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Chapter 1

Toxicity of Quantum Dots
Gerardo González De la Cruz, Lourdes Rodríguez-Fragoso, 
Patricia Rodríguez-Fragoso and Anahi Rodríguez-López

Abstract

Quantum dots (QD) have been deeply studied due to their physicochemical and 
optical properties with important advantages of a wide range biomedical applications. 
Nevertheless, concern prevails about its toxic effects, mainly in those QD whose 
core contains cadmium. Therefore, there are reports about the toxicity caused by the 
release of ions of cadmium and the effects related to its tiny nanometric size. The 
aim of this chapter is to show the evaluations about the toxicity of QD, which include 
studies on viability, proliferation, uptake, and distribution in vitro and in vivo models. 
What are the worrying toxic effects of QD? There are reports about some mechanisms 
of toxicity caused by QD, such as immunological toxicity, cell death (apoptosis and 
necrosis), genotoxicity, among others. In addition, we discuss how coating QD with 
passivating agents that improve their biocompatibility. Likewise, this coating modi-
fies their size and surface charge, which are fundamental aspects of the interaction 
with other biomolecules. We consider highlighting information about more precise 
techniques and methodologies that help us to understand how QD induce damage in 
several biological systems.

Keywords: quantum dots, cytotoxicity, cadmium, nanotoxicity, biocompatibility

1. Introduction

In recent decades, there have been countless publications on the use of nanomaterials, 
particularly in the biomedical area. The main use of semiconductor nanoparticles (NPs) 
lies in the development of formulations for the delivery of anticancer therapies, specifi-
cally targeting diseased tissues and organs. Moreover, quantum dots (QDs) provide 
remarkable specificity while avoiding damage to surrounding healthy cells and thus 
avoiding the dreaded side and adverse effects of current treatments. However, among 
the great applications and their attractive physicochemical and optical properties are a 
myriad of toxicological effects in biological systems [1]. QDs are inorganic semiconduc-
tors with a size range of 1–10 nm. Unlike other types of nanomaterials (NMs), QDs 
possess a unique and exceptional luminescent property. QDs have become the focus of 
a study by many researchers [2]. So far, QDs are the most promising option that have 
exhibited potential for applications in bioimaging (luminescence detection) [3, 4].

Quantum dots have properties, such as luminescent intensity, broad emis-
sion spectrum, tight size control, and selectivity, based on their composition. In 
addition, quantum dots have high resistance to photobleaching, physicochemical 
robustness, and better half-life than other conventional fluorochromes [5–9]. These 
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nanomaterials are constituted by central semiconductor core consisting of elements 
from groups II, VI, III-V, or IV-VI of the periodic table and mostly can be composed of 
heavy metals and toxic materials (e.g., Cd, Te and Hg, CdS, CdTe, CdSe, among oth-
ers) [10, 11]. Because their main component is cadmium and because of their tiny size 
they imply a potential hazard, especially for medical applications. There are different 
types of cadmium-free quantum dots, such as InP/ZnS, CuInS2/ZnS, AgInS2/ZnS, 
silicon, and graphene. Although they are cadmium-free in their composition, they are 
still subject to rigorous toxicological studies [12].

In order to reduce the cytotoxicity of quantum dots, there are some strategies such 
as the use of some shells composed of ZnS, CdS, ZnSe, or even CdS/ZnS multishells. 
By covering the core not only improved luminescent effect but also reducing the 
toxicity by avoiding the release of heavy metal ions [13, 14]. Achieving functionaliza-
tion of the QD core shell with a polymeric shell can give the desired biocompatibility 
and decrease its cytotoxic effects [15, 16]. Among some functionalized QDs, there 
are those coated with polymers such as dextrin or maltodextrin, which make the 
semiconductor able to target organs and can even be taken up by cellular organelles 
[17–19]. This advantage allows QD to be more specific and selective for applications 
for disease diagnosis and treatment purposes. However, the negative effects that 
QDs may have on cells are difficult to assess. QDs have higher fluorescence intensity, 
prolonged lifetime, specificity, and possess optical stability compared to conventional 
fluorochromes. In addition, the wavelength at which they emit is given by tight 
control of the core size. Figure 1 shows the characteristic image of QDs emitting 
photoluminescence.

The characteristics of QDs include size, which is what determines the wavelength 
at which they emit, although in some cases it does not depend on their composition. 
Thus, QDs of smaller size (2 nm) emit in blue, QDs of 3–5 nm in green, 6–8 nm in 
orange, and sizes of approximately 8–10 nm in red [10]. The controversial mecha-
nisms by which QDs are introduced into cells are of great interest among the scientific 
community and thus the molecular and physiological basis of cytotoxicity. These 
cytotoxic effects have been classified into in vivo and in vitro. Thus, cell culture-based 
tests have become the first choice for bioassessment of QD toxicity [20]. However, in 
vitro studies include assessments of cell membrane integrity, morphological changes, 
organelle dysfunction, and in some cases quantification of viable cells. Nevertheless, 

Figure 1. 
Fluorescence image of cadmium QD. La emisión de fluorescencia es dependiente del tamaño de los QD. Por lo que, 
la fotoluminiscencia va del Azul Para aquellos QD más pequeños y hasta el rojo Para los de un núcleo mayor.
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information on the behavior of quantum dots in a biological system is still scarce and 
does not emphasize the cell type-dependent toxicity induced by quantum dots. In this 
review, we have summarized the efforts in achieving a less toxic design, its advantages 
and disadvantages in the synthesis of single and bioconjugated quantum dots for 
application as nanovehicles.

2. Cytotoxic effects of quantum dots on diverse cell lines

The cell membrane is the first barrier that divides intracellular from extracellular 
mechanisms. The process by which QDs enter the cell is not well defined, although it 
includes anchoring of QDs to the cell membrane, transmembrane transport, distribu-
tion and localization within subcellular compartments, and intracellular accumula-
tion. All these processes are linked to their future application, their potential toxic 
effects, and the adverse effects induced in a dose-time-dependent manner [21]. Tests 
such as in vitro cytotoxicity are important because of the significant morphological 
changes caused by QDs at the cellular and subcellular levels. In recent years, a huge 
variety of in vitro studies suggest that QDs have toxic effects on cells at different levels 
[22, 23]. In addition, the passage of QDs across the cell membrane has been demon-
strated, the effects are oxidative stress, direct damage to membrane, morphological 
alterations, and various types of cell death.

In vitro models are necessary for safety assessment in preclinical testing of nano-
materials for diagnostic purposes. Although some models for cytotoxicity are not 
sufficient due to lack of human cells available for culture or even lack of reproduc-
ibility in assays. Therefore, the predictability about the safety of a nanodrug is a 
difficult task for nanotoxicology researchers [24]. However, there are in vitro models 
considered as standard patterns for toxicological studies of nanomedicines such as the 
use of human renal Hek293 cells [25]. Over a decade, our research group has focused 
its interest on the study of dextrin-coated 3.5 nm sized cadmium sulfide QDs (CdS-
dex) [26] and their potential biomedical application as is the case of doxorubicin-
conjugated CdS-dex QDs (CdS-dex/dox) [27]. Therefore, we have established several 
in vitro tests using Hek293, HeLa (cervix adenocarcinoma), and HepG2 (hepatic cells) 
cells for preclinical studies on CdS-dextrin quantum dots and with maltodextrin. 
Therefore, our results demonstrate that CdS-dex QDs and CdS-dex/dox QDs induce 
exposure to dose-dependent cytotoxic effects. In addition to this, we consider that one 
of the main evaluations to be performed on QDs is the monitoring of their cellular 
uptake and distribution. We observed that Hek293, HeLa and HepG2 cells when being 
treated with concentrations of 0.01 and 1 μg/mL, CdS-dex QDs cross the cell mem-
brane, induce morphological changes, and distribute uniformly at different cellular 
level. Due to their nanometer size, QDs caused cytotoxicity in the three different 
cell types by crossing the cell membrane. However, morphological changes varied 
significantly between Hek293, HepG2, and HeLa cells and the concentration of CdS-
dex QDs (Figure 2). When QDs have contact with the extracellular membrane, they 
interact with components of the plasma membrane which allows them to somehow 
enter the cell by some mechanism such as endocytosis. Endocytosis engulfs the QDs 
by invagination of the membrane to form endocytic vesicles, which transport the QDs 
to subcellular compartments. Depending on the cell type, as well as some biomol-
ecules involved in the process, endocytosis can occur in different types [28, 29]. 
Some authors refer to the uncertainty about the toxic effect that quantum dots may 
cause as they are transported through the bloodstream and leach into the kidneys. 
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However, there is no information on the nephrotoxic effects of quantum dots both in 
vitro and in vivo. Nevertheless, some studies aim to understand the cytotoxic effect on 
renal cells caused by quantum dots. Therefore, quantum dots, such as titanium oxide 
(TiO2), zinc oxide (ZnO), and cadmium sulfide (CdS), have been evaluated in tubular 
cells (HK-2) in which the cellular and molecular mechanism through oxidative stress 
induced by quantum dots was demonstrated. In which it was observed that the cyto-
toxicity of quantum dots was size and solubility dependent. Furthermore, quantum 
dots that were soluble such as CdS and ZnO were found to cause dose-dependent cell 
death and degradation/discharge of their ions, respectively [30].

In another investigation, carboxylated CdTe QDs were used and the induced 
cytotoxicity was evaluated in HeLa cells treated at concentrations from 0.1 to 
1000 ng/mL during different exposure times. The effect of CdTe QDs on cell death 
type, genotoxic effect, and cellular uptake was also evaluated. In this study, they 
demonstrated that carboxylated QDs did not prove to be less cytotoxic compared 
to CdTe alone in a concentration-dependent manner. Furthermore, they concluded 
that CdTe-COOH QDs have genotoxic properties and antiproliferative effects in 
HeLa cells [31].

Figure 2. 
Fluorescent microscopic visualization of CdS-dex QD in human cell lines. Cells were treated for 24 h with CdS-
dex QD (0,01–1 μg/mL). Cells were seeded on slides by smearing and allowed to dry, then analyzed using confocal 
epifluorescence microscope. Green fluorescence shows the presence of QD surrounding the cytoplasm of Hek293, 
HeLa, and HepG2 cells. Scale bar 20 μm.



7

Toxicity of Quantum Dots
DOI: http://dx.doi.org/10.5772/intechopen.112073

Although CdS-dex quantum dots produced different cytotoxic effects on human 
tumor cells, these effects are not necessarily benign. In fact, our study showed that 
these nanoparticles had the ability to enter even subcellular compartments. Thus, 
their biological behavior could trigger pathophysiological effects in a concentration-
dependent intrinsic manner. Our CdS quantum dots are coated with a polymeric layer 
of dextrin. However, many nanomaterials are known to have an inorganic or polymer 
layer protecting the core to prevent degradation. Even so, heavy metal ions such as 
cadmium can be released through low stability [32–34]. Studies are needed to know if 
the cadmium core degrades and releases metal ions and what effects are related to this 
degradation.

Despite the remarkable effects caused by CdS-dex quantum dots, we clearly need 
to reinforce the studies and strategies that allow us to learn more about their toxicity. 
We are getting closer and closer to obtaining biocompatible semiconductor nanopar-
ticles with useful capabilities in diagnosis, treatment, and monitoring of pathologies 
such as cancer.

Evidently, QDs have physicochemical properties and capabilities and character-
istics similar to biological molecules that allow them to be used in biodiagnostics, 
bioimaging, and targeted drug delivery. For a drug to be effectively delivered using 
nanocarriers such as QDs, the core component of the QD, the drug or molecule with 
which it will bioconjugate, and the core shell must be considered. That is, this set of 
components must be carefully selected to have therapeutic efficiency and optimal 
safety for use in a biological system [35, 36]. Currently, QDs are considered a tool with 
promising uses and applications in nanomedicine. However, their cytotoxic effects 
remain among the main challenges regarding their biocompatibility. The QDs with 
the highest capacity to emit luminescence and with the highest efficiency in carrying 
molecules with active principle are those containing cadmium (Cd). However, one 
of the limitations for the use of Cd QDs in nanomedicine and clinical research is that 
it is suggested that the core disintegrates and is potentially toxic. That is, it has been 
considered that it is the core of the QD that largely determines the cytotoxic response 
and pathophysiological effects [37–39].

Some authors refer that the safety assessment of QDs alone or conjugated is of 
vital importance since it will allow predicting the effects when interacting with a 
biological system. They suggest that a nanomaterial is small enough to enter a cell 
and its cellular compartments, regardless of the route of administration [40–42]. For 
systemic drug delivery, the intravenous (IV) route is used, which is a major challenge 
in the development of nanotherapies [43]. The US Food and Drugs Administration 
(FDA) has approved NMs that have been studied in rigorous preclinical studies 
combining therapeutic and biological targets as drug delivery agents [44–46].

Our working group has been given the task of synthesizing colloidal CdS-dex/dox 
QD and evaluating on HeLa cell. We treated HeLa cells with CdS-dex and CdS-dex/
dox to compare the selectividad of uptake alone as well as bioconjugated (1 μg/mL) in 
both cases and with doxorubicin at the same concentration. After 24 h of incubation 
and in order to investigate the cellular absortion of QD, cells were fixed on slides for 
visualization by confocal fluorescence microscopy. Through visualization of fluo-
rescence and cellular uptake, we can observe that in cells treated with CdS-dex QDs 
without bioconjugation, there was a higher distribution in cytoplasm, nucleus, and 
nucleoli of the cell. However, this cellular uptake and distribution were not the same 
in the case of HeLa cells treated with doxorubicin and CdS-dex/dox. Nevertheless, in 
cells treated with doxorubicin and CdS-dex/dox, a significant increase in cell size was 
observed compared to cells treated with QDs alone. Although, QDs did not appear 
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homogeneous throughout the cytoplasm and with lower fluorescence intensity in the 
nucleus (Figure 3). They can also induce not only cytotoxic but also genotoxic effects 
in both normal and cancer cells [47–50].

Although, it has been shown that the effect after cellular uptake of various QDs 
depends on their size, shape, concentration, and cell type. The cytotoxic effect and 
mechanisms of nanotoxicity by the interaction of QDs with cells remain complex to 
assess and far from fully understood. However, this nanotoxicity has been shown to 
occur intracellularly or extracellularly [51]. QDs can even interact directly with bio-
molecules once inside the cell, due to their minute size. As a result of this interaction, 
an alteration in cellular equilibrium coexists, as well as irreversible morphological 

Figure 3. 
Fluorescent microscopic visualization of doxorubicin, CdS-dex, and CdS-dex/dox QD in HeLa cell. Cells were 
treated for 24 h at 0,01–1 μg/mL concentration of doxorubicin, CdS-dex, and CdS-dex/dox QD. Cells were 
seeded on slides by smearing and allowed to dry, then analyzed using a confocal epifluorescence microscope. Green 
fluorescence shows the presence of CdS-dex QD. Red emission shows fluorescence in the presence of doxorubicin 
and CdS-dex/dox QD. The yellow arrow represents the increase in size and the white arrow indicates the absence 
of QD.
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and functional damage [51]. Even if indirectly the outside of the interacts with QDs 
through membrane receptors that cause activation and inhibition of different signal-
ing pathways, causing toxic reactions or cell death [52].

Therefore, the cytotoxicity of QDs is more complex than we can imagine, it can 
cause not only the interaction with heavy metals contained in QDs but the disinte-
gration of the core and the release of Cd ions, which increases their toxic potential. 
Under this condition, researchers have expressed concern about the use of NM and 
the parameters to be evaluated for future medical applications. This question arises 
from the association of adverse effects derived from the ability of QDs to enter cells 
and lodge in various subcellular compartments. This implies that they could evade the 
defense mechanisms of the human body, cross biological barriers and even interact 
with components of blood circulation [53]. Moreover, the blood circulation is the 
primary passage of NMs to the distribution of target organs. Thus, vascular endothe-
lial cells serve as the first barrier and are tasked with maintaining vascular integrity 
[54]. In a study with ZnO nanoparticles, it has been shown that they are capable 
of causing cytotoxicity in HUVEC cells due to the increase of intracellular reactive 
oxygen species (ROS) in a dose-dependent manner [55]. Our studies have shown 
that at concentrations of 0.01 μg/mL, CdS-dex QDs already cause cytotoxic effects in 
HUVEC cells. The QDs are distributed around the cytoplasm, producing an increase 
in cell size and completely changing the characteristic morphology of the endothelial 
cell (Figure 4). Although it does not penetrate into the nucleus and nucleoli, cel-
lular uptake occurs in a dose-dependent manner. In addition, endosome formation is 
observed, suggesting that cell deformation and toxicity are caused by cellular stress 
following the passage of the QD into the cell. The cytotoxicity produced by QDs is the 

Figure 4. 
Fluorescent microscopic visualization of HUVEC cells treated with CdS-dex QD at 0,01–1 μg/mL concentration 
and 24 h time exposure. Cells were seeded on slides by smearing and allowed to dry, then analyzed using a confocal 
epifluorescence microscope. Green fluorescence shows the presence of CdS-dex QD.
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main parameter limiting their use in bioimaging research. The idea of applying QDs 
that produce morphological changes and ultimately cell death is a determining factor. 
Currently, joint efforts are being made for the development of innovative QDs capable 
of meeting the needs in healthcare areas. This progress in QD design and synthesis 
has resulted in improved safety in vitro studies. However, a myriad of factors that lead 
to cytotoxicity of QDs in normal, cancer, and endothelial cells remain in question. 
It has also been demonstrated that when QDs come into contact with organisms, 
they produce toxicity that is size-dependent, concentration threshold-dependent, 
and varies according to cytosensitivity [56]. However, factors such as concentration 
range are responsible for the intracellular distribution, which necessitates storage and 
bioaccumulation and thus increases cytotoxicity [57]. There is still a long way to go to 
achieve an accurate understanding and standardized parameters on safety for the use 
of quantum dots in the field of biomedicine.

In a whole decade, we have been dedicated to the design, synthesis, and nanotoxi-
cological evaluation of quantum dots so we are very clear that, quantum dots can be 
improved in their design and composition. In addition, the nanoparticle size must be 
strictly controlled as it is one of the main factors influencing the toxicological effects 
of quantum dots [53]. The idea of having a complete profile of a type of nanomaterial 
is not unrealistic. However, it is necessary to demonstrate with studies on its preclini-
cal evaluation. These evaluations include physicochemical characterization, in vitro 
evaluations with different types of human tumor and healthy cells, biodistribution, 
bioaccumulation, and pharmacokinetic studies. In addition, to perform exhaustive 
evaluations on its hemocompatibility as a starting point to rule out the toxic effect of a 
nanomaterial.

3. Conclusion

The development of newer drug delivery systems based on the use of quantum 
dots is one of the advantages for various disease treatments, such as cancer and gene 
therapy, as noted above. This modality allows for site-specific drug therapies and 
a higher safety profile. However, the pharmaceutical industry is far from knowing 
everything about the toxicological profile of all nanomaterials. However, nanotech-
nological challenges are evolving and it is necessary to focus our attention on the 
standardization of parameters for the evaluation of the cytotoxicity of nanomaterials 
such as quantum dots in order to broaden their safety range and thus ensure lower 
toxic effects. In the meantime, let us not forget that the key to the toxicity caused by 
quantum dots is given by the interaction of the elements that compose them and the 
biomolecules of the biological system. In the very near future, we can include scien-
tific bases that tell us about physicochemical perspectives of quantum dots, better 
experimental conditions already standardized and reliable comparative analyses (in 
vitro and in vivo).

Appendices and nomenclature

NP  nanoparticles
QD  quantum dots
NM  nanomaterials
Cd  cadmium
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Chapter 2

Nanotoxicological Assessments of 
Upconversion Nanoparticles
Dalia Chávez-García and Karla Juarez-Moreno

Abstract

Upconversion nanoparticles (UCNPs) are highly efficient luminescent nanomaterials  
with emission in the visible spectra while being excited by near-infrared region 
light (NIR). With their unique properties such as high luminescence intensity, sharp 
emission peaks with narrow bandwidth, large anti-Stokes’ shift, and sizes smaller 
than 100 nm, UCNPs have emerged as promising candidates for diverse biomedical 
applications such as cancer detection and therapy, fluorescence imaging, magnetic 
resonance imaging (MRI), and drug delivery. The UCNPs are composed of a crystal-
line matrix doped with lanthanide ions that can absorb NIR light (~980 nm) and 
upconvert it to visible light. However, to achieve successful biomedical applications, 
proper functionalization, target-specific cell interaction, and biocompatibility are 
critical factors that must be considered. Additionally, a comprehensive nanotoxico-
logical assessment is necessary to ensure that UCNPs are not cytotoxic or genotoxic. 
This assessment is particularly important for long-term studies of nanoparticles’ 
tracking in vivo. Therefore, this chapter aims to provide an in-depth evaluation of 
the nanotoxicological issues related to nanoparticles (NPs) and UCNPs in biomedical 
applications, and ensure their safety and efficacy as bioimaging and chemotherapeutic 
delivery tools.

Keywords: cytotoxicity, nanoparticles, upconversion, nanotoxicological, luminescent

1. Introduction

The toxicity assessment of nanoparticles (NPs) is a relevant issue since many 
researchers are using, specially, luminescent nanoparticles for various applications, 
such as bioimaging or drug delivery for in vivo and in vitro applications [1–3]. In this 
chapter, we will analyze how the approach in this analysis has been carried out for 
upconversion luminescent nanoparticles (UCNPs), which are a special type of NPs 
since they can receive energy in the near-infrared region (NIR) and emit in the visible 
or NIR spectrum. These NPs are composed of a matrix cell that can be made of oxides, 
oxysulfides, oxyhalides, phosphates, molybdates, tungstates, gallates, vanadates, and 
fluorides. The UCNPs are doped with lanthanide elements such as: Yb3+, Er3+, Tm3+, 
and Ho3+, among others. It is common in the upconversion process to have lantha-
nide elements co-doped to bring about a photon transfer between energy levels. For 
example, for the doping of Yb/Er, the Yb3+ absorbs NIR radiation at 970–980 nm of 
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wavelength in its base state (2F7/2–2F5/2), then this energy is transferred to Er3+ and the 
electron is populated to level 4I11/2, then, a second photon is absorbed and by Yb3+ and 
it is transferred to Er3+, so the electron is raised to level 4F7/2. From this state, it decays 
rapidly to 4S3/2, and the green emission happens (4S3/2–4I15/2), and this process is called 
the APTE (Addition de photons par transfert d′énergie, i.e., photon energies by add-
ing transfers), as can be seen in Figure 1. There are more upconversion processes with 
different doping combinations and concentrations of the ions, where the percentage 
of doping directly affects the color of emission [4].

The UCNPs have emerged as a promising nanomaterial for identifying specific 
cells and for drug delivery. Unlike other dyes, UCNPs exhibit stable emission if the 
source of excitation is maintained, making them more reliable. There are other types 
of upconversion processes such as: two-step absorption, cooperative sensitiza-
tion, cooperative luminescence, the second harmonic generation, and two-photon 
 absorption [4].

One crucial aspect of using UCNPs in biomedical applications lies in ensuring 
their biocompatibility on cells and or organisms. To achieve this, UCNPs must be 
functionalized with different ligands that specifically target the desired cells and 
organs. Several chemical groups, including polyethylene glycol (PEG) [5], polyethyl-
eneimine (PEI) [6], polyvinylpyrrolidone (PVP) [7], polyacrylic acid (PAA) [8], and 
silica [6], have been used for this purpose. However, it is important to highlight that 
the toxicology of UCNPs depends on their physicochemical and physiological prop-
erties. Physicochemical properties include size, shape, surface area, and chemical 
composition, while physiological properties refer to the disease conditions, genetics, 
and other factors [9]. The recommended size for optimal penetration of NPs is below 
100 nm. However, this size may also pose a risk of toxicity due to their potential to 
penetrate cellular structures and organs via the circulatory system. Moreover, UCNPs 
may generate reactive oxygen species (ROS) that can induce DNA damage, which 
not only affects the cell growth by means of protein oxidation, but also impacts 
 mitochondrial respiration [10].

Figure 1. 
Upconversion process between Yb3+and Er3+ ions.
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Several toxicological studies have been conducted on both in vivo and in vitro 
human cell lines and organs to assess the potential harmful effects of UCNPs. These 
studies have evaluated the effects of gene expression, growth, and reproduction of 
the organisms. It is crucial to continue monitoring and evaluating the toxicity of 
UCNPs as their use becomes more prevalent in biomedical applications.

2. Biocompatibility of nanoparticles

This section will provide an overview of different methods that researchers use 
to achieve biocompatibility of UCNPs. Figure 2 depicts the common way to coat and 
functionalize UCNPs for several researches, as generally, the UCNPs or NPs need to 
be coated to ensure biocompatibility and they need functional groups to attach to 
several types of ligands that can bind to the surface of the targeted cells, as depicted.

2.1 Polyethylene glycol

The most used method to achieve biocompatibility is through PEGylation, which 
is both effective and straightforward. Although the specific approach may vary 
among different authors, PEGylation generally refers to the covalent conjugation of 
PEG to other molecules. This process enhances the physicochemical properties of the 
molecules, leading to reduce the immunogenicity and improve solubility, electrostatic 
binding, and hydrophobicity of a given biomolecule [11]. Overall, PEGylation repre-
sents a valuable tool for improving the biocompatibility of drugs and biomolecules, 
allowing for safer and more effective biomedical applications.

The first polymer conjugation was developed by Abuchowski et al. in 1977 [12], 
and various authors have developed different PEGylation methods for diverse applica-
tions, ranging from biocompatibility to trimodal fluorescence. For instance, Zeng 
et al. [13] developed PEG-modified BaGdF5:Yb/Er UCNPs for multimodal fluores-
cence/CT (computed X-ray tomography)/magnetic bioimaging applications, which 
exhibited low cytotoxicity and long circulation time. Similarly, Maldiney et al. [14] 

Figure 2. 
Biocompatibility and functionalization of several types of UCNPs.



Toxicity of Nanoparticles – Recent Advances and New Perspectives

20

utilized luminescent NPs emitting in the near-infrared spectra, with two types of 
mice: healthy and tumor carrier mice. They reported that PEG coating enabled the 
formation of stealthy particles that were more uniformly distributed throughout 
the animal. It is important to note that PEGylation tends to increase the diameter 
of the NPs by about 10 nm, similar to other conjugation methods. However, an 
essential aspect of PEGylation is the characterization of NPs, and the dynamic light 
scattering (DLS) is a crucial technique that can provide three critical parameters: 
size; zeta potential that measures the surface charge of the NPs and determines their 
colloidal stability (values between −10 and +10 mV are neutral, while values greater 
than +30 mV or less than −30 mV are considered strongly cationic and strongly 
anionic, respectively), and size distribution [15]. The selection of ligands to bind 
the PEGylated-NPs may vary depending on the application. The purpose of having 
PEGylated-NPs with ligands is to target specific receptors on the surface of cancer cells 
and to allow for retention in the area due to the enhanced permeability and retention 
effect (EPR). A variety of ligands can be used, including molecules, peptides, pro-
teins, antibodies, aptamers, among others [12, 16–19].

However, PEG may undergo degradation due to light, stress, or heat. Some authors 
have addressed this issue by combining PEG with copolymers such as PVP and 
poly(lactic-co-glycolic acid) or PLGA [20]. With these challenges, research with PEG 
continues to be relevant, as it has proven to be an important tool for achieving the 
biocompatibility of NPs.

2.2 Polyethyleneimine

Polyethyleneimine is a very versatile aliphatic polymer that contains primary, 
secondary, and tertiary amino groups, with a ratio of 1:2:1 [21]. It has found numerous 
applications in non-viral gene delivery and therapy for in vitro and in vivo models. 
In addition, PEI has been used for non-pharmaceutical applications, such as water 
purification and shampoo manufacturing. For instance, Ge and collaborators [22] 
developed near-infrared emitting nanoparticles coated with PEI and gold nanorods 
coated with dithiothreitol to detect arsenic (III), while Pan et al. [23] synthesized  
PEI-coated upconversion nanoparticles for use as an optical probe to determine the 
water content in organic solvents.

Polyethyleneimine-modified nanoparticles have also been explored for various 
biomedical applications. Mi et al. [24] developed luminescent NPs coated with PEI 
that can bind to antibodies through their amino groups, resulting in tunable colors. 
Xu et al. [25] functionalized NPs with folic acid and polycaprolactone/PEI for in vivo 
drug delivery in SKOV-3 cancer cells. Their results showed that their method was more 
effective in killing cancer cells than free doxorubicin. PEI-NPs have also been used for 
pulmonary gene delivery. Bivas-Benita et al. [26] developed a PLGA-PEI-NP that can 
deliver genes to the lung epithelium using Calu-3 cells. Huh et al. [27] used PEI-NPs 
composed with glycol chitosan and encapsulated with siRNA, which significantly 
inhibited red fluorescent protein (RFP) gene expression in B16-F10-bearing mice cells.

PEI nanoparticles represent an important tool especially for drug delivery of 
anticancer drugs and also gene therapy applications, among others.

2.3 Polyvinylpyrrolidone

PVP is commonly used as a coating for silver NPs and as a drug carrier [25, 28, 29]. 
However, several authors have also used PVP as a coating for UCNPs [25, 30–34]. 
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PVP is a versatile coating because it can work as a NP dispersant or as a surface 
stabilizer, and it also has reducing properties. Its functional groups, which include 
C=O, C–N, and CH2, enable it to control the growth of certain aspects by binding 
onto others, providing biocompatibility to the NPs [29, 35].

Johnson et al. [34] synthesized β-NaYF4:Yb3+/Er 3+ UCNPs and used PVP to replace 
the oleate surface ligands. This modification makes the UCNPs water-dispersible, 
which is crucial for in vivo applications. Additionally, PVP is biocompatible, has a 
prolonged blood circulation time, and shows low accumulation in vital organs. Zou 
et al. [33] prepared UCNP NaYF4:Yb3+/Er 3+ embedded into PVP nanotubes using the 
electrospinning method, resulting in an intense emission of the UCNPs compared to 
bare UCNPs. Due to their biocompatibility, these modified NPs may have important 
applications in biomedicine.

2.4 Polyacrylic acid

PAA is a hydrophilic and pH-responsive polymer that can replace hydrophobic 
ligands on the surface of NPs, making it an excellent candidate for in vivo and in vitro 
applications [36]. Its biocompatibility and other desirable qualities make it an attrac-
tive coating option for various types of NPs [37–41].

Hilderbrand et al. [42] synthesized UCNPs coated with PAA and linked amino-
PEG to the carboxyl groups of the PAA. The resulting modified UCNPs were 
non-cytotoxic and displayed good NIR emission. Wang et al. [41] also prepared 
UCNPs YF3:Yb3+/Er3+ with NIR emission and coated with PAA, resulting in strong 
luminescence. In a study by Xiong et al. [40], PAA-coated UCNPs were shown to have 
excellent biodistribution and cellular uptake in mice, with no observed toxicity, sug-
gesting that these NPs could be used for long-term therapy and bioimaging studies in 
vivo. Additionally, Jia et al. [36] investigated the effects of doxorubicin hydrochloride 
(DOX) and PAA-coated UCNPs (DOX@PAA-UCNPs) on HeLa cells and found that 
the UCNPs were biocompatible and effective as a drug carrier.

In summary, PAA is a very versatile polymer that can be used to coat on various 
types of NPs for a wide range of biomedical applications.

2.5 Silica

Silica (SiO2) is a commonly used coating material for various types of NPs due to its 
favorable properties, including biocompatibility, thermodynamic stability, low toxic-
ity, colloidal stability, ease synthesis, and scalability. Two main methods are generally 
used for producing the coating: sol-gel in a reverse micelle nanoreactor and the Stöber 
method [43, 44]. However, achieving a complete and homogeneous coating is a signifi-
cant challenge, and Ureña-Horno et al. [45] developed a method for coating UCNPs 
with silica. By determining the optimal concentration of nanoparticles, they were able 
to achieve high yields of homogeneous functionalization and prevent agglomeration.

Hlaváček et al. [46] employed agarose gel electrophoresis for the purification of sil-
ica-coated UCNPs and for the separation of the protein-UCNPs from surplus reagents. 
This work represents a significant advancement in nanoparticle separation and mea-
surement of their size and surface charge. In another study, also, Gnanasammandhan 
et al. [47] used silica-coated UCNPs for photoactivation in two specific applications: 
photodynamic therapy (PpDt) and photoactivated control of gene expression. The 
UCNPs were coated with PEG and functionalized with FA to target specific tumors, 
and their protocols for photoactivation therapy are valuable for future studies.
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Overall, the efficient coating and functionalization of nanoparticles with silica are 
vital for their successful use in various applications, and these studies provide impor-
tant insights and protocols for achieving these goals.

3. Toxicology of nanoparticles

The study of the toxicological effects elicited by NPs on cells and organisms is 
crucial in biomedical-nanotechnology applications. Thus, it is important to ensure 
that NPs are not cytotoxic or genotoxic. Table 1 summarizes various approaches used 
by different authors for the toxicological assessment of nanoparticles.

3.1 Cytotoxicity assays

Assessing the cytotoxicity of new agents or nanomaterials is a crucial step in 
evaluating their potential biomedical applications. In vitro cell culture tests are 
preferred over in vivo animals test for ethical, speed, and cost reasons. However, cell 
cultures tend to be susceptible to various environmental factors, such as pH, nutri-
ents, and temperature, which may interfere with the interpretation of the results. 
Therefore, it is important to ensure that the observed cell viability is observed solely 
due to the toxicity of the nanomaterials being tested, rather than environmental fac-
tors. Performing a range of tests with different concentrations of NPs and consistent 
experimental conditions enhances the validity of results [56, 57].

The MTT assay, based on the reduction of 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphe-
nyl-2H-tetrazolium bromide by dehydrogenase enzymes, is one of the most common 
methods to assess cell viability, as it measures mitochondrial activity in living cells 
[58–60]. This assay detects living cells, and the results are easily read using a multi-
well scanning spectrophotometer (ELISA plate reader). Several authors have success-
fully used this assay, including those listed in Table 1 [48, 50, 55].

Another variation of the MTT assay is the Cell Titer 96 Aqueous One Solution 
Cell Proliferation Assay, which uses MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium], and phenazine 
ethosulfate, instead of MTT. Bahadar et al. [61] used both methods to evaluate the 
cytotoxicity of different metallic and non-metallic NPs on cells.

Other methods for measuring cell viability include the trypan blue and neutral 
red assays, which detect dead cells based on dye penetration into cell membrane. 
Ramírez-García et al. [62] used the trypan blue assay to measure the cell viability of 
zinc-gallium luminescent NPs; also, Zairov et al. [63] used gadolinium-based lumi-
nescent NPs with PC12 cells for obtaining low cytotoxicity, and the viability of the 
living cells was measured with a hemocytometer.

Live/dead viability assay, which measures the number of damaged cells, uses 
calcein acetoxymethyl (calcein AM) and ethidium homodimer. This method 
was mostly used to test the cytotoxicity exerted by gold nanoshells, silver, silica 
NPs, or fullerenes on cells [64]. The water-soluble tetrazolium (WST-1) assay is 
another method that measures mitochondrial activity by transforming the light-
red tetrazolium salt into dark-red formazan salt due to the mitochondrial activity 
in living cells. Braun et al. [65] evaluated silica NPs with C2C12 cells using MTT 
and WST assays, and described that the MTT assay overestimated the low and 
medium cytotoxicity of the NPs, while the WST assay underestimates the particle 
concentrations studied.
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There are alternative approaches to assess the cytotoxicity of NPs: For instance, 
Das et al. [66] carried out a study on the toxic effects of three types of functionalized 
UCNPs: oleate ligands-NPs, PEG-NPs, and bilayer PEG-oleate-NPs. They employed 
the calcein and propidium iodide viability assay and concluded that the bilayer NPs 
exhibited significant toxicity due to functionalization. In another study, Malvindi 
et al. [67] evaluated the cytotoxicity of silica-coated iron oxide NPs using the 
WST-8 ([2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-
2H-tetrazolium, monosodium salt] assay and lactate dehydrogenase release (LDH 
assay) to analyze cell viability and cell membrane integrity. The NPs demonstrated 
good internalization in HeLa cells with no observed toxicity. Meindl et al. [68], on 
the other hand, assessed the cytotoxicity of NPs by measuring intracellular calcium 
levels, providing an example of an alternative approach for toxicity evaluation. It is 
important to select an appropriate method for assessing cytotoxicity, with suitable 
experimental parameters and consistent concentrations of NPs and exposition times 
across different studies. Otherwise, non-toxic NPs may yield misleading results due to 
factors such as cellular senescence.

3.2 Reactive oxygen species/reactive nitrogen species

The production of reactive nitrogen species (RNS), such as nitric oxide (NO), is 
closely associated with inflammatory responses and can react with oxygen to produce 
ROS. When NPs interact with cells, they may induce cell death by triggering the 
production of NO. The production of RNS is regulated by the enzyme nitric oxide 
synthase (NOS), while ROS production is regulated by NAD(P)H oxidase isoforms. 
Excessive ROS production can cause oxidative stress, leading to damage in the cell 
membrane, proteins, lipids, or DNA. However, low or moderate concentrations of 
ROS/RNS are beneficial, as they can help to defend against infections [69–71].

Several studies have demonstrated that metal and silica nanoparticles can induce 
oxidative stress and inflammation. The reactivity at the target sites and the surface 
area are two crucial factors affecting these outcomes. In a study conducted by Tran 
et al. [72], the effects of nanoparticles’ surface area on lung health were investigated. 
They demonstrated that NPs with a higher surface area tend to be retained and 
accumulate in the lungs, reaching a saturation point where they become less suscep-
tible to phagocytosis and exhibit reduced mobility. This overload effect stimulates 
macrophages, leading to the production of inflammatory responses, including tumor 
necrosis factor.

In a recent study, Wang [73] investigated the use of ROS probes to detect and visu-
alize ROS production in living cells. The most commonly used ROS include H2O2, 1O2, 
O2

•−, ClO−, ONOO−, and •OH. Luminescent NPs were found to be effective probes 
for detecting H2O2 and other ROS forms in living cell systems. The authors suggest 
that these nanoprobes may have promising therapeutic applications for sensing ROS.

3.3 Genotoxicity

When conducting deeper cytotoxicity studies, determining the genotoxic poten-
tial of NPs is often necessary. Various authors have employed different methods to 
ensure single- and double-stranded DNA breakage caused by NPs exposure. One 
of the most used methods is the flow cytometry that differentiates among various 
cell populations, between cell size, and complexity (granularity) through a laser 
beam [74]. Intercalating dyes such as propidium iodide can be used to measure DNA 
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