

Synthesis of Tapioca Starch/Palm Oil Encapsulated Urea-Impregnated Peppercorn Biochar Controlled-Release Fertilizer for Soil Amendment

Daniel Sim Hong Heng

Master of Engineering 2024

Synthesis of Tapioca Starch/Palm Oil Encapsulated Urea-Impregnated Peppercorn Biochar Controlled-Release Fertilizer for Soil Amendment

Daniel Sim Hong Heng

A thesis submitted

In fulfillment of the requirements for the degree of Master of Engineering

(Chemical Engineering)

Faculty of Engineering UNIVERSITI MALAYSIA SARAWAK 2024

DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Sim

Signature		
Name:	Daniel Sim Hong Heng	
Matric No.:	19020128	
Faculty of Engineering		
Universiti Malaysia Sarawak		
Date :30 January 2024		

ACKNOWLEDGEMENT

First of all, I would like to take this opportunity to thank my supervisor, Associate Professor Ir. Dr Ivy Tan Ai Wei for her willingness to share knowledge, experiences and ultimate guidance throughout the whole research project. I would also like to thank my co-supervisor, Associate Professor Ir. Dr Leonard Lim Lik Pueh for sharing his knowledge and experiences with me throughout the research project. They were always patient in answering all my doubts and never give up on helping me. I would like to thank the laboratory technician in chemical and civil departments for their technical assistance upon use of equipment and instruments. I would like to thank my family and friends for their support. Thank you all.

ABSTRACT

The slow-release property of biochar-based fertilizer is still facing limitation and it can be overcome by integrating encapsulating technology and biochar-based fertilizer. Starch has been introduced as an encapsulating material due to its low-cost and biodegradable nature, but the slow-release property is limited by its hydrophilicity. Hence, this study aimed to formulate the tapioca starch/PO encapsulated urea-impregnated peppercorn waste derived biochar controlled-fertilizer pellet (EUIB pellet), followed by investigation of the effect of EUIB pellet on the nitrogen release rate and kinetic, nitrogen leaching, water retention and okra plant growth. The CCD was utilized to investigate the effect of pyrolysis temperature, residence time and urea: biochar ratio on the nitrogen content. The optimum condition to synthesize urea-impregnated peppercorn derived biochar-based fertilizer powder (UIB powder) was 400 °C pyrolysis temperature, 120 minutes residence time and 0.6 urea: biochar ratio which resulted in a nitrogen content of 16.07%. The acidic surface functional groups and hydrophilicity decreased with increasing pyrolysis temperature. In contrast, the changes of acidic surface functional group and hydrophilicity were insignificant when residence time increased. The biofilm formulated using 8g of tapioca starch and 0.12 µL showed the lowest water absorption ability and was employed to encapsulate the urea-impregnated biocharbased. The EUIB pellet had the greater crushing strength than urea-impregnated peppercorn derived biochar-based fertilizer pellet (UIB pellet). The UIB and EUIB pellets achieved complete nitrogen release after 90 minutes and 330 minutes, respectively. The Korsmeyer-Peppas model best described the nitrogen release mechanism of UIB and EUIB pellets. The enhancement of water retention ratio of UIB and EUIB pellets were more significant in the sandy-textural soil than clayey-textural soil. The nitrogen content of pure urea and UIB pellet was completely leached from the sand after two and three leaching activities while the nitrogen of EUIB pellet was completely leached from the sand after five leaching activities. The EUIB pellet has enhanced the shoot length, root length, number of leaves, area of leaves, wet weight and dry weight of the okra plant as compared to UIB pellet, pure urea and control experiment. In conclusion, the EUIB pellet formulated in this study has the potential to be utilized as a slow/controlled-release fertilizer for soil amendment.

Keywords: Peppercorn waste biochar; tapioca starch/palm oil biofilm; slow/controlledrelease fertilizer; leaching; water retention

•

Sintesis Kanji Ubi Kayu/Minyak Sawit Terkapsul Urea Diresapi Lada Biochar Baja Pelepasan Terkawal untuk Pindaan Tanah

ABSTRAK

Sifat pelepasan lambat bagi baja berasaskan biochar masih terbatas dan ia boleh diatasi dengan menyepadukan teknologi pembungkusan dan baja berasaskan biochar. Kanji telah diperkenalkan sebagai bahan pembungkus kerana sifat kos rendah dan boleh terbiodegradasi, tetapi sifat pelepasan perlahan dihadkan oleh hidrofiliknya. Oleh itu, kajian ini bertujuan untuk merumuskan kanji ubi kayu/PO terkapsul urea-impregnated lada jagung yang diperolehi pelet baja terkawal biochar (EUIB pellet), diikuti dengan penyiasatan kesan pelet EUIB ke atas kadar pelepasan nitrogen dan kinetik, larut lesap nitrogen, air. pengekalan dan pertumbuhan pokok bendi. CCD digunakan untuk menyiasat kesan suhu pirolisis, masa tinggal dan nisbah urea:biochar ke atas kandungan nitrogen. Keadaan optimum untuk mensintesis serbuk baja berasaskan biochar (serbuk UIB) yang diresapi urea biji lada adalah suhu pirolisis 400 °C, masa tinggal 120 minit dan nisbah 0.6 urea:biochar yang menghasilkan kandungan nitrogen sebanyak 16.07%. Kumpulan berfungsi permukaan berasid dan hidrofilik menurun dengan peningkatan suhu pirolisis. Sebaliknya, perubahan kumpulan berfungsi permukaan berasid dan hidrofilik adalah tidak penting apabila masa tinggal meningkat. Biofilem yang dirumus menggunakan 8g kanji ubi kayu dan 0.12 µL menunjukkan keupayaan penyerapan air yang paling rendah dan digunakan untuk membungkus berasaskan biochar yang diresapi urea. Pelet EUIB mempunyai kekuatan penghancuran yang lebih besar daripada pelet baja berasaskan biochar (pelet UIB) biji lada yang diresapi urea. Pelet UIB dan EUIB mencapai pelepasan nitrogen lengkap selepas 90 minit dan 330 minit, masing-masing. Model Korsmeyer-Peppas menggambarkan mekanisme pelepasan nitrogen bagi pelet UIB dan EUIB. Peningkatan nisbah pengekalan air bagi pelet UIB dan EUIB adalah lebih ketara dalam tanah bertekstur berpasir berbanding tanah bertekstur liat. Kandungan nitrogen urea tulen dan pelet UIB telah larut lesap sepenuhnya daripada pasir selepas dua dan tiga aktiviti larut lesap manakala nitrogen bagi pelet EUIB terlarut sepenuhnya daripada pasir selepas lima aktiviti larut lesap. Pelet EUIB telah meningkatkan panjang pucuk, panjang akar, bilangan daun, luas daun, berat basah dan berat kering pokok bendi berbanding pelet UIB, urea tulen dan eksperimen kawalan. Kesimpulannya, pelet EUIB yang dirumus dalam kajian ini berpotensi untuk digunakan sebagai baja pelepasan perlahan/terkawal untuk pindaan tanah.

Kata kunci: Biochar sisa lada; biofilem kanji ubi kayu/minyak sawit; baja perlahan/pelepasan terkawal; larut lesap; pengekalan air

TABLE OF CONTENTS

		Page
DEC	CLARATION	i
ACŀ	KNOWLEDGEMENT	ii
ABS	STRACT	iii
ABS	STRAK	V
TAB	BLE OF CONTENTS	vii
LIST	T OF TABLES	xiii
LIST	T OF FIGURES	XV
LIST	T OF ABBREVIATIONS	xix
CHA	APTER 1 INTRODUCTION	1
1.1	Background of Study	1
1.2	Problem Statement	5
1.3	Research Objectives	6
1.4	Research Gap	6
1.5	Hypothesis	7
1.6	Research Questions	7
1.7	Scope of Study	8

CHAF	CHAPTER 2 LITERATURE REVIEW	
2.1	Agricultural Wastes	9
2.2	Solid Waste Treatment Technologies	10
2.3	Biochar	11
2.4	Factors Affecting Biochar Yield and Characteristic	11
2.4.1	Feedstock	11
2.4.2	Pyrolysis Temperature	13
2.4.3	Residence Time and Heating Rate	14
2.5	Effect of Biochar on Soil Properties and Plant Growth	15
2.5.1	Bulk Density and Porosity	15
2.5.2	Saturated Hydraulic Conductivity	16
2.5.3	рН	16
2.5.4	Nutrient Content	17
2.5.5	Plant Growth	17
2.6	Categorization of Slow/Controlled-release Fertilizer	18
2.6.1	Inorganic Mineral-based Fertilizer	19
2.6.2	Biopolymer-based Fertilizer	20
2.6.3	Superabsorbent Hydrogel-based Fertilizer	24
2.7	Nutrient Release Behaviour of Slow/Controlled-release Fertilizer in Different	
	Soil Type	34

viii

2.8	Synthesis Method of Slow/Controlled-release Fertilizer	35
2.9	Biochar-based Fertilizer	42
2.10	Synthesis Methods of Biochar-based Fertilizer	45
2.11	Encapsulated Biochar-based Fertilizer	47
2.12	Nutrient Bonding and Release Mechanism	57
2.13	Economic Assessment	61
2.14	Slow/Controlled-release Fertilizer for Soil Amendment	62
2.14.1	Water Retention	62
2.14.2	Nutrient Leaching	64
2.14.3	Volatilization of Ammonia	66
2.14.4	Plant Growth	68
2.15	Summary	69
СНАР	TER 3 METHODOLOGY	71
3.1	Outline of Methodology	71
3.2	Materials	72
3.3	Phase 1: Synthesis of UIB Powder	73
3.3.1	Design of Experiment	73
3.3.2	Regression and Statistical Analyses	75
3.3.3	Synthesis of Peppercorn Waste-based Biochar and UIB Powder	76

3.3.4	Determination of Nitrogen Content of Urea-Impregnated Biochar-based	
	Fertilizer	76
3.3.5	pH and EC	79
3.3.6	Surface Morphology and Elemental Composition	79
3.3.7	Surface Chemistry	80
3.3.8	Surface Area and Total Pore Volume	80
3.4	Phase 2: Formulation of Tapioca Starch/PO Encapsulated Biochar-based	
	Fertilizer	80
3.4.1	Synthesis of Biofilm	80
3.4.2	Water Absorption Analysis of Biofilm	81
3.4.3	Surface Chemistry of Selected Biofilm	81
3.4.4	Synthesis of UIB and EUIB Pellets	82
3.4.5	Surface Morphology and Elemental Composition	83
3.4.6	Surface Chemistry	83
3.4.7	Crushing Strength	84
3.5	Phase 3: Determination of the Effect of EUIB Pellet on Nitrogen Release in	
	Water, Release Kinetic, Nitrogen Leaching in Sand, Water Retention in Sandy	
	and Clayey-Textural Soil and Plant Growth in Sandy-Textural Soil	84
3.5.1	Nitrogen Release Behaviour in Water	84
3.5.2	Nitrogen Release Kinetic Model	85
3.5.3	Water Retention Behaviour	86

3.5.4	Nitrogen Leaching in Sand	87
3.5.5	Plant Growth	88
CHAI	PTER 4 RESULTS AND DISCUSSION	90
4.1	Overview	90
4.2	Phase 1: Synthesis of Urea-Impregnated Biochar-based Fertilizer	90
4.2.1	Regression Model Development and Analysis of Variance	90
4.2.2	Interactive Effect of Pyrolysis Temperature and Residence Time on Nitrogen	
	Content of UIB Powder	95
4.2.3	Interactive Effect of Pyrolysis Temperature and Urea:Biochar Ratio on	
	Nitrogen Content of UIB Powder	98
4.2.4	Interactive Effect of Residence Time and Urea:Biochar Ratio on Nitrogen	
	Content of UIB Powder	99
4.2.5	Optimization of Nitrogen Content of UIB Powder	100
4.2.6	pH and EC of Peppercorn Waste-based Biochar and UIB Powder	102
4.2.7	Surface Morphology of Peppercorn Waste-based Biochar and UIB Powder	104
4.2.8	Surface Chemistry of Peppercorn Waste-based Biochar and UIB Powder	105
4.2.9	Elemental Composition of Peppercorn Waste-based Biochar and UIB Powder	110
4.2.10	Surface Area and Total Pore Volume of Peppercorn Waste-based Biochar and	
	UIB Powder	113
4.3	Phase 2: Formulation of Tapioca Starch/PO Encapsulated Biochar-based	
	Fertilizer	114

4.3.1	Water Absorption of Tapioca Starch/PO Biofilm	114
4.3.2	Surface Chemistry of Tapioca Starch and Tapioca Starch/PO Biofilm	116
4.3.3	pH, EC, Surface Morphology and Surface Chemistry of UIB and EUIB Pellet	118
4.3.4	Crushing Strength of UIB and EUIB Pellets	122
4.3.5	Comparison of Nitrogen Content of Different Biochar-based Fertilizer	123
4.4	Phase 3: Application Efficiency of EUIB Pellet	126
4.4.1	Cumulative Release Rate of Nitrogen	126
4.4.2	Nitrogen Release Kinetics	131
4.4.3	Elemental Composition of UIB and EUIB Pellets Before and After Nitrogen	
	Release Analysis in Water	137
4.4.4	Water Retention Behaviour in Clayey and Sandy-Textural Soil	140
4.4.5	Nitrogen Leaching in Sand	142
4.4.6	Plant Growth	143
CHAI	PTER 5 CONCLUSION AND RECOMMENDATIONS	148
5.1	Conclusion	148
5.2	Recommendations	149
REFERENCES 150		
APPENDICES 1		195

LIST OF TABLES

Table 2.1	Nutrient release behaviour of various slow/controlled release	
	fertilizers	28
Table 2.2	Synthesis methods of slow/controlled release fertilizers	38
Table 2.3	Synthesis methods of biochar-based and encapsulated biochar-based	51
	fertilizers	51
Table 3.1	Central composite design matrix and results	74
Table 4.1	Central composite design matrix and results	92
Table 4.2	Analysis of variance (ANOVA) for quadratic regression model for	
	nitrogen content of urea-impregnated biochar	93
Table 4.3	Model validation	101
Table 4.4	pH and EC level of the peppercorn waste derived biochar and UIB	
	powder.	104
Table 4.5	Elemental composition of peppercorn waste-based biochar and UIB	
	powder	112
Table 4.6	Surface area and total pore volume of peppercorn-based biochar and	
	UIB powder.	114
Table 4.7	pH and EC level of UIB and EUIB pellets	120

Table 4.8	Comparison of nitrogen content of different biochar	124
Table 4.9	Comparison of nitrogen release behaviour of various slow/controlled- release fertilizers	128
Table 4.10	Parameters of different kinetic models for urea-impregnated biochar (UIB) and encapsulated urea-impregnated biochar (EUIB)	137
Table 4.11	Elemental composition of UIB and EUIB pellet before nitrogen release in water.	138
Table 4.12	Elemental composition of UIB and EUIB pellet after nitrogen releasing in water.	139
Table 4.13	Amount of mg N leached from UIB and EUIB pellets	143
Table 4.14	Parameters of plant growth for control, pure urea, UIB pellet and EUIB	
	pellet treatments.	146

LIST OF FIGURES

		Page
Figure 2.1	Release performance of urea for (a) lnHL-outHB, (b) uniform coating,	
	and (c) lnHB-outHL (Dai et al., 2020).	22
Figure 2.2	Schematic diagram of biochar-based fertilizer synthesis via (a)	
	impregnation method, (b) co-pyrolysis method, and (c) mixed	
	granulation method.	47
Figure 2.3	Comparison of conventional, biochar-based and encapsulated biochar-	
	based fertilizers.	56
Figure 2.4	Schematic diagram of various slow/controlled release fertilizers: (a)	
	coated type fertilizer, (b) hydrogel-based fertilizer, (c) biochar-based	
	fertilizer, and (d) encapsulated biochar-based fertilizer.	56
Figure 2.5	Diffusion mechanism of encapsulated biochar-based fertilizer: (a)	
	biochar-based fertilizer with encapsulating material, (b) water	
	molecules move or penetrate into the capsule, and (c) nutrient released	
	through the encapsulating material.	60
Figure 2.6	Water retention capacities of sandy soils mixed with (a) commercial	
	conditioner, (b) methylcellulose-based hydrogel, and (c)	
	hydroxypropyl methylcellulose-based hydrogel (Chen and Chen,	
	2019).	64
Figure 3.1	Experimental Flow Chart	71

Figure 3.2	Digestion process	77
Figure 3.3	Distillation process	78
Figure 3.4	Titration process	79
Figure 3.5	Schematic diagram of the synthesis process of EUIB pellet	83
Figure 3.6	Sand column leaching set-up	88
Figure 3.7	Schematic diagram of the sand column leaching	88
Figure 4.1	Diagnostics plot for nitrogen content using (a) normal plot of residuals and (b) predicted versus actual value	95
Figure 4.2	Response surface plot of pyrolysis temperature and residence time on nitrogen content	97
Figure 4.3	Interaction of urea and acidic functional groups of biochar(Wang et al., 2021b)	97
Figure 4.4	Response surface plot of pyrolysis temperature and urea:biochar ratio on nitrogen content	99
Figure 4.5	Response surface plot of residence time and urea:biochar ratio on nitrogen content	100
Figure 4.6	Scanning electron micrographs (1000x) of peppercorn waste-based biochar synthesized at (a) 400°C and 60 minutes, (b) 400°C and 120 minutes, (c) 600 °C and 120 minutes and (d) UIB powder (optimum	105
	synthesis condition)	105

Figure 4.7	FTIR spectra of peppercorn waste-based biochar synthesized at (a)	
	400°C and 60 minutes, (b) 400°C and 120 minutes, (c) 600 °C and 120	
	minutes and UIB powder (optimum synthesis condition)	109
Figure 4.8	Water absorption of biofilm synthesized using different formulation of tapioca starch/palm oil.	115
Figure 4.9	Hydrogen bonding interaction between starch and palm oil.	116
Figure 4.10	FTIR spectra of (a) tapioca starch biofilm and (b) tapioca starch/PO	
	biofilm	118
Figure 4.11	FTIR spectra at 2929 cm ⁻¹ (green) tapioca starch biofilm and (blue)	110
		118
Figure 4.12	Scanning electron micrographs of thickness of the biofilm (cross-	
	section of the EUIB pellet-25x magnification)	120
Figure 4.13	Scanning electron micrographs of (1000x magnification) (a) EUIB-top view and (b) UIB pellets	121
Figure 4.14	FTIR spectra of (a) UIB pellet and (b) EUIB pellet.	122
Figure 4.15	Cumulative nitrogen release of pure urea, urea-impregnated biochar	
	(UIB) and encapsulated urea-impregnated biochar (EUIB).	127
Figure 4.16	Zero order release kinetic of (a) UIB pellet and (b) EUIB pellet	133
Figure 4.17	First order release kinetic of (a) UIB pellet and (b) EUIB pellet)	134
Figure 4.18	Higuchi release kinetic of (a) UIB pellet and (b) EUIB pellet	135

Figure 4.19	Korsmeyer-peppas release kinetic of (a) UIB pellet and (b) EUIB	
	pellet	136
Figure 4.20	Water retention ratio of control, urea-impregnated biochar (UIB) and	
	encapsulated urea-impregnated biochar (EUIB) in (a) clayey-textural	
	soil and (b) sandy-textural soil.	141
Figure 4.21	Nitrogen leaching and cumulative percentage nitrogen leaching of (a)	
	pure urea, (b) UIB pellet and (c) EUIB pellet.	143
Figure 4.22	Micro diagram of okra potted plant with treatment of (a) control, (b)	
	pure urea, (c) UIB pellet and (d) EUIB pellet	147
Figure 4.23	Okra plant after 30 days of incubation with treatment of (a) control,	
	(b) pure urea, (c) UIB pellet and (d) EUIB pellet	147

LIST OF ABBREVIATIONS

AAc	Acrylic acid
Aam	Acrylamide
APS	Ammonium persulfate
BCN	Corncob biochar impregnated with nutrient
BCRNF	Biochar/bentonite/PVA/urea
CCD	Central composite design
CEC	Cation exchange capacity
DAP	Diammonium phosphate
EC	Electrical conductivity
EUIB	Tapioca starch/PO encapsulated urea-impregnated peppercorn waste derived biochar controlled-release fertilizer
IPDI	Isophoronediisocyante
KPS	Potassium persulfate
MAP	Monoammonium phosphate
MBA	N,N'-Methylenebiscarylamide
MMt	Montmoriilonite
NUE	Nutrient Use Efficiency
PHG-g-CNT/urea	Polymer hydrogel-g-natural cotton ball microfiber/urea
PLB	Poultry litter biochar
PMDI	Polymethylenediisocyanate
РО	Palm oil
PVA	Polyvinyl alcohol
PVP	Polyvinylpyrrolidone

RSE	Relative standard error
Si-PU	Poldimethylsiloxane-polyurethane
TDI	2,6-diisocuamatotoluene
TSP	Triple superphosphate
UIB	Urea-impregnated peppercorn waste derived biochar fertilizer

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Soil fertility often refers to the ability of soil to support the growth of agricultural plants. Typically, soil fertility is governed by the physical, biological and chemical properties of the soil (Igalavithana et al., 2017). Low soil fertility is a major concern in most of the region around the world. For instance, the soil from the arid and semi-arid regions usually has very low water retention capacity and nutrient contents (Khalifa & Yousef, 2015). Anthropic activities such as agricultural practices and rapid industrialization may lead to low soil fertility by degrading the soil. Climate change has also resulted in low fertility soil. Degradation of soil could affect the soil quality such as nutrient depletion, salinization and reduce the water retention capacity which restrict the food production. According to the United Nation Food and Agriculture Organization (FAO, 2011) and El-Naggar et al. (2019), 25% of the global agricultural land is classified as highly degraded, 44% is moderately degraded and around 10% is recovered from degradation. Improvement of water retention in the soil could enhance the plant available water content in the soil for the plant growth during drought season. Additionally, it also reduces the water surface run-off which can retain nutrient from leaching (Zheng et al., 2013). Low available nutrient content and water retention in low fertility soil are the main challenges faced by agricultural sector as these factors could reduce the crop production as well as increase the frequency of the irrigation and decrease the fertilizer efficiency. Organic and inorganic fertilizers are widely used to improve soil quality, however long-term use of inorganic fertilizers for soil fertility and crop yield could affect the environment while organic fertilizers mineralize rapidly and need to

be replenished frequently to support the plant growth (Syuhada et al., 2016; Oladele et al., 2019). Besides, excessive fertilizer application causes air and groundwater pollution through leaching and volatilization, thus it reduces the nutrient use efficiency by the crops and limits the growth performance.

The rapid population and industrial growth in Malaysia over the years have gradually increased the generation of solid waste. Among the various industries, the agricultural sector is one of the largest contributors of solid waste. The rapid expansion of the agricultural industry has affected the environment with abundant of the solid waste. According to Fadzil & Othman (2021), 998 million tonnes of agricultural waste were generated per year globally and about 15% of the total waste produced in Asia consisted of agricultural waste. Moreover, it has been reported that about 0.122 kg/cap/day of agricultural waste is produced in Malaysia, and the generation of the agricultural waste has been predicted to increase to 0.210 kg/cap/day by 2025 (Fadzil & Othman, 2021). Pepper waste is one of the agricultural wastes abundantly produced from the pepper plantation and pepper production industry which needs to be properly managed. The disposal of the accumulated pepper waste by open burning would cause environmental pollution (Holilah et al., 2021).

Several technologies have been used to reduce the agricultural solid waste which include landfill, thermal, thermochemical and biochemical methods. The biochemical method consists of composting, anaerobic digestion and fermentation; thermal method consists of incineration whereas thermochemical method includes combustion, pyrolysis and gasification. Conventionally, landfilling is the most common practice to manage the solid waste, yet it requires a high capacity of space. It has been reported that 40 hectare of land area is required for landfilling (Owusu-Nimo et al., 2019). Furthermore, it also contributes