

Techno-economic Analysis of DC Microgrid and its Distributed Control Strategies with Fault Current Mitigation Technique for Power Sharing and Voltage Regulation

Shahid Ullah

Doctor of Philosophy 2024

Techno-economic Analysis of DC Microgrid and its Distributed Control Strategies with Fault Current Mitigation Technique for Power Sharing and Voltage Regulation

Shahid Ullah

A thesis submitted

In fulfillment of the requirements for the degree of Doctor of Philosophy

(Electrical Engineering)

Faculty of Engineering UNIVERSITI MALAYSIA SARAWAK 2024

DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

.....

Signature

Name: Shahid Ullah

Matric No.: 16010178

Faculty of Engineering

Universiti Malaysia Sarawak

Date: 23 February 2024

ACKNOWLEDGEMENT

First and foremost, I would like to thank Associate Professor Dr. Ahmed M.A. Haidar and Associate Professor Dr. Hushairi Bin Zen for their motivation, immense knowledge, patience, and technical support. Their insightful feedback pushed me to sharpen my thinking and brought my work to a higher level. I would also like to thank Professor Dr. Paul Ratnamahilan Hoole for introducing me to the topic.

I also wish to express my sincere thanks to the Centre for Graduate Studies and Faculty of Engineering for accepting me into the graduate program. In addition, I am deeply indebted to the Ministry of Higher Education (Malaysia) and to the Universiti Malaysia Sarawak for granting me the UNIMAS Graduate Scholarship (Zamalah Siswazah UNIMAS).

I am extremely grateful to my parents and family, especially, Dr. Sajid Ullah Khan, for their love, prayers, financial support and sacrifices for my future.

Finally, my heartfelt thanks to my caring, loving, and supportive wife. Your encouragement when the times got rough are much appreciated and duly noted. It was a great comfort and relief to know that you were willing to provide management of our household activities while I completed my work.

Thank you all.

ii

ABSTRACT

Recent research on DC systems revealed that DC microgrids can be an efficient, reliable and economical solution to avoid the inherent issues associated with AC power integration such as frequency control, harmonics and synchronization. One major concern of the DC microgrids with multiple converters is the control of power sharing, aiming to maintain the voltage profile, particularly during system disturbances. Under the worst scenarios, DC microgrid operation may be completely impacted if properly distributed control strategies are not considered with an effective protective approach to eliminate the fault currents. The ongoing studies presented in the area of DC microgrid control reflect its importance, however, the stability of an isolated DC microgrid in terms of power sharing and voltage regulation especially under fault conditions is not sufficiently addressed in the literature. In the first objective of this research, a framework has been proposed to assess the technical benefits of implementing either AC or DC distribution considering the existing AC infrastructure. Further, a Hybrid Optimization of Multiple Electric Renewables (HOMER) based analysis has been carried out to determine the most economical and optimal size of an isolated solar PV system with its energy storage to be connected either as an AC or DC microgrid. From the obtained outcomes of the above-mentioned framework, a distributed secondary control strategy has been developed in the second objective. This approach is based on average-voltage/average-current control and circulating current minimization for DC bus voltage regulation and maintaining power sharing under different scenarios. In that sense, an additional current feedback loop is introduced to modify the microgrid reference voltage during overload conditions to minimize the line voltage drop and distribution losses. Finally, to mitigate the vulnerability of isolated DC microgrid control due to fault conditions, a preventive scheme of controllable fault current limiter (C-FCL) has been designed in the third objective. The C-FCL acts in a coordinated manner with the implemented control of power sharing and voltage regulation. This research study was carried out using the HOMER optimizer and MATLAB/Simulink with small-scale experimental validation. The results show that applying DC voltage magnitude equal to the peak value of AC voltage reduces the power loss of DC microgrid up to half value compared to AC microgrid and the voltage drop in the distribution lines reduces by 29.3%. It is revealed that the proposed control strategy has better voltage regulation, and power sharing performance without any significant deviation imposed by variation in PV generation as well as load switching. Further, using the proposed C-FCL protective scheme can limit the fault current magnitudes for different fault locations, keeping the converters operating in a safe mode during fault conditions. The C-FCL increases the fault clearance time for the protection system providing more efficient and reliable operation of the DC microgrid.

Keywords: DC microgrids, techno-economic analysis, power sharing, fault current limitation

Pembangunan Strategi Pengendalian Teragih dengan Teknik Mitigasi Arus Kesalahan untuk Perkongsian Daya dan Peraturan Voltan dalam DC Mikrogrid

ABSTRAK

Penyelidikan dan kemajuan terkini dalam sistem DC menunjukkan bahawa mikrogrid DC dan pengedaran DC merupakan penyelesaian yang cekap, boleh dipercayai, dan ekonomik untuk mengelakkan masalah sistem kuasa AC seperti kawalan frekuensi, harmonik dan penyegerakan. Walau bagaimanapun, satu masalah utama mikrogrid DC dengan beberapa penukar adalah kawalan perkongsian kuasa, yang bertujuan untuk mengekalkan profil voltan terutamanya semasa gangguan sistem. Di dalam senario terburuk, operasi mikrogrid DC mungkin benar-benar terjejas jika strategi kawalan terdistribusi yang betul dan pendekatan perlindungan yang berkesan untuk menghilangkan arus kerosakan tidak dipertimbangkan. Kebanyakan kajian bidang kawalan mikrogrid DC yang dijalankan mencerminkan kepentingannya, walau bagaimanapun, kestabilan mikrokrid DC dari segi pembahagian kuasa, peraturan voltan dan batasan arus kerosakan tidak diberi perhatian yang cukup dalam literatur. Dalam objektif pertama penyelidikan ini, kerangka kerja untuk menilai manfaat teknikal dan kewangan dalam melaksanakan mikrogrid AC dan DC telah dicadangkan. Selanjutnya, tingkah laku dinamik mikrogrid AC dan DC telah dianalisis ketika setiap sistem mengalami gangguan seperti kesalahan litar pintas, dengan tujuan untuk menilai tindak balas sistem. Pada tahap berikutnya, analisis ekonomi telah dilakukan untuk menentukan ukuran optimum sistem PV suria yang disambungkan ke setiap microgrid AC atau DC dengan simpanan tenaganya, menurut data profil meteorologi dan muatan dari daerah terpencil terpilih di Sarawak (Malaysia). Dalam objektif kedua, strategi kawalan pengedaran sekunder telah dikembangkan untuk melancarkan voltan output dan mengekalkan pembahagian daya berdasarkan kawalan voltan rata-rata / arus-arus dan pengurangan arus yang beredar. Oleh itu, gelung maklum balas arus tambahan diperkenalkan untuk mengubah voltan rujukan mikrogrid semasa keadaan beban yang berlebihan untuk meminimumkan penurunan voltan talian dan kehilangan kuasa. Untuk mengurangkan kesan peningkatan arus yang cepat pada pembahagian kuasa dan kawalan peraturan voltan semasa keadaan kerosakan, skema pencegahan pembatas arus kerosakan yang dapat dikawal (C-FCL) telah dirancang pada objektif ketiga dan diuji menggunakan konfigurasi mikrogrid cincin DC. C-FCL bertindak secara terkoordinasi dengan perlaksanaan algoritma pembahagian kuasa dan peraturan voltan. Kajian di atas dilakukan dengan menggunakan HOMER dan MATLAB / Simulink. Hasilnya menunjukkan bahawa penerapan voltan DC yang sama dengan nilai puncak bentuk gelombang AC boleh mengurangkan kehilangan kuasa mikrogrid DC hingga separuh nilai berbanding dengan mikrogrid AC dan penurunan pengedaran voltan berkurang sebanyak 29.3%. Ini menunjukkan bahawa strategi pengendalian yang dicadangkan mempunyai peraturan voltan dan prestasi perkongsian daya yang lebih baik di dalam semua kondisi beban. Di samping itu, C-FCL yang dicadangkan efektif dalam membatasi magnitud arus kesalahan di lokasi yang berlainan untuk mengurangkan kerentanan kawalan mikrogrid terhadap kesalahan sementara. Akhirnya, hasil yang diperoleh mengesahkan bahawa strategi kawalan yang dicadangkan dengan skema pencegahan arus kesalahan yang diselaraskan memberikan operasi mikrogrid DC yang lebih cekap dan boleh dipercayai.

Kata kunci: Mikrogrid DC, analisis tekno-ekonomi, perkongsian kuasa, had arus kesalahan

TABLE OF CONTENTS

		Page
DEC	CLARATION	i
ACF	KNOWLEDGEMENT	ii
ABS	STRACT	iii
ABS	STRAK	v
TAB	BLE OF CONTENTS	vii
LIST	T OF TABLES	xii
LIST	T OF FIGURES	xiii
LIST	T OF ABBREVIATIONS	xvi
CHA	APTER 1 INTRODUCTION	1
1.1	Study Background	1
1.2	Microgrid Concept	5
1.3	Rural Electrification in Sarawak	9
1.4	Problem Statement	11
1.5	Motivation	12
1.6	Research Questions	13
1.7	Hypothesis	14
1.8	Research Objectives	15
1.9	Scope of Study	15

1.10	Thesis Organization	16
CHAI	PTER 2 LITERATURE REVIEW	19
2.1	Introduction	19
2.2	Distributed Renewable Generation	19
2.3	Impact of DRG on Power System	20
2.3.1	Planning and Scheduling	24
2.3.2	Ancillary Services	24
2.3.3	Synchronization	27
2.3.4	Frequency and Voltage Regulation	27
2.3.5	System Stability and Protection	30
2.3.6	Power Quality	33
2.4	DC Microgrids and DC Distribution	36
2.4.1	Comparison of AC and DC Microgrids	36
2.4.2	AC Microgrids Pilot Projects	42
2.4.3	DC Microgrids Pilot Projects	44
2.5	Design Standards for DC Microgrids	46
2.6	DC Microgrid Architectures	50
2.6.1	Single Bus Topology	50
2.6.2	Multi Bus Topology	52
2.6.3	Ring Bus Topology	54

2.7	DC Microgrid Control Strategies	54
2.7.1	Centralized Control	56
2.7.2	Decentralized Control	57
2.7.3	Distributed Control	59
2.7.4	Hierarchical Control	60
2.8	Impact of Faults on DC Microgrid Control	61
2.8.1	Fault Current Limitation Techniques in DC Systems	62
2.9	Related Studies and Research Gap	63
2.10	Chapter Summary	68
CHAI	PTER 3 TECHNO-ECONOMIC ANALYSIS	69
3.1	Introduction	69
3.2	Comparison of Losses and Efficiency	70
3.3	Comparison of Dynamic Behavior	72
3.4	Economic Analysis	75
3.5	Results and Discussion	83
3.5.1	Results of Technical Analysis	84
3.5.2	Results of Dynamic Behavior Comparison	85
3.5.3 1	Results of Economic Analysis	86
3.6	Chapter Summary	88
CHAI	PTER 4 POWER SHARING AND VOLTAGE REGULATION	90

4.1	Introduction	90
4.2	Voltage Control and Load Power Sharing	90
4.3	Circulating Current Issues	91
4.4	Converter Modeling and Control Approach	93
4.4.1	Converter Modeling	93
4.4.2	Proposed Power Sharing and Voltage Control	95
4.5	Experimental Validation	100
4.5.1	Automatic Code Generation and Hardware Interfacing	100
4.5.2	Simulink Support Package for Arduino Boards	103
4.5.3	Hardware Target Configuration and Code Deployment	104
4.5.4	Hardware Circuit Configuration	107
4.6	Results and Discussions	109
4.6.1	System Response with Traditional Droop Control Method	110
4.6.2	System Response with the Proposed Control Strategy	111
4.6.3	Comparison of the Voltage Deviations due to Load Switching	112
4.6.4	System Response with Multi-tap Reference for Voltage Regulation	114
4.6.5	Experimental Results	114
4.7	Performance Comparison	115
4.8	Chapter Summary	119
CHAI	PTER 5 FAULT CURRENT LIMITER	121

	Ζ.
	۰.
-	-

5.1	Introduction	121
5.2	Requirement of Smart FCL	121
5.3	Fault Current Modelling in DC Systems	122
5.4	Proposed Fault Current Preventive Scheme	125
5.5	Calculation for C-FCL Resistances for Different Fault Locations	128
5.6	Algorithm for Smart FCL	131
5.7	Results and Discussion	133
5.7.1	Impact of Short Duration Fault on System Control without FCL	133
5.7.2	Impact of Long Duration Fault on System Control without FCL	134
5.7.3	Control System Response to Short-circuit Fault with Traditional FCL	136
5.7.4	Control System Response to Short-circuit Fault with Proposed C-FCL	140
5.8	Chapter Summary	143
CHAI	PTER 6 CONCLUSIONS AND FUTURE WORKS	145
6.1	Conclusions	145
6.2	Future Research Areas	146
REFE	CRENCES	148
APPE	INDICES	168

LIST OF TABLES

Page

Table 1.1:	Top10 Countries for Solar Power Capacity Installation in 2017	3
Table 1.2:	Top10 Countries for Wind Power Capacity Installations in 2017	5
Table 1.3:	Comparison of Existing Grids and Smart Microgrid	8
Table 2.1:	Summary of Impacts of DRG on the Power Grid	22
Table 2.2:	Curtailment Rate as a Function of RES Penetration Level	25
Table 2.3:	The Role of Storage Systems in Energy Curtailment	26
Table 2.4:	Power System Control Levels Classified on the basis of Time Frames	28
Table 2.5:	Frequency Response of EI and TI Systems	29
Table 2.6:	PQ Improvement Techniques	34
Table 2.7:	Comparison of AC and DC Microgrids	37
Table 2.8:	AC Microgrid Projects around the World	42
Table 2.9:	DC Microgrid Projects around the World	45
Table 2.10:	Some Existing Examples of DC Microgrid Voltage Levels	47
Table 2.11:	Practical Standards Developed for DC Microgrids	48
Table 2.12:	Comparison of Related Works in Literature	67
Table 3.1:	Inputs Required for HOMER Optimization	79
Table 3.2:	Comparison of Microgrid Configurations	87
Table 3.3:	Comparison of Important Technincal Parameters	88
Table 4.1:	Parameters of Paralleled Converters	109
Table 4.2:	Performance Comparison Summary	118
Table 5.1:	The Appropriate Values of each FCL w.r.t. Fault Locations	136
Table 5.2:	Benchmark validation of the proposed C-FCL method	143

LIST OF FIGURES

Figure 1.1:	Total Installed Renewable Power Capacity Worldwide	3
Figure 1.2:	Future Smart Microgrid Network	7
Figure 1.3:	Structures of AC and DC Microgrid	9
Figure 2.1:	Distributed Renewable Generation	20
Figure 2.2:	Impacts of Different RES on Transient Stability in terms of CCT	31
Figure 2.3:	Single Bus DC Microgrid with Directly Coupled ESS	51
Figure 2.4:	Single Bus DC Microgrid with Converter Interfaced ESS	51
Figure 2.5:	Bipolar Single Bus DC Microgrid	52
Figure 2.6:	Dual Bus, Separately Fed DC Microgrid	52
Figure 2.7:	DC Microgrids Cluster	53
Figure 2.8:	SST Interfaced DC Microgrid	53
Figure 2.9:	DC Ring Bus Topology	54
Figure 2.10:	DC Microgrids Control Strategies	55
Figure 2.11:	Centralized Control Strategy	56
Figure 2.12:	Master-Slave Control	57
Figure 2.13:	Decentralized Control Strategy	57
Figure 2.14:	Droop Curves (a) Current Droop (b) Power Droop	58
Figure 2.15:	Distributed Control	59
Figure 2.16:	Hierarchical Control	61
Figure 2.17:	FCL Classification	63
Figure 3.1:	Factors Considered for Comparison	69
Figure 3.2:	AC/DC Test System for Comparison	70
Figure 3.3:	I-V and P-V Characteristic Curve of PV Modules	73

Figure 3.4:	Simulink Model for Short-circuit Fault Analysis in AC Microgrid	74
Figure 3.5:	Simulink Model for Short-circuit Fault Analysis in DC Microgrid	74
Figure 3.6:	(a) Daily Load Profile; (b) Scaled Annual Average	78
Figure 3.7:	Average Solar Radiation and Clearance Index for Bario	79
Figure 3.8:	Flowchart Simplifying the Optimization Procedures of Microgrid	80
Figure 3.9:	Microgrid Configurations	81
Figure 3.10:	Comparison of AC and DC Distribution Systems	84
Figure 3.11:	Impact of Short-circuit Fault on; (a) AC Microgrid (b) DC Microgrid	85
Figure 3.12:	PV Power, Load Demand and SOC of battery Storage	87
Figure 4.1:	Test System for Power Sharing in a DC Microgrids	92
Figure 4.2:	Equivalent Circuit of Parallel Connected Power Converters	92
Figure 4.3:	Buck Converter Configuration	94
Figure 4.4:	Linearized Equivalent Circuit of Buck Converter	95
Figure 4.5:	Primary Control	96
Figure 4.6:	Proposed Distributed Secondary Control Strategy	97
Figure 4.7:	(a) Average Voltage Control (b) Average Proportion Current Control	97
Figure 4.8:	Circulating Current Minimization Technique	98
Figure 4.9:	Algorithm for Voltage Regulation based on Tap Changing Principle	98
Figure 4.10:	Hardware Support Packages Provided by MathWorks®	101
Figure 4.11:	Embedded Coder for C-code Generation	102
Figure 4.12:	Code Generation Procedure using Embedded Coder	102
Figure 4.13:	Simulink Block Library for Arduino Hardware Support	103
Figure 4.14:	Hardware Target Selection and Parameters Configuration	105
Figure 4.15:	Data Rate Setting for Serial Communication	106
Figure 4.16:	Code Deployment to Hardware	106
Figure 4.17:	Hardware Circuit Configuration	108

Figure 4.18:	Experimental Setup	108
Figure 4.19:	Simulink Model of DC Microgrid	109
Figure 4.20:	System Response using the Average Voltage/Current Control Method	111
Figure 4.21:	System Response using the Proposed Control Strategy	112
Figure 4.22:	Comparison of the Voltage Deviations due to Load Switching	113
Figure 4.23:	System Response using Multi-tap Reference for Voltage Control	114
Figure 4.24:	Experimental Results	115
Figure 5.1:	Standard Short-circuit Function Curve According to IEC Standard	123
Figure 5.2:	Test System; (a) Topology (b) Single-line Diagram	126
Figure 5.3:	Bus Configuration with Proposed C-FCL	127
Figure 5.4:	Proposed Control Algorithm for C-FCL	132
Figure 5.5:	Simulink Model to Implement the Proposed C-FCL	133
Figure 5.6:	Control System Response after a Short Disturbance without FCL	134
Figure 5.7:	Control System Response after a Long Disturbance without FCL	135
Figure 5.8:	PWM Signals to Converters	136
Figure 5.9:	Control System Response to Faults at Different Buses	137
Figure 5.10:	Output Voltages of Converters with fixed values of FCL for F_1 & F_2	138
Figure 5.11:	System Response to Faults without Controllable Function of FCL	139
Figure 5.12:	Output Voltages of Converters with fixed values of FCL for F_3	140
Figure 5.13:	System Response to Faults at Different Buses using Proposed C-FCL	141
Figure 5.14:	Output Voltages of Converters with Proposed C-FCL	141
Figure 5.15:	System Response to Long Duration Faults using Proposed C-FCL	142

LIST OF ABBREVIATIONS

ССТ	Critical Clearing Time
CERTS	Electric Reliability Technology Solutions
C-FCL	Controllable Fault Current Limiter
COE	Cost of Energy
CRF	Capital Recovery Factor
DG	Distributed Generation
DRES	Distributed Renewable Energy Sources
DRG	Distributed Renewable Generation
ESS	Energy Storage Systems
FCL	Fault current limiter
HOMER	Hybrid Optimization Model for Electric Renewable
HVDC	High-Voltage DC
LVDC	Low-Voltage DC
MTDC	Multi-Terminal DC
NPC	Net Present Cost
PCC	Point of Common Coupling
PQ	Power quality
PV	Photovoltaic
PWM	Pulse Width Modulation
RES	Renewable Energy Sources
SAA	Scaled Annual Average

CHAPTER 1

INTRODUCTION

1.1 Study Background

According to the 'Energy trends: What's the outlook for 2035' report [1], global energy demand is expected to grow by nearly 40% of that in 2015. Most of the increase in energy demand is foreseen in the fast-growing and developing economies. The global energy demand in past decades was supplied by fossil fuels, however, due to price fluctuations, limited natural resources and the impact of CO₂ emissions, the focus on developing renewable energies as alternatives to fossil fuels has grown rapidly throughout the world. The main reason behind this is the rapid growth of competitive supply markets and developments of low-cost, low-power distributed generation (DG) technologies compared to the high cost of transmission and distribution networks especially in rural and remote areas with low power demands. Distributed Renewable Generation (DRG) plays a key role in providing services such as electrification, modern communication to facilitate education, improved health and other socio-economic activities with co-benefits such as reducing air pollution and positive effects on income growth in rural areas where utility grid supply is difficult and expensive [2].

Globally, an approximate 6.5% annual growth in renewable energy production is expected over the next 20 years. The share of renewable energy sources (RES) in primary energy production is expected to grow from 3% in 2015 to 8% by the end of 2035. During the past decades, approximately 145 countries adopted policies that support renewable energy technologies. At the present stage, 10 Terawatts (TW) of electrical power is consumed throughout the world annually, and this consumption is expected to reach 30 TW by 2050. Global climate reports indicate that greenhouse gas emissions must be reduced to 80% of their 1990 levels to prevent global warming. Therefore, 20 TW of clean, renewable energy is required to level out the hazardous gases in the atmosphere [1], [3], [4].

The largest growth in renewable power generation capacity, 178 Gigawatt (GW), was recorded in 2017, comprising almost 70% of the net additions to worldwide renewable power generating capacity for the year. Meanwhile, total global renewable power capacity reached 2,195 GW. Approximately 10.3 million people were employed (directly and indirectly) by the renewable energy sector, and new investments of approximately US\$280 billion were made globally. Strong growth in renewable energy was observed in the power sector. However, current advances are uneven across sectors, such as transportation, heating and cooling, which comprise approximately 80% of net global energy demand, because policymakers focused on providing electricity access, especially in remote and rural areas [5]. Solar photovoltaic (PV) and wind power capacity installations account for approximately 56% and 29% of energy generation, respectively, while small hydropower, below 50 megawatts, contributed 11% of renewable power capacity added in 2017. Figure 1.1 (a) shows the percentage of RES participation in total global renewable power generation capacity at the end of 2017, while (b) shows the participation of new installations in 2017. Figure 1.1(b) indicates that solar PV and wind power installations were remarkable in the power sector. Therefore, future research targeted these sources. Nearly 99 GW of solar power was added globally, and total solar capacity worldwide increased to 402 GW.

Figure 1.1: Total Installed Renewable Power Capacity Worldwide (a) At the end of 2017; (b) New Installation in 2017 [5]

Asian markets continue to dominate solar power addition for the fifth consecutive year, with China holding the first position in the top 10 rankings for solar power addition, followed by the United States, India, Japan, Turkey, Germany, Australia, South Korea, United Kingdom and Brazil [5], [6]. Table 1.1 shows the top-ranked countries in total and added solar power capacities at the end of 2017.

No	Total Solar Power Generating		The Newly Installed Solar Power	
	Capacity Installed in GW at the end		Generating Capacity (GW) in 2017	
	of 2017			
1	China	131	China	53
2	USA	51	USA	10.6
3	Japan	49	India	9.1
4	Germany	42	Japan	7

Table 1.1:Top10 Countries for Solar Power Capacity Installation in 2017 [5], [6]

5	Italy	19.7	Turkey	2.6
6	India	18.3	Germany	1.8
7	United Kingdom	12.7	Australia	1.25
8	France	8	South Korea	1.2
9	Australia	7.2	United Kingdom	0.9
10	Spain	5.6	Brazil	0.9
	Total solar power	402	Total added solar	99
	capacity		power capacity in	
	worldwide		2017	

Table 1.1continued

Wind power generation has also become a clean option in an increasing number of markets worldwide. The cumulative worldwide installed wind power generation capacity at the end of 2017 was 539 GW. The global wind power growth observed over the last five years is as follows: 52 GW in 2017, 54.64 GW in 2016, 63.33 GW in 2015, 51.68 GW in 2014 and 36.02 GW in 2013. Commercial wind activity was observed in more than 80 countries, while 26 countries generated more than 1 GW of wind power. Asian countries (China, India and Japan) were the largest markets for wind power capacity installation in 2017, accounting for approximately 47% of total new capacity installations worldwide, followed by the European Union with 32% and North America with 15%. At the end of 2017, China led the world in both total and added wind power capacity (188.23 GW), leaving the United States behind (89.08 GW). The top 10 countries in total wind energy generation capacity were Germany, India, Spain, the United Kingdom, France, Brazil, Canada and Italy. The top 10 countries in capacity addition in 2017 were China, the United States, Germany,

India, United Kingdom, Brazil, France, Canada, Italy and Spain [5], [6]. Table 1.2 summarizes the total and added wind power capacity data from the top 10 countries at the end of 2017.

No	Total Wind Power Generation		The Newly Installations of Wind	
	Capacity at the end of 2017 in GW		Power Generation (GW) in 2017	
1	China	188.23	China	19.54
2	United States	89.08	United States	6.90
3	Germany	56.13	Germany	6.11
4	India	32.85	India	4.18
5	Spain	23.17	United Kingdom	3.84
6	United Kingdom	18.87	Brazil	2.02
7	France	13.76	France	1.69
8	Brazil	12.76	South Africa	0.62
9	Canada	12.24	Poland	0.61
10	Italy	9.48	Finland	0.57
	Total wind power		Wind power	
	capacity	539	capacity additions	52
	worldwide		in 2017	

Table 1.2:Top10 Countries for Wind Power Capacity Installations in 2017 [5], [6]

1.2 Microgrid Concept

Although utility grid propagation or extension is the first option for electrification and should be economical when compared to other off-grid options, however, it is a

challenge to integrate distributed renewable energy sources (DRES) such as PV systems, wind turbines, fuel cells, micro-hydro and energy storage systems (ESS) directly into the utility grids because of their intermittence and uncertainty. The cost of supplying grid-based electricity to remote areas with low power demands becomes uneconomical, in such situations, stand-alone renewable energy microgrids based on smart metering and control become the most viable option for sustainable development. In 1999, the Consortium for Electric Reliability Technology Solutions (CERTS) originated the concept of the modern grid-connected microgrid system. CERTS define a microgrid as a localized group of controllable DRES and loads that present itself as a single customer or a small generator to the existing utility grid, which can disconnect and independently operate according to the physical and/or economic conditions. The microgrid concept has proven itself as one of the most practical solutions to utilize DRES and can eliminate the perceived challenges of integration with improved reliability in the case of natural disasters, physical/cyber-attacks, and cascading power failures with decentralized and autonomous control solutions [7]. However, all these benefits are dependent on efficient coordination within the microgrid as well as with the utility grid. Any discoordination can lead to critical problems such as islanding and protection issues. Therefore, the intelligent power grid/smart grid with realtime monitoring and optimization needs to be developed to ensure a more reliable power delivery to the end-user. The smart grid concept integrates communication networks with power systems to provide real-time monitoring (smart metering) and control of power system components. According to the US National Institute of Standards and Technology (NIST), a smart grid is defined as "a transition process from the existing power system to the future Information and Communication Technologies (ICT) based power system". A smart grid is capable of bidirectional power flow and has full control over the grid components using