

Rule Prioritisation Heuristic in Shift Design of Airline Ground Crew

Lee Kong Weng

Doctor of Philosophy 2024

Rule Prioritisation Heuristic in Shift Design of Airline Ground Crew

Lee Kong Weng

A thesis submitted

In fulfillment of the requirements for the degree of Doctor of Philosophy

(Computational Science)

Faculty of Computer Science and Information Technology UNIVERSITI MALAYSIA SARAWAK 2024

DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

.

Signature

Name:

Lee Kong Weng

Matric No.: 13010084

Faculty of Computer Science and Information Technology

Universiti Malaysia Sarawak

Date: 10 March 2024

ACKNOWLEDGEMENT

I want to express my sincere gratitude to Associate Professor Dr Sze San Nah and Associate Professor Dr Chiew Kang Leng, my research supervisors, for their patient guidance, enthusiastic encouragement, and useful critiques of this research work. My sincere gratitude to the Centre for Graduate Studies and the university for the support given during my period of study in Universiti Malaysia Sarawak.

I want to thank my parents and my family for support. I wish to thank my loving and supportive wife, Jessica, and our cats and Benji the dog, who provide unending stress-free therapy throughout the ordeal.

Finally, I would like to thank all that directly or indirectly has assisted me and making it possible for me to complete my study here in UNIMAS. Thank you all.

ABSTRACT

In various industries, the exigency of workforce shift scheduling and rostering demands immediate, innovative solutions. Many off-the-shelf scheduling products lack the flexibility to adapt to varied organizational requirements, resulting in widespread reliance on manual interventions. This research, rooted in a case study of a local airline at Kuala Lumpur International Airport (KLIA), a major regional hub, endeavours to formulate an algorithm addressing workforce shift scheduling and rostering complexities. The proposed algorithm aims to ensure judicious allocation of operational tasks, emphasizing minimal workforce utilization, reduced idleness, and heightened adaptability in employee schedules. Utilizing an existing workforce prediction method and shift design criteria, the study determines the minimum workforce required for task completion. Shifts are assigned based on this minimum, employing heuristic and genetic algorithms. Subsequent optimization of potential schedules culminates in the identification of the most efficacious ones. Empirical tests reveal the proposed heuristic method's superiority over manual practices and genetic algorithms. It not only minimizes shift idle time and aligns with optimal shift starting times but also significantly reduces workforce requirements, streamlining the shift scheduling process, irrespective of data size. This research contributes valuable insights to the advancement of workforce management strategies, offering practical and innovative solutions within the specified context.

Keywords: Heuristic, genetic algorithm, minimum workforce, shift design, shift scheduling

Heuristik Penentuan Keutamaan Aturan dalam Rekabentuk Shif untuk Krew Syarikat Penerbangan

ABSTRAK

Dalam pelbagai industri, kemendasakan mengenai penjadualan shif tenaga kerja dan penjadualan tugasan menuntut penyelesaian segera dan inovatif. Kebanyakan produk penjadualan siap-pakai kurang fleksibel untuk menyesuaikan keperluan organisasi yang berbeza, menyebabkan bergantung kepada penyelesaian manual secara meluas. Kajian ini, berakar dalam kajian kes sebuah syarikat penerbangan di Lapangan Terbang Antarabangsa Kuala Lumpur (KLIA), sebuah pusat serantau utama, bertujuan merumuskan algoritma menangani kekompleksan jadual pergeseran tenaga kerja dan penjadualan tugasan. Algoritma yang dicadangkan bertujuan memastikan peruntukan tugas operasi yang bijak, menitikberatkan penggunaan tenaga kerja minimum, mengurangkan pembaziran masa, dan meningkatkan kebolehtelapan jadual pekerja. Dengan menggunakan kaedah ramalan tenaga kerja sedia ada dan kriteria reka bentuk shif, kajian menentukan jumlah minimum pekerjaan yang diperlukan untuk penyelesaian tugasan. Giliran diberikan berdasarkan jumlah minimum ini, dengan menggunakan kaedah heuristik dan algoritma genetik. Penyesuaian kemudian dilakukan untuk mengoptimumkan jadual berpotensi hingga pemilihan yang paling berkesan. Ujian empirik menunjukkan keunggulan kaedah heuristik dicadangkan berbanding amalan manual dan algoritma genetik. Ia tidak hanya mengurangkan masa menganggur giliran dan sejajar dengan waktu permulaan giliran yang optimum, malah mengurangkan secara ketara keperluan tenaga kerja, menyelaraskan proses penjadualan giliran, tanpa mengira saiz data. Kajian ini memberikan pandangan berharga untuk kemajuan strategi pengurusan tenaga kerja, menawarkan penyelesaian praktikal dan inovatif dalam konteks yang ditentukan.

Kata kunci: Heuristik, algoritma genetik, tenaga kerja minimum, reka bentuk shif, penjadualan shif

TABLE OF CONTENTS

		Page
DEC	CLARATION	i
ACŀ	KNOWLEDGEMENT	ii
ABS	STRACT	iii
ABS	TRAK	iv
TAB	BLE OF CONTENTS	vi
LIST	T OF TABLES	xi
LIST	T OF FIGURES	xii
LIST	T OF ABBREVIATIONS	xiv
CHA	APTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Problem Statement	3
1.3	Objectives	5
1.4	Thesis Structure	6
CHA	APTER 2 LITERATURE REVIEW	8
2.1	Introduction	8
2.2	Pioneering Studies	9
2.3	Heuristic	11
2.4	Genetic Algorithm (GA)	15

2.5	Shift Design for Airline Ground Crew	19
2.6	Conclusion	21
CHAP	TER 3 RESEARCH METHODOLOGY	26
3.1	Introduction	26
3.2	Research Framework	31
3.3	Phase 1: Planning and Data Collection	32
3.4	Phase 2: Modelling and Prototyping	34
3.4.1	General Model	34
3.4.2	Proposed Model	35
3.4.3	Rostering and Scheduling Formulation	36
3.4.3.1	Sets	37
3.4.3.2	Parameters	38
3.4.3.3	Decision Variables	40
3.4.3.4	Constraints	41
3.4.4	Rule Prioritisation Heuristic Algorithm	43
3.4.4.1	Randomise Pick	41
3.4.4.2	Criteria-Based Selection	43
3.4.4.3	Optimisation	46
3.4.5	The Genetic Algorithm	51
3.4.5.1	Fundamentals	52
3.4.5.2	Fitness Function	54

3.4.5.3	Initial Pool Generation	55
3.4.5.4	Selection	54
3.4.5.5	Crossover	55
3.4.5.6	Mutation	60
3.4.5.7	Evaluation	61
3.4.5.8	Optimisation	62
3.5	Analysis Methodology	62
3.5.1	Sources of Data	64
3.5.2	Performance Analysis	63
3.5.3	Sensitivity Analysis	64
3.6	Conclusion	65
СНАР	TER 4 RULE PRIORITISATION HEURISTIC APPROACH	66
4.1	Introduction	66
411		
	Criteria Preparation	69
4.1.2	Criteria Preparation Shift Scheduling	69 70
4.1.2 4.2	Criteria Preparation Shift Scheduling Computational Results	69 70 71
4.1.2 4.2 4.3	Criteria Preparation Shift Scheduling Computational Results Results Analysis	 69 70 71 72
 4.1.2 4.2 4.3 4.3.1 	Criteria Preparation Shift Scheduling Computational Results Results Analysis Performance Analysis	 69 70 71 72 72
 4.1.2 4.2 4.3 4.3.1 4.3.2 	Criteria Preparation Shift Scheduling Computational Results Results Analysis Performance Analysis Sensitivity Analysis	 69 70 71 72 72 76

4.5	Conclusion	82
CHA	PTER 5 GENETIC ALGORITHM APPROACH	82
5.1	Introduction	82
5.2	Computational Results	83
5.3	Results Analysis	87
5.3.1	Performance Analysis	87
5.3.1.	1 Analysis of Shift Pool Size and GA Iteration	87
5.3.1.2	2 Analysis of GA vs Manual Assignment Shift (MAS) Schedule	91
5.3.2	Sensitivity Analysis	92
5.3.2.	1 Analysis of GA Initialisation Pool Size Distribution and Shift Pool Size	93
5.3.2.2	2 Analysis of GA Iteration Distribution	95
5.3.2.	3 Analysis of GA Operators Distribution	99
5.4	Conclusion	101
CHA	PTER 6 ANALYSIS	103
6.1	Introduction	103
6.2	Computational Analysis	106
6.3	Performance Analysis	104
6.4	Sensitivity Analysis	107
6.4.1	Workforce	107
6.4.2	Overlapped	108
6.4.3	Gap Hour	109

6.5	Conclusion	110
СНА	PTER 7 CONCLUSION AND RECOMMENDATIONS	112
7.1	Conclusion	112
7.2	Contributions	114
7.3	Future recommendations	117
REFERENCES 120		120
APPENDICES 13		131

LIST OF TABLES

Table 2.1	Research Gap Analysis	23
Table 3.1	Manually Assigned Shifts	33
Table 3.2	Jobs Demand Data	33
Table 3.3	Typical Shift Type	37
Table 3.4	ble 3.4 Suggested Shift-Type Configuration	
Table 3.5	Shift Schedule Parameters	51
Table 3.6	Selection Method	55
Table 4.1	Shift Start Time Range Used for Testing	69
Table 4.2	Randomise Pick Shift Schedule	70
Table 4.3	Criteria Based Selection	70
Table 4.4	Computational Time with Different Datasets Size	73
Table 4.5	Overlapped Shift Durations in Hours for RP and CBS	80
Table 4.6	Gap Hour Duration Values for RP and CBS	80
Table 5.1	GA shift schedule	84
Table 5.2	GA Shift Schedule Costs	85
Table 6.1	Computational Time with Different Datasets Size	102

LIST OF FIGURES

Figure 3.1	Work Force Demand Curve Chart	29
Figure 3.2	Research Framework	31
Figure 3.3	Model Design and Development	36
Figure 3.4	Proposed Design of RPH Algorithm	40
Figure 3.5	Shift Scheduling Process	41
Figure 3.6	Randomise Pick Function in Picking Schedule	42
Figure 3.7	Criteria-Based Selection Function in Selecting Schedule	45
Figure 3.8	Illustration of the Optimisation	47
Figure 3.9	Shifts Candidates	52
Figure 3.10	Sorting of the Candidate Based on Fitness Values	53
Figure 3.11	Crossover Operation Between Days	55
Figure 3.12	Crossover Operation Between Shifts	56
Figure 3.13	Swapping Operation	57
Figure 3.14	Swapping Operation Between Days	58
Figure 3.15	Sorting Operations after GA Operations	58
Figure 3.16	Real Dataset of 4 days	61
Figure 3.17	Simulated Data with 1 Peak Hour	62
Figure 3.18	Simulated Data with 2 Peak Hour	62
Figure 3.19	Simulated Data with 3 Peak Hour	63
Figure 4.1	Defining A Day Shift Time	68
Figure 4.2	Comparison Between Manual, Lower Bound and Proposed Heuristic Algorithms Workforce Requirements	71
Figure 4.3	Comparison of the Workforce Assigned for Shifts Between Proposed Algorithm Vs. Manual Assignment	73

Figure 4.4	The Relation Between Resource Values Vs. A Different Range of Shift Start Time and Duration	
Figure 4.5	The Relation Between Uncovered Jobs and Overlapped of Shifts Vs. Different Range of Shift Start Time and Duration	
Figure 4.6	The Relation Between Workforce Vs. Different Range of Shift Start Time and Duration	78
Figure 4.7	Comparison of Workforce Utilisation	79
Figure 5.1	Prototype User Interface for Parameters Input	83
Figure 5.2	Workforce Requirements	
Figure 5.3	Tests on Various Shift Duration and Shift Start Time Range	88
Figure 5.4	Tests on Various Iteration Pool Size	90
Figure 5.5	Tests on Various Numbers of Iteration	91
Figure 5.6	Workforce Utilization Comparison	92
Figure 5.7	Tests Running on Various Initial Pool Number, Shift Duration and Shift Start Time Range	94
Figure 5.8	Tests on Various Numbers of Iteration Pool Population	95
Figure 5.9	Tests on Various Numbers of Iteration	96
Figure 5.10	Tests of Various Selection Methods Impact on the Workforce	97
Figure 5.11	Tests of Various Selection Methods Impact on the Overlap	98
Figure 5.12	Tests of Various Selection Methods Impact on the Gap Hour	99
Figure 6.1	Workforce Requirement by Assignment Methods	103
Figure 6.2	Heuristic vs. Manual Workforce Distribution	105
Figure 6.3	GA vs. Manual Workforce Distribution	106
Figure 6.4	Heuristic vs. GA Workforce Distribution	106
Figure 6.5	Different Shift Duration Test	108
Figure 6.6	Different Shift Duration Test	109
Figure 6.7	Different Shift Duration Test	110

LIST OF ABBREVIATIONS

CBS	Criteria based selection
CGS	Centre for Graduate Studies
FP	Flat peak
RP	Randomise pick
RPH	Rule prioritisation heuristic
RPH-CBS	Rule prioritisation heuristic – criteria-based selection
RPH-RP	Rule prioritisation heuristic – randomise pick
SP	Significant peak
TSH	Two-stage heuristic
UNIMAS	Universiti Malaysia Sarawak

CHAPTER 1

INTRODUCTION

1.1 Introduction

In various industries, workforce rostering and scheduling poses problems that require immediate solutions. The demand for fast and reliable operation in any organisation and businesses has never been higher, especially in manufacturing, logistics, transportation, and various other industries. With the rising cost face by operations and managing, all businesses are struggling to keep their expenditures low. The most significant potential area for cost saving is workforce administration through which most organisations pursue approaches that would lessen wastage and optimise workforce utilisation. This solution is hardly new; American Airlines adopted an optimisation software solution developed by (Anbil et al., 1991) for crew rostering which resulted in annual savings of millions. (Afifi & Aly, 2018) and (Odoni & Barnhart, 2003) discuss optimization models and techniques for crew scheduling and schedule planning, respectively, which can lead to increased efficiency and cost savings for airlines. While (Mallick & Mishra, 2018) focus on revenue management practices, their insights can indirectly impact scheduling by helping airlines optimize pricing and revenue streams. In most organisations, having the ideal number of workforces is critical, as it reduces not only cost but also enhances effectiveness and decreases bureaucracy. Therefore, the enormous spending by organisations to secure a viable system for scheduling and rostering is justified and even indispensable, as it provides a forecast of the optimal number of the workforce needed by the organisations.

In solving the rostering and scheduling, there have been various solutions proposed by researchers all over the world. The widely used approach is the heuristic-based solution, where computational performance gain has higher priority than accuracy or precision. The heuristic method will generate the most probable solutions and pick the best solution instead of generating all the solutions. This approach can find an approximate solution in a reasonable timeframe or when in a situation where finding an optimal solution is not possible. There is also a possibility that an optimal solution would not be found. Researchers all over the world have discovered various heuristic approaches for rostering and scheduling solutions.

Another widely used approach in solving rostering and scheduling is by using an integer programming method which is based on mathematical optimisation. An integer programming method is a mathematical optimisation or feasibility program where it restricted in which some or all of the variables to integers. Integer programming is a powerful solution technique for obtaining an optimum or near-optimal solution. Regarding solution quality, integer programming has proven to produce a better solution when compared to the heuristic approach but is inferior with regards to computational speed. The literature review will elaborate and discuss the details on the approaches taken over the years and also current development to solve rostering and scheduling.

Rostering and scheduling algorithm aims to address the challenge of ensuring that it assigned all jobs using minimum resources while preventing wastage. Its secondary goal is to avoid unutilized resource such as idling workforce during the working hours. Aside from that, the algorithm will schedule a shift with a consistent start time pattern throughout the week. This consistency in the start time pattern will ensure workers' adaptability to the schedule and exercise fairness. The fundamental need to solve this problem is to ensure that it assigned all shifts to cover all or as many jobs as possible. It should additionally plan the shifts with minimum workforce utilisation, least workforce idleness and enhanced adaptability of employees' time.

Our approach is to utilise the existing workforce prediction method to decide the minimum workforce required to complete all jobs. Based on the minimum workforce number and shift criteria, the shifts were assigned to form schedules using a random pick and criteria-based selection methods. The potential schedules were then optimised, and the best ones were selected. Based on several realistic test instances, the proposed heuristic approach appears to offer promising solutions for rostering and scheduling as it improves shift idle time, complies with better shift start time and significantly reduces the workforce needed and the time spent on creating schedules, regardless of the data.

1.2 Problem Statement

The scheduling or rostering problem is not new, and there will be a continual change to the requirements because of the dynamic and competitive nature of the airline industry. Schedule or roster is an organised structure of keeping track of staff working timetable to complete the tasks or services for a period defined. Shifts are created in order to split the day's work in schedule or roster so that the workforce or personnel can be assigned accordingly. The main problem involves determining the best possible schedule with shifts for at least 100 jobs per day within 12 hours or fewer. The schedule and shifts generated should cover at least one-week period or more and should be flexible in accepting parameters changes.

A set of rules which dictate the structure of the schedule or roster typically governs a schedule or roster. In this research, these rules are known as parameters from the programming perspective or operations constraints in the airline industry. The lists of parameters or operational constraints that will be considered are discussed in the following section.

i. Shift start time

Shift start time for different tasks is generally interdependent since staff cannot cover more than one task at a time. This is true, especially at peak times, when tasks will overlap each other. In shift assignment, the shift schedule or roster will need to have minimum rest times between shifts and maximum offsets between start times on consecutive days. Each shift-type defines a valid starting and ending time for a shift duty and prescribes one or several meals or relief breaks. Usually, break time rules are based on state and federal laws, union agreements, company policies, or practical considerations. Shift start time is a parameter definable based on the requirement of the operations. Shift start time comprises two attributes that form the shift start time range, which allow flexibility of shifts to cover jobs as much as possible; the attributes are:

- Earliest start time (EST) refers to the earliest time the shift can start.
- Latest start time (LST) refers to the latest time the shift can start.
- ii. Shift duration

Personnel then covered the base workload with typical shift lengths of between six and eleven hours and up to three meals and relief breaks. Planners often try to use full-time shifts, which cover at least two peak periods within the day. Similar to shift start time, the shift duration is definable parameters and comprises two attributes that form the shift duration range. The attributes are:

- Min duration refers to the shortest period of duration for a shift.
- Max duration refers to the longest period of duration for a shift.

1.3 Objectives

The goal of this research is to develop a computationally bounded heuristic algorithm that can solve rostering and scheduling problems in the case study within a short time frame. The research will satisfy the following objectives by achieving the goal:

- i. To design and develop a computational bounded heuristic algorithm that ensures efficiency within defined constraints on time, space, and practicality.
- ii. To formulate a simulated model of airline scheduling/rostering model by digitally replicating operations.
- iii. To design and develop a hybrid meta-heuristic rostering algorithm.

The research will also subject to the following limitations:

- a. Simulated models may involve simplifications.
- b. Involve trade-offs between algorithmic efficiency and solution optimality.
- c. Limited or inaccurate data may impact the realism.

Apart from the research objectives and limitation mentioned, it is also vital to evaluate the quality of current industries practices and the proposed algorithms. We take into consideration three types of cost savings under different operational constraints. The cost savings are given below:

- All jobs must be assigned/covered. All jobs must be assigned and completed by the personnel assigned to the job, no compromise on this constraint.
- To reduce the use of resource/workforce. In shift scheduling, to lower the operational cost, the shift schedule should utilise the most minimum resource.
- Avoid overlaps of shift period. Overlapping of shifts happened when two teams of workforce is on duty in the same period where one of the team will be assigned to jobs while the other will most likely be idling which is a waste of resource and cost.

In these studies, two algorithms are being proposed and developed. The heuristic approach will be the focus, as the genetic algorithm approach will be used as a control algorithm. An optimisation function would be developed and implemented on both algorithms. The optimisation function will try to tackle three types of cost savings under different operational constraints mentioned earlier.

1.4 Thesis Structure

An overview of current rostering and scheduling literature is given in Chapter 2. It gave a detailed review of various methods to solve the rostering and scheduling problem in the first subsection. The second subsection emphasis of the chapter looks at the previous implementation of the two heuristic approaches. Last, the chapter concludes with the pass studies on genetic algorithm approaches.

Chapter 3 looks at rostering and scheduling modelling; its constraints and objectives are explained. All operational constraints, decision variables and parameters are explained in detail with the goal is to minimise the number of resources and wastage. Two rule-prioritisation heuristic algorithms are introduced in Chapter 4. The first heuristic-based algorithm is the randomise pick approach where all the possibilities of the shifts schedule are generated randomly and pre-processed and optimised before the proceeding with the process of the best schedule selection. An optimisation algorithm is developed and implemented so that the resource utilisation is more efficient throughout the schedule. The second heuristic-based algorithm is a criteria-based selection approach where the main goal is to pick schedules that fulfil specific required criteria, such as minimum workforce, minimum duration, or the earliest/latest start time of a shift. This chapter illustrates the computational effort of generating an optimal solution using the heuristic algorithm.

Chapter 5 presents the Genetic Algorithm method for rostering and scheduling. The algorithm is implemented with the various improvements, which include adaptive crossover, which tries to encourage a better shift schedule to be generated. Optimisation from Chapter 4 was integrated into the algorithm to improve the shift schedule. The chapter concludes with results from various parameter and strategy settings experimentation.

In Chapter 6, to validate the results obtained so far, all previous algorithms implementation applies to the same real-life data obtained from an airline in Malaysia. A numerical study of the heuristic and genetic algorithm solutions is performed with a range of data. The comparison of the different approaches and extensive sensitivity analysis are performed in order to show the effectiveness and robustness of the proposed algorithms. The numerical results and discussion are also reported at the end of the chapter.

Chapter 7 summarises the findings in this thesis and contains concluding remarks, contribution and ideas for future investigation are identified.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Research on scheduling and rostering is extensive and identified several problems involving real-life shift scheduling. The problems mostly involve assigning workers to shifts, determining working days and rest days, or constructing flexible shifts and their starting times for each shift. Furthermore, the problem includes a wide range of operational constraints. These constraints pose a challenge in addressing optimal scheduling because of integer's large size and pure nature; thus, these problems are typically labelled as NP-hard and NP-complete, as stated by both (Lau, 1996) and (Heimerl & Kolisch, 2010). Methods and models commonly used for solving these problems have been surveyed by (Ernst et al., 2004; Van den Bergh et al., 2013). In this paper by (Ernst et al., 2004), the authors categorise the solution methods for scheduling problems based on method and approaches such as artificial intelligence, fuzzy set theory, constraint programming, meta-heuristics, and mathematical model. Most literature reviews are intensely skewed towards mathematical programming and meta-heuristic for scheduling as opposed to constraint programming and other techniques.

Since the linear ordering problem is NP-hard, we cannot expect to solve practical problem instances of arbitrary size to optimality. Depending on the size of an instance or depending on the available CPU time, we will often have to be satisfied with approximate computing solutions. Also, under such circumstances, it might be impossible to assess the real quality of approximate solutions. In this chapter, we will attend to the question of how to find good enough solutions in a short or reasonable time by using heuristic algorithms.