m          |      |
|            | Deep at Top Slope.                                                       | 7    |
| Figure 2.1 | Illustration of Initiation of Soil Failure                               | 14   |
| Figure 2.2 | The Framework Probabilistic Seismic Hazard Assessment used               |      |
|            | Worldwide                                                                | 32   |
| Figure 2.3 | Resistivity Characteristics of Geological Targets                        | 39   |
| Figure 3.1 | Flowchart of the Research                                                | 47   |
| Figure 3.2 | Field Investigation and Data Collection                                  | 48   |

51

|             | MKZ and GQ/H Models                                                  | 54 |  |
|-------------|----------------------------------------------------------------------|----|--|
| Figure 3.5  | GD-10 ERT on Wenner-Schlumberger Configuration                       |    |  |
| Figure 3.6  | Geomative GD-10 Electrical Resistivity Scanning/Imaging System       |    |  |
| Figure 3.7  | Soil Data Acquisition via Electrical Resistivity                     | 56 |  |
| Figure 3.8  | Electrical Resistivity Tomography for Site-Specific Suffusion        |    |  |
|             | Assessment                                                           | 57 |  |
| Figure 3.9  | Boreholes Position and Numbering                                     | 57 |  |
| Figure 3.10 | Simulation Model                                                     | 59 |  |
| Figure 3.11 | Simulation Output of Velocity Vector                                 |    |  |
| Figure 3.12 | Map of Sarawak and Area of Study                                     |    |  |
| Figure 3.13 | Plan and Profile of the Area of Study – Test Site 1                  |    |  |
| Figure 3.14 | Plan and Profile of the Area of Study – Test Site 2 & 3              |    |  |
| Figure 4.1  | Movement Detected on Slope at Test Site 1. This Situation similarly  |    |  |
|             | Experienced at Test Site 2 And 3. ERT was Carried out on the Top     |    |  |
|             | Bench of the Slope                                                   | 64 |  |
| Figure 4.2  | Electrical Resistivity Tomography of the Area of Study – Test Site 1 | 64 |  |

| Figure 4.3  | Detail Imaging of ERT CH66+800                                      | 65 |
|-------------|---------------------------------------------------------------------|----|
| Figure 4.4  | Detail Conductivity Reading/Imaging of Slope                        | 65 |
| Figure 4.5  | Conductivity Ranges of Various Materials                            | 65 |
| Figure 4.6  | Detail Imaging of ERT at CH67+800                                   | 66 |
| Figure 4.7  | Detail Conductivity Reading/Imaging of Slope CH67+800               | 66 |
| Figure 4.8  | Detail Imaging of ERT at CH68+300                                   | 66 |
| Figure 4.9  | Detail Conductivity Reading/Imaging of Slope CH68+300               | 66 |
| Figure 4.10 | Electrical Resistivity Tomography (ERT) for Borehole 1 & 2          | 67 |
| Figure 4.11 | Electrical Resistivity Tomography (ERT) for Borehole 4 & 5          | 67 |
| Figure 4.12 | Electrical Resistivity Tomography for Borehole 6, 7 & 8             | 67 |
| Figure 4.13 | Fault Lines within and Surrounding Sarawak and Active Fault Lines   | 70 |
| Figure 4.14 | Analysis of GMPE vs Actual Ground Motion Captured                   | 71 |
| Figure 4.15 | Value of PGA Attained, 11%g (Bedrock Level) from CRISIS2007 for     |    |
|             | the Area of Study corresponding to 475 Years of Return Period       | 72 |
| Figure 4.16 | Value of PGA Attained, 14%g (Bedrock Level) from CRISIS2007 for     |    |
|             | the Area of Study corresponding to 2475 years of Return Period      | 72 |
| Figure 4.17 | Electrical Resistivity Test Imaging for High-Level Water Tank Pantu |    |
|             | Section of Pan Borneo Highway Sarawak                               | 73 |

| Figure 4.18 | Electrical Conductivity Imaging for High-Level Water Tank Pantu       |    |
|-------------|-----------------------------------------------------------------------|----|
|             | Section of Pan Borneo Highway Sarawak                                 | 73 |
| Figure 4.19 | Correlation between SPT-N and electrical resistivity is above average | 74 |
| Figure 4.20 | JKR Sarawak Incident Report                                           | 75 |
| Figure 4.21 | JKR Sarawak Incident Report                                           | 76 |
| Figure 4.22 | JKR Sarawak Incident Report                                           | 77 |
| Figure 4.23 | Internal Instability or Suffusion                                     | 79 |
| Figure 4.24 | Results from all soil samples taken at test site 1, 2 and 3 along Pan |    |
|             | Borneo Highway Sarawak section Pantu showing suffusion is the main    |    |
|             | reason for slope failure                                              | 79 |
| Figure 4.25 | 2 Intensities of PGA used to Test the Variants and its Effect on Soil |    |
|             | Amplification. The Results Shown Similar Soil Amplification.          |    |
|             | Therefore, either Seismic Hazard Maps either Produced by this         |    |
|             | Research or Seismic Hazard Map Published by the JMG                   | 81 |
| Figure 4.26 | Response Spectra at Soil Surface and Design Response Spectra          | 82 |
| Figure 4.27 | Chart of Site-specific Seismic Soil Amplification in Average (Fourier |    |
|             | & New Model Amplification Limit) + Design Response Spectra            | 82 |
| Figure 4.28 | Calculation of Soil Suffusion Limit                                   | 85 |
| Figure 4.29 | Correlation of Soil Amplification and Suffusion Void Ratio of BH      |    |
|             | Samples                                                               | 85 |

| Figure 4.30 | Correlation of Amplification at $s(t_0)$ – Fourier Amplification and |    |
|-------------|----------------------------------------------------------------------|----|
|             | Suffusion Void Ratio of BH Samples                                   | 86 |
| Figure 4.31 | Correlation of Soil Maximum Amplification (Fourier Amplification)    |    |
|             | and Suffusion Limit                                                  | 86 |
| Figure 4.32 | Chart of Site-Specific Seismic Soil Amplification (Fourier & New     |    |
|             | Model) + Design Response Spectra                                     | 87 |
| Figure 4.33 | Electrical Resistivity Tomography of the Area of Study – Test Site 2 | 87 |
| Figure 4.34 | Electrical Resistivity Tomography of the Area of Study – test site 3 | 88 |
| Figure 4.35 | Linear Regression of Soil Porosity (ERT) vs Liquid Limit (Lab Test)  |    |
|             | for Test Site 1, 2 & 3                                               | 89 |

# LIST OF ABBREVIATIONS

| AC   | Alternating Current                    |
|------|----------------------------------------|
| AF   | Amplification Factor                   |
| bpf  | Blows Per Feet                         |
| DC   | Direct Current                         |
| DEM  | Discrete Element Method                |
| DSHA | Deterministic Seismic Hazard Analysis  |
| e    | Void Ratio                             |
| ESO  | Elastic Spectral Ordinates             |
| ERT  | Electrical Resistivity Tomography      |
| FEM  | Finite Element Method                  |
| FOS  | Factor of Safety                       |
| GMPE | Ground Motion Prediction Equations     |
| G-R  | Gutenberg-Richter                      |
| IP   | Polarization                           |
| LL   | Liquid Limit                           |
| m    | cementation exponent                   |
| MASW | Multichannel Analysis of Surface Waves |
| n    | Porosity                               |
| PGA  | Peak Ground Acceleration               |
| PGD  | Peak Ground Displacement               |
| PGV  | Peak Ground Velocity                   |
| PI   | Plasticity Index                       |
| PL   | Plasticity Limit                       |

| PSHA | Probabilistic Seismic Hazard Analysis |
|------|---------------------------------------|
| RVE  | Representative Volumetric Elements    |
| SASW | Spectral Analysis of Surface Waves    |
| SF   | Suffusion Factor                      |
| SHA  | Seismic Hazard Analysis               |
| SP   | Self-Potential                        |
| SPT  | Standard Penetration Test             |
| VED  | Viscous Energy Dissipation            |
| Vs   | Shear Wave Velocity                   |
| Wc   | Water Content                         |

# LIST OF SYMBOLS

| D <sub>G</sub>         | Grain diameter                |
|------------------------|-------------------------------|
| <b>d</b> <sub>10</sub> | Grain diameter of 10% passing |
| d <sub>30</sub>        | Grain diameter of 30% passing |
| d <sub>60</sub>        | Grain diameter of 60% passing |
| d90                    | Grain diameter of 90% passing |
| Se                     | Elastic settlement            |
| Sc                     | Primary settlement            |
| Ss                     | Secondary settlement          |
| $\rho_o$               | Resistivity of rock           |
| ρ <sub>f</sub>         | Resistivity of water          |
| m                      | Cementation                   |
| φ                      | Porosity                      |
| En                     | Earthquake scenario           |
| m <sub>n</sub>         | Magnitude                     |
| L <sub>n</sub>         | Location                      |
| r <sub>n</sub>         | Rate                          |
| η                      | Damping                       |
| Ω                      | Omega (unit of resistance)    |

#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Study Background

Internal erosion can take many different forms, can seriously endanger both human and animal life, and is capable of doing great harm to infrastructure (Liang et al., 2017; Masi et al., 2020; Huang et al., 2021). Piping and suffusion are two appearances of internal erosion. Different processes result in erosion, each of which is capable of causing destruction. Suffusion, also known as internal instability, is a long-term phenomenon whereby small soil particles are carried away by a soil seepage flow through spaces between larger ones (Dixon et al., 2011; Chetti et al., 2016). It indicates that a soil matrix's particle size distribution and the selective erosion of tiny particles from it do not match the requirements for self-filtering (Menad et al., 2019). Suffusion is more prone to arise in coarse, widely graded or gap-graded soils (such as some sandy gravels) (Bui et al., 2019). Internal instability is a common term used to characterize soils that are prone to suffusion. Suffusion, which is caused by seepage forces, is the mass movement of fine particles through the pore space of a coarser matrix (Yang et al., 2019) shown in Figure 1.1.



Figure 1.1: Internal Erosion Process (US Bureau of Reclamation, 2015)

Internal erosion of levees, earth dams, and foundations as well as watershed hillslopes is mostly caused by it (Feng et al., 2019). The impact of internal suffusion on a soil stratum's permeability, volumetric behaviour, and shear strength as well as the gradation are particularly concerning geo-mechanical soil parameters. Additionally, soil settlement has been connected to harm to earthen structures, buried utilities, buildings, and other structures.

The long-term impact that suffusion may have on the possibility for volumetric change to occur within a soil layer and the change in compressive strength is largely unexplored elements of geotechnical science. Additional knowledge on these internal erosion-related subjects can help with our understanding of the underlying mechanisms and processes, which will improve the way many earthen hydraulic structures are designed and protected from erosion's destructive impacts. Therefore, one of the primary mechanisms of internal erosion is suffusion, which results in selective erosion and progressive movement of tiny particles through the spaces in the soil skeleton created by coarse particles during seepage flow shown in Figure 1.2. Many hydraulic geo-structures, including embankment dams, dikes, levees, landslide dams, and natural deposits, exhibit seepage-induced suffusion (Wang, 2019; Yang et al., 2019).



**Figure 1.2:** Progression of Suffusion; (A) Shows the Fine Particles Attached with Coarser Particles with a Seepage Line (B) Shows the Starting of Suffusion Influenced by Seepage and (C) Indicates the Suffusion in which the Fine Particles Flow with the Seepage Creating the Voids (Shwiyhat, 2010)

ERT is a quick and efficient non-destructive measurement technique for acquiring continuous soil subsurface resistivity profiles which is used in this research. Moisture variations and soil heterogeneities can be found using an ERT approach. ERT is becoming a prevalent tool in the field of geotechnical engineering (Masi et al., 2020). However, at this time, it only offers qualitative data. It can be difficult to determine quantitative geotechnical information about the subsurface from qualitative images, such as the moisture content, kind of soil, saturation degree, and Atterberg limits. Numerous studies have explained how pore fluid conductivity and surface conductance affect the electrical resistance of soil. To ascertain the impact of geotechnical features, electrical resistivity experiments have also been performed on commercial soils. Electrical resistivity must be associated with geotechnical parameters that can be measured in a laboratory because pore water and surface charge characterisation studies cannot be performed during a standard geotechnical investigation.

The natural disaster "earthquakes" is a set of vibrations on the surface of the earth which is caused by the generation of seismic waves due to rupture inside the earth during the release of accumulated energy (Shah et al., 2012). During an earthquake the delicate sediments may cause extensive amplification and increment in the span of ground motion, which may thus increase the seriousness of harm and devastation, this occurrence is generally termed as site effect (Laoumani et al., 2013; Sana et al., 2018). However, this study is focused on suffusion caused of failure through vibrations specifically soil amplification that has very close relation to soil shear wave velocity. The reason behind selecting seismic ground motion process that can cause soil failure instead of hydraulic loading because of the seismic hazard assessment carried out recently in Malaysia and the publish of Malaysia National Annex to Eurocode 8 by the Department of Standards Malaysia in 2017 proved that