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ABSTRACT 

The slow-release property of biochar-based fertilizer is still facing limitation and it can be 

overcome by integrating encapsulating technology and biochar-based fertilizer. Starch has 

been introduced as an encapsulating material due to its low-cost and biodegradable nature, 

but the slow-release property is limited by its hydrophilicity. Hence, this study aimed to 

formulate the tapioca starch/PO encapsulated urea-impregnated peppercorn waste derived 

biochar controlled-fertilizer pellet (EUIB pellet), followed by investigation of the effect of 

EUIB pellet on the nitrogen release rate and kinetic, nitrogen leaching, water retention and 

okra plant growth. The CCD was utilized to investigate the effect of pyrolysis temperature, 

residence time and urea:biochar ratio on the nitrogen content. The optimum condition to 

synthesize urea-impregnated peppercorn derived biochar-based fertilizer powder (UIB 

powder) was 400 °C pyrolysis temperature, 120 minutes residence time and 0.6 urea:biochar 

ratio which resulted in a nitrogen content of 16.07%. The acidic surface functional groups 

and hydrophilicity decreased with increasing pyrolysis temperature. In contrast, the changes 

of acidic surface functional group and hydrophilicity were insignificant when residence time 

increased. The biofilm formulated using 8g of tapioca starch and 0.12 µL showed the lowest 

water absorption ability and was employed to encapsulate the urea-impregnated biochar-

based. The EUIB pellet had the greater crushing strength than urea-impregnated peppercorn 

derived biochar-based fertilizer pellet (UIB pellet). The UIB and EUIB pellets achieved 

complete nitrogen release after 90 minutes and 330 minutes, respectively. The Korsmeyer-

Peppas model best described the nitrogen release mechanism of UIB and EUIB pellets. The 

enhancement of water retention ratio of UIB and EUIB pellets were more significant in the 

sandy-textural soil than clayey-textural soil. The nitrogen content of pure urea and UIB pellet 

was completely leached from the sand after two and three leaching activities while the 
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nitrogen of EUIB pellet was completely leached from the sand after five leaching activities. 

The EUIB pellet has enhanced the shoot length, root length, number of leaves, area of leaves, 

wet weight and dry weight of the okra plant as compared to UIB pellet, pure urea and control 

experiment. In conclusion, the EUIB pellet formulated in this study has the potential to be 

utilized as a slow/controlled-release fertilizer for soil amendment. 

. 

Keywords: Peppercorn waste biochar; tapioca starch/palm oil biofilm; slow/controlled-

release fertilizer; leaching; water retention  
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Sintesis Kanji Ubi Kayu/Minyak Sawit Terkapsul Urea Diresapi Lada Biochar Baja 

Pelepasan Terkawal untuk Pindaan Tanah 

ABSTRAK 

Sifat pelepasan lambat bagi baja berasaskan biochar masih terbatas dan ia boleh diatasi 

dengan menyepadukan teknologi pembungkusan dan baja berasaskan biochar. Kanji telah 

diperkenalkan sebagai bahan pembungkus kerana sifat kos rendah dan boleh 

terbiodegradasi, tetapi sifat pelepasan perlahan dihadkan oleh hidrofiliknya. Oleh itu, 

kajian ini bertujuan untuk merumuskan kanji ubi kayu/PO terkapsul urea-impregnated lada 

jagung yang diperolehi pelet baja terkawal biochar (EUIB pellet), diikuti dengan 

penyiasatan kesan pelet EUIB ke atas kadar pelepasan nitrogen dan kinetik, larut lesap 

nitrogen, air. pengekalan dan pertumbuhan pokok bendi. CCD digunakan untuk menyiasat 

kesan suhu pirolisis, masa tinggal dan nisbah urea:biochar ke atas kandungan nitrogen. 

Keadaan optimum untuk mensintesis serbuk baja berasaskan biochar (serbuk UIB) yang 

diresapi urea biji lada adalah suhu pirolisis 400 °C, masa tinggal 120 minit dan nisbah 0.6 

urea:biochar yang menghasilkan kandungan nitrogen sebanyak 16.07%. Kumpulan 

berfungsi permukaan berasid dan hidrofilik menurun dengan peningkatan suhu pirolisis. 

Sebaliknya, perubahan kumpulan berfungsi permukaan berasid dan hidrofilik adalah tidak 

penting apabila masa tinggal meningkat. Biofilem yang dirumus menggunakan 8g kanji ubi 

kayu dan 0.12 µL menunjukkan keupayaan penyerapan air yang paling rendah dan 

digunakan untuk membungkus berasaskan biochar yang diresapi urea. Pelet EUIB 

mempunyai kekuatan penghancuran yang lebih besar daripada pelet baja berasaskan 

biochar (pelet UIB) biji lada yang diresapi urea. Pelet UIB dan EUIB mencapai pelepasan 

nitrogen lengkap selepas 90 minit dan 330 minit, masing-masing. Model Korsmeyer-Peppas 

menggambarkan mekanisme pelepasan nitrogen bagi pelet UIB dan EUIB. Peningkatan 
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nisbah pengekalan air bagi pelet UIB dan EUIB adalah lebih ketara dalam tanah bertekstur 

berpasir berbanding tanah bertekstur liat. Kandungan nitrogen urea tulen dan pelet UIB 

telah larut lesap sepenuhnya daripada pasir selepas dua dan tiga aktiviti larut lesap 

manakala nitrogen bagi pelet EUIB terlarut sepenuhnya daripada pasir selepas lima aktiviti 

larut lesap. Pelet EUIB telah meningkatkan panjang pucuk, panjang akar, bilangan daun, 

luas daun, berat basah dan berat kering pokok bendi berbanding pelet UIB, urea tulen dan 

eksperimen kawalan. Kesimpulannya, pelet EUIB yang dirumus dalam kajian ini berpotensi 

untuk digunakan sebagai baja pelepasan perlahan/terkawal untuk pindaan tanah. .  

Kata kunci: Biochar sisa lada; biofilem kanji ubi kayu/minyak sawit; baja 

perlahan/pelepasan terkawal; larut lesap; pengekalan air 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background of Study 

Soil fertility often refers to the ability of soil to support the growth of agricultural 

plants. Typically, soil fertility is governed by the physical, biological and chemical 

properties of the soil (Igalavithana et al., 2017). Low soil fertility is a major concern in most 

of the region around the world. For instance, the soil from the arid and semi-arid regions 

usually has very low water retention capacity and nutrient contents (Khalifa & Yousef, 

2015). Anthropic activities such as agricultural practices and rapid industrialization may lead 

to low soil fertility by degrading the soil. Climate change has also resulted in low fertility 

soil. Degradation of soil could affect the soil quality such as nutrient depletion, salinization 

and reduce the water retention capacity which restrict the food production. According to the 

United Nation Food and Agriculture Organization (FAO, 2011) and El-Naggar et al. (2019), 

25% of the global agricultural land is classified as highly degraded, 44% is moderately 

degraded and around 10% is recovered from degradation. Improvement of water retention 

in the soil could enhance the plant available water content in the soil for the plant growth 

during drought season. Additionally, it also reduces the water surface run-off which can 

retain nutrient from leaching (Zheng et al., 2013). Low available nutrient content and water 

retention in low fertility soil are the main challenges faced by agricultural sector as these 

factors could reduce the crop production as well as increase the frequency of the irrigation 

and decrease the fertilizer efficiency. Organic and inorganic fertilizers are widely used to 

improve soil quality, however long-term use of inorganic fertilizers for soil fertility and crop 

yield could affect the environment while organic fertilizers mineralize rapidly and need to 
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be replenished frequently to support the plant growth (Syuhada et al., 2016; Oladele et al., 

2019). Besides, excessive fertilizer application causes air and groundwater pollution through 

leaching and volatilization, thus it reduces the nutrient use efficiency by the crops and limits 

the growth performance. 

The rapid population and industrial growth in Malaysia over the years have gradually 

increased the generation of solid waste. Among the various industries, the agricultural sector 

is one of the largest contributors of solid waste. The rapid expansion of the agricultural 

industry has affected the environment with abundant of the solid waste. According to Fadzil 

& Othman (2021), 998 million tonnes of agricultural waste were generated per year globally 

and about 15% of the total waste produced in Asia consisted of agricultural waste. Moreover, 

it has been reported that about 0.122 kg/cap/day of agricultural waste is produced in 

Malaysia, and the generation of the agricultural waste has been predicted to increase to 0.210 

kg/cap/day by 2025 (Fadzil & Othman, 2021). Pepper waste is one of the agricultural wastes 

abundantly produced from the pepper plantation and pepper production industry which needs 

to be properly managed. The disposal of the accumulated pepper waste by open burning 

would cause environmental pollution (Holilah et al., 2021). 

Several technologies have been used to reduce the agricultural solid waste which 

include landfill, thermal, thermochemical and biochemical methods. The biochemical 

method consists of composting, anaerobic digestion and fermentation; thermal method 

consists of incineration whereas thermochemical method includes combustion, pyrolysis and 

gasification. Conventionally, landfilling is the most common practice to manage the solid 

waste, yet it requires a high capacity of space. It has been reported that 40 hectare of land 

area is required for landfilling (Owusu-Nimo et al., 2019). Furthermore, it also contributes 


