

Selection of Vaccine Candidates Against *Pseudomonas koreensis* Using Reverse Vaccinology and a Preliminary Efficacy Trial in *Tor tambroides* (Empurau)

Cindy Kho Jia Yung

Master of Science 2024

Selection of Vaccine Candidates for *Pseudomonas koreensis* Using Reverse Vaccinology and a Preliminary Efficacy Trial in *Tor tamborides* (Empurau)

Cindy Kho Jia Yung

A thesis submitted

In fulfilment of the requirements for the degree of Master of Science

(Biochemistry)

Faculty of Resource Science and Technology UNIVERSITI MALAYSIA SARAWAK 2024

DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature Name: Cindy Kho Jia Yung Matric No.: 22020047 Faculty of Resource Science and Technology Universiti Malaysia Sarawak

Date :21-11-2023

ACKNOWLEDGEMENT

I would like to express my sincere gratitude and appreciation to all those who have contributed to the completion of this master's thesis. First and foremost, I am deeply indebted to my supervisor, Associate Professor Dr. Chung Hung Hui, for his invaluable guidance, support, and expertise throughout the entire research process. His insightful feedback, constructive criticism, and continuous encouragement were instrumental in shaping this thesis and enhancing its quality. I am truly fortunate to have had his guidance throughout this journey. I would also like to acknowledge the financial support of Malaysian Ministry of Higher Education under Fundamental Research Grant Scheme (F07/FRGS/85428/2022).

I would also like to extend my heartfelt thanks to my Animal Biotechnology Lab mates: Melinda and Ivy. Their collaborative spirit, intellectual discussions, and constructive feedback have greatly enriched my research experience. I am grateful for the camaraderie, friendship, and shared knowledge we have fostered, which have undoubtedly contributed to the success of this thesis.

My gratitude extends to my family members: my father Kho Boo Teng, my mother Fam Say Tho, and my sister Wendy Kho Jia Min for their unwavering support and encouragement throughout this academic journey. Their understanding, patience, and belief in my abilities have been a constant source of motivation. Furthermore, I would like to extend my sincere appreciation to my close friends Eirene and Min Kim for their company.

ABSTRACT

The unregulated and/or incorrect use of antimicrobial agents against diseases of farmed aquatic species poses a considerable threat to the development and growth of a sustainable aquaculture industry. Hence, vaccination has emerged as a pivotal strategy to mitigate this threat. This study marks the first utilization of reverse vaccinology to develop subunit vaccines against *Pseudomonas koreensis* infection in Empurau (Tor tambroides). WGS analysis revealed that the genomic size of P. koreensis CM-01 is 6,171,880 bp and has a G+C content of 60.5%. The proteome (5,538 proteins) was screened against various filters to prioritize proteins based on features that are associated with virulence, subcellular localization, transmembrane helical structure, antigenicity, essentiality, non-homology with the host proteome, molecular weight, and stability, which led to the identification of eight potential vaccine candidates. These potential vaccine candidates were cloned and expressed, with six achieving successful expression and purification. The antigens were formulated into two distinct vaccine mixtures, Vac A and Vac B, and their protective efficacy was assessed through in vivo challenge experiments. Vac A and Vac B demonstrated high protective efficacies of 100% and 81.2%, respectively. Histological analyses revealed reduced tissue damage in vaccinated fish after experimental infection, with Vac A showing no adverse effects, whereas Vac B exhibited mild degenerative changes. Quantitative real-time PCR results showed a significant upregulation of TNF- α and downregulation of IL-1 β in the kidneys, spleen, gills, and intestine in both Vac A- and Vac B immunized fish after challenged with P. koreensis. Additionally, IL-8 exhibits tissue-specific differential expression, with significant upregulation in the kidney, gills, and intestine, and downregulation in the spleen, particularly notable in Vac A immunized fish. The research

underscores the effectiveness of the reverse vaccinology approach in fish and demonstrates the promising potential of Vac A and Vac B as recombinant subunit vaccines.

Keywords: *Pseudomonas. koreensis*; *Tor tambroides*; Reverse vaccinology; Subunit vaccines; Protective efficacy

Pemilihan Kandidat Vaksin untuk <u>Pseudomonas koreensis</u> Melalui Vaksinologi Terbalik dan Percubaan Keberkesanan Awal dalam <u>Tor tambroides</u> (Empurau)

ABSTRAK

Penggunaan agen antimikrobial yang tidak terkawal dan/atau tidak betul terhadap penyakit-penyakit spesies akuatik yang diternak membawa ancaman yang signifikan terhadap perkembangan dan pertumbuhan industri akuakultur yang mampan. Oleh itu, vaksinasi telah muncul sebagai strategi penting untuk mengurangkan ancaman ini. Kajian ini menandakan penggunaan pertama vaksinologi terbalik untuk membangunkan vaksin subunit terhadap jangkitan Pseudomonas koreensis dalam empurau (Tor tambroides). Analisis penjujukan genom keseluruhan (WGS) mendedahkan bahawa saiz genom P. koreensis CM-01 adalah 6,171,880 bp dan mempunyai kandungan G+C sebanyak 60.5%. Proteom (5,538 protein) telah disaring terhadap pelbagai penapis untuk mengutamakan protein berdasarkan ciri-ciri yang dikaitkan dengan virulensi, lokalisasi subselular, struktur heliks transmembran, antigenisiti, keesensialan, ketiadaan homologi dengan proteom hos, berat molekul, dan kestabilan, yang membawa kepada pengenalpastian lapan kandidat vaksin berpotensi. Kandidat vaksin berpotensi ini diklon dan diekspresikan, dengan enam mencapai kejayaan ekspresi dan penulenan. Antigen tersebut dirumuskan kepada dua campuran vaksin yang berbeza, Vac A dan Vac B, dan keberkesanan perlindungannya dinilai melalui eksperimen cabaran in vivo. Vac A dan Vac B menunjukkan keberkesanan perlindungan yang tinggi masing-masing sebanyak 100% dan 81.2%. Analisis histologi mendedahkan pengurangan kerosakan tisu pada ikan yang divaksin selepas jangkitan percubaan, dengan Vac A tidak menunjukkan kesan buruk, manakala Vac B menunjukkan perubahan degeneratif yang ringan. Keputusan PCR real-time kuantitatif menunjukkan peningkatan yang signifikan dalam ekspresi TNF-a dan penurunan ekspresi IL-1 β dalam buah pinggang, limpa, insang dan usus dalam kedua-dua ikan yang diimunisasi Vac A- dan Vac B selepas dicabar dengan P. <u>koreensis</u>. Selain itu, IL-8 menunjukkan ekspresi pembezaan khusus tisu, dengan peningkatan yang signifikan di buah pinggang, insang, dan usus dan penurunan di limpa, terutamanya ketara dalam ikan yang diimunisasi dengan Vac A. Kajian ini menekankan keberkesanan pendekatan vaccinology terbalik dalam ikan dan menunjukkan potensi menjanjikan Vac A dan Vac B sebagai vaksin subunit rekombinan.

Kata Kunci: <u>Pseudomonas koreensis;</u> <u>Tor tambroides</u>; *Vaksinologi terbalik*; *Vaksin subunit; Keberkesanan perlindungan*

TABLE OF CONTENTS

		Page
DECI	LARATION	i
ACKI	NOWLEDGEMENT	ii
ABST	TRACT	iii
ABST	RAK	v
TABI	LE OF CONTENTS	vii
LIST	OF TABLES	xiii
LIST	OF FIGURES	xiv
LIST	OF ABBREVIATIONS	xvii
CHAI	PTER 1: INTRODUCTION	1
CHAI	PTER 2: LITERATURE REVIEW	5
2.1	Aquaculture in Malaysia	5
2.2	Tor tambroides Overview	8
2.3	Pseudomonas spp.	12
2.3.1	Taxonomy and Classifciation	12
2.3.2	Pseudomonas koreensis	16
2.3.3	Virulence Factors	20
2.3.3.1	1 Bacteria Surface Structures	21
2.3.3.2	2 Secreted Virulence Factors	22

2.3.3.	3 Bacterial Cell-to-Cell Interaction	24
2.4	Fish Immunity	25
2.4.1	Innate Immunity	26
2.4.1.	1 Physical or Surface Barriers	26
2.4.1.2	2 Humoral Factors	27
2.4.1.	3 Cellular Factors	28
2.4.2	Adaptive Immunity	29
2.4.2.	1 Humoral Responses	29
2.4.2.2	2 Cell-mediated Responses	31
2.5	Application of Recombinant Subunit Vaccine for Bacterial Diseases in	
	Aquaculture	31
2.6	Reverse Vaccinology	34
CHA	PTER 3: MATERIALS AND METHODS	37
3.1	Whole Genome Sequencing of P. koreensis strain	37
3.1.1	Bacterial DNA Extraction	37
3.1.2	Library Construction and Whole Genome Sequenicng	38
3.1.3	Data Preparation for Assembly Process	38
3.2	Screening of Potential Vaccine Candidates Using Reverse Vaccinology	39
3.3	Vaccine Construction	40
3.3.1	Bacterial Strains, Plasmid, and Culture Conditions	40
3.3.2	Primer Design	41

3.3.3	DNA Extraction	41
3.3.4	Polymerase Chain Reaction Amplification of Eight Candidate Vaccine Target	
	Genes	42
3.3.5	Detection of PCR Products and Purification	43
3.3.6	Cloning of PCR Products into pGEM-T Easy Vector	43
3.3.6.1	Chemically Competent Cell Preparation	43
3.3.6.2	2 Transformation of Ligation Mixtures into Cloning Host, Eschericia coli	
	XL1-Blue	44
3.3.6.3	Blue-White Screening and Colony PCR	45
3.3.6.4	4 Extraction of Recombinant Plasmid and DNA Sequencing	46
3.3.7	Subcloning of Gene of Interest into pET32-a Vector	47
3.3.7.1	Restriction Digestion	47
3.3.7.2	2 Transfromation of Ligation Mixtures into Expression Host, Eschericia coli	
	BL21(DE3)	47
3.3.7.3	3 Colony PCR, Extraction of Recombinant Plamid, and DNA Sequencing	48
3.3.8	Protein Expression	49
3.3.8.1	l Isopropyl β - d-1-thiogalactopyranoside (IPTG) Induction	49
3.3.8.2	2 Recombinant Protein Expression and Solubility Analysis by Sodium Dodecyl-	
	Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)	49
3.3.9	Recombinant Protein Purification	51
3.3.10	Preparation of Fish Vaccine Combination	53

3.4	Experimental Design and Vaccination Regime	53	
3.4.1	Fish Maintenance	53	
3.4.2	Vaccination	53	
3.5	Bacterial Challenge Trial and Sampling	54	
3.6	Efficacy of the Recombinant Protein Subunit Vaccines	54	
3.6.1	Relative Percentage of Survival (RPS)	54	
3.6.2	Histopathology	55	
3.6.2.1	Agar Embbedding for Cryostat Sectioning	55	
3.6.2.2	2 Cryostat Sectioning	55	
3.6.2.3	3.6.2.3 Hematoxylin and Eoxin Staning 56		
3.6.3	Analysis of Inflammation-related Gene Expression using Quantitative Real-time		
	RT-PCR	56	
3.6.3.1	Total RNA Extraction	56	
3.6.3.2 cDNA Synthesis 57			
3.6.3.3	3 Quantitative real-time RT-PCR	57	
CHAPTER 4: RESULTS 59			
4.1	Genomic Features of P. koreensis CM-01	59	
4.2	Selection of Potential Vaccine Candidates (PVCs)	61	
4.2.1	Identification of Potential Virulence Proteins	61	
4.2.2	Prediction of Subcellular Localization of the Virulent Proteins	61	

4.2.3	Transmembrane Helix, Antigenicity, and Essentiality Prediction of the Selected	
	Membrane (Inner and Outer), Periplasmic, and Extracellular Proteins	62
4.2.4	Physicochemical Properties of the Candidates Proteins and Homology Check	
	against Fish Proteome	62
4.2.5	Vacccine Targets	64
4.3	Vacccine Construction	66
4.3.1	Primer Design	66
4.3.2	PCR Amplification	68
4.3.3	Cloning and Subcloning of the Candidate Vaccine Traget Genes	68
4.3.4	Protein Expression	72
4.3.5	Protein Purification	74
4.3.6	Fish Vaccine Formulation	75
4.4	Efficacy of the Recombinant Protein Subunit Vaccines	75
4.4.1	Relative Percentage of Survival (RPS)	75
4.4.2	Histopathology	78
4.4.3	Analysis of Inflammation-related Gene Expression using RT-qPCR	81
CHA	PTER 5: DISCUSSION	83
5.1	Genomic Features of P. koreensis CM-01	83
5.2	Selection of Potential Vaccine Candidates Criteria	84
5.3	Molecular Cloning, Expression, and Purification	86
5.4	Relative Percentage of Survival (RPS)	88

5.5	Histopathology	93
5.6	Analysis of Inflammation-related Gene Expression using RT-qPCR	96
СНА	PTER 6: CONLUSIONS AND RECOMMENDATIONS	98
6.1	Conclusions	98
6.2	Recommendations	99
REF	ERENCES	101
APP	APPENDICES	

LIST OF TABLES

Page

Table 2.1	rRNA homology group based on DNA-rRNA hybridization	14
Table 2.2	AHL quorum-sensing systems of Pseudomonas	24
Table 2.3	Central literature on subunit vaccination and selected background information on pathogens	33
Table 3.1	Reaction components for PCR amplification of eight candidate vaccine target genes	42
Table 3.2	Thermal cycling condition for 35 PCR cycles	42
Table 3.3	Components of ligation reaction	44
Table 3.4	List of restriction digestion reagents	47
Table 3.5	Components of ligation reaction	48
Table 3.6	Primer sequences of target genes and GAPDH for real-time PCR assay	58
Table 4.1	Whole genome assembly and annotation statistics, and BUSCO v5.2.2 scores of <i>P. koreensis</i> CM-01	60
Table 4.2	Information about the PVCs	65
Table 4.3	Physicochemical characteristics of the eight potential vaccine proteins.	66
Table 4.4	The list of restriction-site-introducing primers used for PCR amplification of the eight candidate vaccine target genes. The restriction enzyme sites are underlined and letters in bold indicate additional base pair for optimal restriction digestion	67
Table 4.5	Protein yields per liter bacterial culture	74
Table 4.6	Experimental setup presenting the different groups, sample size, mortality, and RPS	75

LIST OF FIGURES

Page

Figure 2.1	Total fisheries production of Malaysia in 2017-2021 by quantity (MT)	5
Figure 2.2	The image of Empurau (Tor tambroides)	11
Figure 2.3	(a) Long lower median lobe and (b) Sub-terminal mouth position pointed rostrum hood of <i>T. tambroides</i> .	11
Figure 2.4	The functional and environmental range of <i>Pseudomonas</i> spp.	13
Figure 2.5	Morphological characterization of <i>P. koreensis.</i> (a) Bacterial colonies after culturing for 24 h on LB agar (b) Gram staining properties of the <i>P. koreensis</i> (c) Scanning electron microscope observation of the bacterial cells with the magnification at $5000 \times$	19
Figure 2.6	Schematic diagram represents the mechanism of plant growth- promoting rhizobacteria (PGPR)	19
Figure 2.7	The virulence factors of <i>P. aeruginosa</i>	20
Figure 2.8	Schematic representation of the response of a fish following an encounter with a pathogen	25
Figure 2.9	A schematic demonstration of the steps involved in vaccine development using the conventional approach and reverse vaccinology	36
Figure 3.1	Workflow demonstrating the use of NEBNext Ultra II DNA Library Prep Kit for Illumina	59
Figure 4.1	Circular representation of the draft genome of <i>P. koreensis</i> CM-01. From outer circle to inner circle, representation is as follows:.1. Forward strand CDSs (turquoise blue arrow); 2. Contigs (Gray arrow); 3. Reverse strand CDSs (turquoise blue arrow); 4. GC plot (black); 5. GC skew (green and magenta colour correspond to CG skew +and-, respectively)	63
Figure 4.2	Prioritization of the PVCs against <i>P. koreensis</i> using reverse vaccinology. (a) Protein virulence prediction using VFDB (b) Virulence factor classes of the virulent proteins (c) Prediction of subcellular localization of virulent proteins (d) Transmembrane helix prediction of membrane and extracellular proteins (e)	63

	Antigenicity analysis of proteins with transmembrane helix <2 (f) Essentiality of proteins with antigenicity ≥ 0.4	
Figure 4.3	PCR amplification of eight candidate vaccine target genes. Lane M: Promega 1 kb DNA ladder; Lane 1-2: <i>fliL</i> ; Lane 3-4: <i>epsE</i> ; Lane 5- 6: <i>fleS</i> ; Lane 7-8: <i>emhA</i> ; Lane 9-10: <i>mucD</i> ; Lane 11-12: <i>fliN</i> ; Lane 13-14: <i>algW</i> ; Lane 15-16: <i>sugC</i>	68
Figure 4.4	Agarose gel electrophoresis of the recombinant plasmid (pGEM-T Easy vector with target genes) digested by restriction enzymes. Lane M: Promega 1 kb DNA ladder; Lane 1: pGEM-T- <i>fliL</i> ; Lane 3-4: <i>epsE</i> ; Lane 5-6: <i>fleS</i> ; Lane 7-8: <i>mucD</i> ; Lane 9-10: <i>fliN</i> ; Lane 11-12: <i>algW</i> ; Lane 13-14: <i>sugC</i>	70
Figure 4.5	Agar plates showing the transformed <i>E. coli</i> BL21 (DE3) containing recombinant plasmid of (a) pET-32a- <i>fliL</i> (b) pET-32a- <i>epsE</i> (c) pET-32a- <i>fleS</i> (d) pET-32- <i>emhA</i> (e) pET-32a- <i>mucD</i> (f) pET-32a- <i>fliN</i> (g) pET-32a- <i>algW</i> and (h) pET-32a- <i>sugC</i>	70
Figure 4.6	Colony PCR results obtained from transformed colonies of <i>E. coli</i> BL21 DE3 cells. Lane M: Promega 1 kb DNA ladder; Lane 1-2: <i>fliL</i> ; Lane 3-4: <i>epsE</i> ; Lane 5-6: <i>fleS</i> ; Lane 7-8: <i>emhA</i> ; Lane 9-10: <i>mucD</i> ; Lane 11-12: <i>fliN</i> ; Lane 13-14: <i>algW</i> ; Lane 15-16: <i>sugC</i> .	71
Figure 4.7	Agarose gel electrophoresis of the recombinant plasmid (pET-32a vector with target genes) digested by restriction enzymes. Lane M: Promega 1 kb DNA ladder; Lane 1: pET-32a- <i>fliL</i> ; Lane 2: pET-32a- <i>epsE</i> ; Lane 3: pET-32a- <i>fleS</i> ; Lane 4: pET-32a- <i>emhA</i> ; Lane 5: pET-32a- <i>mucD</i> ; Lane 6: pET-32a- <i>fliN</i> ; Lane 7: pET-32a- <i>algW</i> ; Lane 8: pET-32a- <i>sugC</i>	71
Figure 4.8	SDS-PAGE analysis of recombinant protein expression and solubility in E. coli BL21 (DE3). (a) EpsE (b) FleS (c) EmhA (d) FliN (e) AlgW, and (f) SugC. M: ExcelBand [™] 3-color Pre-Stained Protein Ladder (3.5-245 kDa); W: Whole cell lysate; S: Supernatant; P: Pellet	73
Figure 4.9	SDS-PAGE analysis of purified recombinant proteins. Lane M: ExcelBand [™] 3-color Pre-Stained Protein Ladder (3.5-245 kDa); Lane 1: EpsE; Lane 2: FleS; Lane 3: EmhA; Lane 4: FliN; Lane 5: AlgW; Lane 6: SugC	74
Figure 4.10	Cumulative mortality of control and immunized fish after being challenged with 2.4×10^8 CFU/mL <i>P. koreensis</i>	76
Figure 4.11	Clinical signs of non-vaccinated and vaccinated <i>T. tambroides</i> experimentally infected with <i>P. koreensis</i> . (a) Non-vaccinated fish showed hemorrhage in the abdomen (black arrow) and abdominal	77

enlargement (blue arrow) (b) Non-vaccinated fish showed hemorrhage in the abdomen (black arrow) and tail rot (black circle) (c) Non-vaccinated fish showed widespread hemorrhages throughout body surface (black arrow), loss of scales (red arrow), and tail rot (black circle) (d) Vaccinated fish (Vac B) showed mild haemorrhage on the skin (black arrow)

- Figure 4.12 Histopathological changes in different tissues of non-vaccinated and vaccinated groups of fish after experimental infection with *P*. *koreensis*. (a) Kidney: (1) renal tubular necrosis and interstitial congestion (b) Spleen: (1) Melanomacrophages centres (MMcs) (c) Gills: (1) Intestine (1) telangiectasia at the tips of secondary lamellae (2) total fusion of lamellae and disorganization of secondary lamellae (3) dilatation of the venous sinus of the primary lamellae. (d) Intestine: (1) sloughing of necrotic cells or cellular debris into the lumen (2) injured central chylomicron. Photomicrographs were taken at 100X magnification, and the white bar represents 100 μm in all micrographs
- Figure 4.13 The relative gene expression of immune-associated genes (a) TNF- α (b) IL-8 (c) IL-1 β in kidney, spleen, gills, and intestine of *T*. *tambroides* after experimental infection. Results with p<0.05 or lower were designated statistically significant (* indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001, or **** indicates p<0.0001)

LIST OF ABBREVIATIONS

AHLN-acyl derivatives of homoserine lactoneAPSAmmonium persulfateARBAntibiotic-resistant bacteriaARGAntibiotic-resistance genesB cellsB lymphocytesBUSCOBenchmarking Universal Single-Copy OrthologsCaCl2Calcium chlorideCTWCounterclockwiseCFUColony forming unitCheYPChemotaxis signaling molecule phospho-CheY
ARBAntibiotic-resistant bacteriaARGAntibiotic-resistance genesB cellsB lymphocytesBUSCOBenchmarking Universal Single-Copy OrthologsCaCl2Calcium chlorideCCWCounterclockwiseCFUColony forming unit
ARGAntibiotic-resistance genesB cellsB lymphocytesBUSCOBenchmarking Universal Single-Copy OrthologsCaCl2Calcium chlorideCCWCounterclockwiseCFUColony forming unit
B cellsB lymphocytesBUSCOBenchmarking Universal Single-Copy OrthologsCaCl2Calcium chlorideCCWCounterclockwiseCFUColony forming unit
BUSCOBenchmarking Universal Single-Copy OrthologsCaCl2Calcium chlorideCCWCounterclockwiseCFUColony forming unit
CaCl2Calcium chlorideCCWCounterclockwiseCFUColony forming unit
CCWCounterclockwiseCFUColony forming unit
CFU Colony forming unit
CheY ^P Chemotaxis signaling molecule phospho-CheY
CpG Cytosine-phosphorothioate-guanine
CW Clockwise
cyclic-di-GMP Cyclic dimeric guanosine monophosphate
DEG Database of Essential Genes
DNA Deoxyribonucleic acid
DOF Department of Fisheries Malaysia
dpc Days post challenge
dpi Days post immunization
DVS Department of Veterinary Services
ELISA Enzyme-linked immunosorbent assay
EPS Exopolysaccarides
FAO Food and Agriculture Organization

fap	Flagellin-associated protein
FCA	Freund's complete adjuvant
FIA	Freund's incomplete adjuvant
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase
GDP	Gross domestic product
HCN	Hydrogen cyanide
HEPA	High-efficiency particulate absorbing
IAA	Indole-3-acetic acid
IFN	Interferon
Ig	Immunoglobulin
IL-1β	Interleukin-1 ^β
IL-8	Interleukin-8
IPTG	Isopropyl β- d-1-thiogalactopyranoside
IUCN	International Union for the Conservation of Nature
Lao PDR	Lao People's Democratic Republic
LB	Luria-Bertani
LKIM	Fisheries Development Authority of Malaysia
LPNS	List of Prokaryotic Names with Standing
LPS	Lipopolysaccharide
MAC	Membrane attack complex
MAFI	Ministry of Agricultural and Food Industry
MHC I	Major histocompatibility complex class I
MHC II	Major histocompatibility complex class II
MLSA	Multilocus sequence analysis
MT	Metric tonnes

NaH ₂ PO ₄	Monosodium phosphate
NAP	National Agrofood Policy
NCBI	National Center for Biotechnology Information
NCCs	Non-specific cytotoxic cells
NETs	Neutrophil extracellular traps
NO	Nitric oxide
OD600	Optical density at 600 nm
PBL	Peripheral blood leukocytes
PBS	Phosphate-buffered saline
PCR	Polymerase chain reaction
PGAP	Prokaryotic Genome Annotation Pipeline
PGPR	Plant growth-promoting rhizobacteria
PUFA	Polyunsaturated fatty acid
PVCs	Potential vaccine candidates
RND	Resistance-Nodulation-Division
ROS	Reactive oxygen species
rpm	Revolutions per minute
RPS	Relative percentage of survival
rRNA	Ribosomal ribonucleic acid
S.O.C. Medium	Super optimal medium with catabolic repressor medium
SDS	Sodium dodecyl sulfate
SDS-PAGE	Sodium dodecyl-sulfate polyacrylamide gel electrophoresis
T cells	T lymphocytes
Tc cells	Cytotoxic T-cells
TCS	Two-component signal

TGF-β	Transforming growth factor-β
Th cells	Helper T cells
TLR	Toll-like receptor
TNF-α	Tumor necrosis factor-α
Tris-HCl	Tris Hydrochloride
USDA	United States Department of Agriculture
VFDB	Virulence Factor Database
WC-MALDI-TOF MS	Whole-cell matrix-assisted laser-desorption time-of-flight mass spectrometry

CHAPTER 1

INTRODUCTION

Aquaculture involves the cultivation of aquatic organisms such as fish, crustaceans, mollusks, and even aquatic plants in a regulated fashion to allow the independence of wild catches. It is emerging as an important economic agribusiness, worldwide. According to Food and Agriculture Organization (FAO), global aquaculture production hit a recordbreaking 122.6 million metric tons (MT) in 2020, with China alone contributing 57% of the global aquaculture volume (FAO, 2022). The increasing demand for aquaculture production stems from the fact that the wild harvesting of numerous seafood species has already reached or surpassed the maximum sustainable yield (Dulvy et al., 2021). As a result, aquaculture offers a viable alternative, enabling farmers to cultivate these species in controlled environments and thus easing the burden on wild stocks. Consequently, this approach holds the potential to restore depleted wild stocks and aid in the recovery of endangered and threatened species in the future (Osathanunkul & Suwannapoom, 2023). However, the fish that are kept in captivity are more prone to infection as the fish are reared at higher densities than wild individuals, which enables pathogens to spread quickly (Bouwmeester et al., 2021). Consequently, disease outbreaks pose a significant challenge to productivity and lead to substantial economic losses in the aquaculture industry.

Tor tambroides, locally known as "kelah merah" in Peninsular Malaysia or empurau in Sarawak, is a promising freshwater fish species from the Cyprinidae family. The cultivation interest in this species arises from its significant cultural and socioeconomic importance, encompassing its roles as food, ornamental, and sporting fish (Lau et al., 2021). Due to the decline in natural populations and distribution of *T. tambroides*, there has been a pronounced surge of interest in artificial propagation, for aquaculture production and conservation purposes (Ng & Andin, 2011).

The infectious diseases in fish are often caused either by bacteria, fungi, viruses, and parasites. Among them, bacteria pathogens account for the majority of diseases in fish farming (Dhar, 2014). Diverse *Pseudomonas* spp. are pathogenic to fish, resulting in significant economic losses in the aquaculture sector. Fish pathogenic pseudomonads include *Pseudomonas aeruginosa*, *P. putida*, *P. luteola*, *P. fluorescens*, *P. koreensis*, *P. anguilliseptica*, *P. baetica*, *P. chlororaphis*, *P. plecoglossicida*, and *P. pseudoalcaligenes* (Austin & Austin, 2016). The mortality of diseased cultured *Tor tambroides* was associated with *P. koreensis*. The diseased fish displayed scale loss, exophthalmia, abdominal swellings, and some haemorrhaging at the fins and gills (Kho et al., 2023). *P. koreensis* was also described as the causal agent of eye lesions in golden mahseer (*Tor putitora*) from India (Shahi & Mallik, 2014).

The common practice in treating bacterial infections involves the application of antibiotics. However, the long-term use and misuse of antibiotics in the aquaculture industry have reportedly caused many adverse effects on humans, fish, animals, and the environment. For instance, the unregulated use of antibiotics in aquaculture exerted a selective pressure on aquatic bacterial species, and thus generated reservoirs of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) in the aquatic environment. From these reservoirs, ARB from the aquatic environment may reach humans directly or the ARGs may disseminate to other bacteria through horizontal gene transfer, eventually reaching human pathogens (Amarasiri et al., 2020).

Vaccination is one of the alternatives that have been recommended to be employed in the management of aquaculture as it has been successful in preventing or reducing the