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ABSTRACT 

Automated Essay Scoring (AES) refers to the use of specialized computer programs to assess 

and score essays for overcoming time, cost, and reliability issues in an educational 

assessment context. It pertains to applications in the field of Natural Language Processing 

(NLP) and computational linguistics, which centres on the interactions between computer 

software and human languages. Several prominent proprietary AES systems are available in 

the commercial domain, and extensive academic research has been conducted to explore 

automated essay scoring. One of the issues in AES is its dependence on surface features 

(e.g., essay length) to score essays. These AES are often criticized because their scoring 

mechanisms are not associated with the rationale of how human raters typically score essays. 

Surface-level features from AES do not capture the linguistic aspects of an essay. To address 

the constraint of this “surface-level” assessment, several recent research have emerged, 

focusing on leveraging deep linguistic features, such as text cohesion and lexical diversity 

to assess essays.  However, most of this research concentrates on specific linguistic 

dimensions – none of them provide comprehensive coverage of linguistic dimensions to 

score essays. Furthermore, AES systems, especially the commercial proprietary and deep 

neural network AES, exhibit a black-box nature. This non-transparent operation of the AES 

restraints the clear explanation and interpretation of essay features and scoring mechanisms 

employed for scoring essays. In response to these AES issues, this research is conducted to 

develop an AES system, namely the Automated Essay Evaluator (AEE), to score essays 

based on comprehensive deep linguistic features. It employed the Malaysian University 

English Test (MUET) essay as the case study for automated essay scoring. The research 

identified and categorized a total of 1,709 comprehensive linguistic feature indices into a 

taxonomy comprising eight distinct linguistic feature sets, and 43 linguistic feature 
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categories. These eight linguistic feature sets, namely the surface features, linguistic errors, 

text cohesion, semantics, lexical diversity, lexical sophistication, syntactic complexity, and 

readability, should be able to cover most if not all the linguistic features found in essays. A 

thorough correlation analysis between the linguistic features and the essay grades was 

conducted. Two feature selection schemes, namely the Correlation Rank and Minimum 

Redundancy Maximum Relevance (MRMR) Feature Selection have been formulated to 

select the optimized linguistic features that influence essay scoring. The overall performance 

of the selected linguistic features was evaluated using six different machine learning 

classifiers to score MUET essays. Lastly, an interpretation of the proposed linguistic feature 

set with the MUET essay scoring rubrics has been provided to explain how these linguistic 

features contribute to the overall essay score. According to the experiment result, this 

research found that readability, surface features, lexical diversity, and specific lexical 

sophistication are strong predictors of MUET essay scores. The linguistic features selected 

by the Correlation Rank and MRMR Feature Selection Scheme outperformed the baseline 

scheme, which consists of 50 randomly selected features. Furthermore, the linguistic-based 

automated scoring developed in this research demonstrated superior performance than the 

LigthSide AES vendor in scoring MUET essays. This linguistic-based essay scoring 

proposed can be used as the basis for developing a complete full-fledged local Malaysian 

AES by incorporating essay content features. 

Keywords: Automated essay scoring, linguistic features, natural language processing, 

computational linguistic, machine learning  
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Kejuruteraan Ciri untuk Penilai Esei Automatik Malaysian University English Test 

(MUET) berdasarkan Ciri-Ciri Linguistik 

ABSTRAK 

Pemarkahan Esei Automatik atau “Automated Essay Scoring” (AES) merujuk kepada 

penggunaan program komputer khusus untuk menilai dan skor esei untuk mengatasi 

masalah masa, kos dan kebolehpercayaan dalam konteks penilaian pendidikan. Ia 

melibatkan aplikasi dalam bidang pemprosesan bahasa semulajadi dan linguistik 

komputasi, fokus kepada interaksi antara perisian komputer dan bahasa manusia. Beberapa 

sistem AES proprietari yang terkenal tersedia dalam domain komersial, dan penyelidikan 

akademik yang meluas telah dijalankan untuk meneroka pemarkahan esei automatik. Salah 

satu isu dalam AES ialah pergantungannya pada ciri dasar (cth., panjang esei) untuk skor 

esei. AES ini sering dikritik kerana mekanisme pemarkahan mereka tidak dikaitkan dengan 

rasional bagaimana penilai manusia biasanya skor esei. Ciri dasar daripada AES tidak 

menangkap aspek linguistik sesebuah esei. Untuk menangani penilaian "peringkat dasar" 

ini, beberapa kajian terbaru telah muncul, fokus kepada penggumaan ciri linguistik yang 

mendalam, seperti kohesi teks dan kepelbagaian leksikal untuk menilai esei. Walau 

bagaimanapun, kebanyakan penyelidikan ini memberi tumpuan kpada dimensi linguistik 

tertentu - tiada satu pun memberikan liputan komprehensif dimensi linguistik untuk skor 

esei. Tambahan pula, sistem AES, terutamanya proprietari komersial dan rangkaian neural 

AES, mempamerkan sifat kotak hitam. Operasi AES yang tidak telus ini menghalang 

penjelasan dan tafsiran yang jelas tentang ciri esei dan mekanisme pemarkahan esei. 

Memandangkan isu-isu tersebut, penyelidikan ini telah dijalankan untuk membangunkan 

satu sistem AES, iaitu “Automated Essay Evaluator” (AEE), untuk menilai pemarkahan esei 

automatik berdasarkan ciri linguistik mendalam yang komprehensif. Ia menggunakan esei 
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“Malaysian University English Test” (MUET) sebagai kajian kes untuk pemarkahan esei 

automatik. Penyelidikan ini mengenal pasti dan mengkategorikan sejumlah 1,709 indeks ciri 

linguistik komprehensif ke dalam taksonomi yang terdiri daripada lapan set ciri linguistik, 

dan 43 kategori ciri linguistik. Lapan set ciri linguistik ini, iaitu ciri dasar, kesilapan 

linguistik, kohesi teks, semantik, kepelbagaian leksikal, kecanggihan leksikal, kerumitan 

sintaksis, dan kebolehbacaan, seharusnya dapat merangkumi kebanyakan jika tidak semua 

ciri linguistik dalam esei. Analisis korelasi yang menyeluruh antara ciri linguistik dan skor 

esei telah dijalankan. Dua skema pemilihan ciri, iaitu “Correlation Rank” dan “Minimum 

Redundancy Maximum Relevance” (MRMR) telah digubal untuk memilih ciri linguistik yang 

optimum dalam pemarkahan esei. Prestasi keseluruhan ciri linguistik yang dipilih telah 

dinilai dengan enam pengkelasan pembelajaran mesin untuk skor esei MUET. Akhir sekali, 

tafsiran bagi set ciri linguistik dengan rubrik pemarkahan esei MUET telah disediakan untuk 

menerangkan bagaimana ciri linguistik ini menyumbang kepada skor keseluruhan esei. 

Kajian ini mendapati bahawa kebolehbacaan, ciri dasar, kepelbagaian leksikal, dan 

kecanggihan leksikal tertentu adalah peramal yang kuat bagi skor esei MUET. Ciri 

linguistik yang dipilih oleh “Correlation Rank” dan MRMR mengatasi skema garis dasar, 

yang terdiri daripada 50 ciri yang dipilih secara rawak. Pemarkahan automatik berasaskan 

linguistik dalam kajian ini menunjukkan prestasi yang lebih baik daripada vendor LightSide 

AES dalam pemarkahan esei MUET. Permarkahan esei berasaskan linguistik ini dapat 

menjadi asas untuk pembanguanan AES tempatan Malaysia yang lengkap dengan integrasi 

ciri-ciri kandungan esei. 

Kata kunci:  Pemarkahan esei automatik, ciri linguistik, pemprosesan bahasa semula jadi, 

linguistik komputasi, pembelajaran mesin  
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CHAPTER 1  
 

 

INTRODUCTION 

This chapter presents the introduction of this research which consists of nine sections. 

Section 1.1 presents the background of the research. This is followed by Section 1.2, which 

illustrates the automated essay scoring process. Section 1.3 states the motivation of this 

research, while Section 1.4 formulates the problem statement of the research. Section 1.5 

outlines the research objectives with the research questions. Sections 1.6 and Section 1.7 

present the significance and scope of the research accordingly. The sections are followed by 

a brief description of the organization of this thesis in Section 1.8 and a chapter summary in 

Section 1.9. 

1.1 Background of the Research 

Writing is considered to be one of the key 21st-century skills and has been 

incorporated as a critical component in many academic assessments (Foltz, 2016). The 

primary function of writing is no longer simply the conveyance of information but is 

perceived as the association of high-order cognitive capabilities such as critical thinking and 

reasoning. However, assessment of a student’s writing or essay is by no means an easy task 

and can be time-consuming. It is undeniable that manual essay marking by human raters can 

be laborious and burdensome. The essays are difficult to score in an efficient, economical, 

and objective manner (Latifi, 2016). One of the fundamental issues in essay assessment is 

the time it takes to accomplish the scoring process, especially in the large-scale high-stakes 

language assessment environment. The vast number of essays needed to go through multiple 

human raters and adjudication of the scores where discrepancies occurred. To alleviate the 

workload and improve efficiency, extra staff may need to be hired for the marking process, 



2 

 

which can translate into additional costs. On the other hand, human markers can be 

inconsistent and subjective due to certain judgments and biases, and thus the same essay 

might have as many different grades as it does. Despite the unified grading rules, human 

graders can unintentionally introduce subjective bias into scores (Zupanc & Bosnić, 2018). 

One feasible solution to address these problems is to automate the essay scoring 

process by incorporating the technology of Automated Essay Scoring (AES). AES is a 

computer-based assessment system that automatically scores or grades the student's essay 

by considering appropriate essay features (Ramesh & Sanampudi, 2021). Based on the 

extracted features that are deemed salient to the essay scores, AES constructs scoring models 

from pre-scored essays, using natural language processing (NLP) and machine learning 

approaches, and then employs these models to grade new sets of essays (Bennett & Zhang, 

2016). AES offers many potential advantages for writing assessments, such as improving 

the quality of scoring, reducing time for score reporting, minimizing cost and coordination 

efforts for human raters, and the possibility of providing immediate feedback to students on 

their writing performance (Gierl et al., 2014; Foltz, 2016). 

1.2 Automated Essay Scoring Process 

AES is a multi-disciplinary field that incorporates research from computer science, 

linguistics, cognitive science, writing research, and education measurement (Shermis et al., 

2013). Despite the availability of different AES systems, they all use similar fundamental 

processes to score written assessments. Figure 1.1 illustrates the end-to-end scoring process 

of an AES system.  


