

Development of Rapid Alignment Polisher's Hand (RAPH) for Crosssection Polishing in Physical Failure Analysis

Handie Bin Ahmataku

Master of Enginering 2024 Development of Rapid Alignment Polisher's Hand (Raph) for Cross-Section Polishing in Physical Failure Analysis

Handie Bin Ahmataku

A thesis submitted

In fulfillment of the requirements for the degree of Master of Engineering

(Mechanical Engineering)

Faculty of Engineering UNIVERSITI MALAYSIA SARAWAK 2024

DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

handie

Signature Name: Handie Bin Ahmataku Matric No.: 16020092 Faculty of Engineering Universiti Malaysia Sarawak Date : 6th February 2024

ACKNOWLEDGEMENT

First and foremost, I would like to express my greatest gratitude to Allah S.W.T for His abundant blessings and for the idea for me to successfully accomplish this thesis. Secondly, I am very grateful to my supervisor, Dr. Shahrol Bin Muhamaddan, my co-supervisor, Dr. Mahsuri binti Yusof and Dr. Aidil Azli bin Alias for all guidance and supervision. Without their great support and guidance, it would have been very difficult to complete this thesis. I also wish to express my gratitude to all my friends in Failure Analysis Laboratory Kuching that also indirectly support for this thesis.

Next, I also indebted to my parents, my spouse, Dr. Kuryati Kipli, my daughters and my son for their moral, time support and understanding myself as a student and a worker. My sincere acknowledgment goes also to my company, X-Fab Sarawak Sdn. Bhd for the education subsidy, and support of using the equipment for research and development of this project. Finally, I would like to thank my superior, Tan Hong Mui, for her encouragement to pursue my master's degree and specifically the completion of this degree.

ABSTRACT

X-FAB uses patented process technology to produce analog/mixed-signal ICs. As a pureplay foundry, X-FAB does not produce its own integrated circuits (ICs), instead manufacturing them using designs produced by its clients or other parties in collaboration, mostly using X-FAB's portfolio of modular, highly specialized proprietary process technologies and intellectual property (IP). Chemical Mechanical Polishing (CMP) crosssectioning technique has been recognized for many years as failure analysis fundamental tool for examining depth-related profile of a sample. Therefore, it is a precious tool in semiconductor industry as its exclusive characteristic of providing entry into a third dimension in a two-dimension world. Process levels can be micro sectioned and capability to inspect layer-by-layer made this method crucial in gathering information on fabrication parameters and on defects. Another advantage of CMP cross-sectioning is its wide area of observation as compared to other cross-sectioning methods such as Focus Ion Beam (FIB). CMP cross-sectioning requires high skilled failure analyst and require couple of hours to complete a section of reasonable complexity of target. Typically, CMP cross-sectioning is performed in three basic steps: physical mounting, coarse grind and final polish. These three steps are time consuming particularly during coarse grind, the analyst need to realign the target before it reaches to final polish. Any technology that can reduce the polishing turnaround time is most welcomed on this day. Allied High-Tech Products. Inc. is a wellknown maker of precision grinders and polishers. This research will provide a new idea of design and fabrication of the anticipated polisher fixture called Rapid Alignment Polisher Stage (RAPS), which will assist a fast, controllable, and accurate target alignment which current method is lacked off. This product is believed able to decrease the polishing turnaround time significantly.

Keywords: Physical Failure Analysis (PFA), Silicon on Insulator (SOI), Chemical Mechanical Polishing (CMP)

Pembangunan Rapid Alignment Polisher's Hand (Raph) untuk Penggilapan Keratan Rentas dalam Analisis Kegagalan Fizikal

ABSTRAK

Teknik penarataan kimia dan mekanikal (CMP) telah diiktiraf selama bertahun-tahun sebagai alat analisis kegagalan asas untuk memeriksa profil kedalaman. Ia adalah alat eksklusif dalam industri semikonduktor sebagai pengukuran ke dimensi ketiga dalam dunia dua dimensi. Tahap penganalisisan adalah pada sekala micro sectioned dan kemampuan untuk memeriksa lapisan demi lapisan membuat kaedah ini penting dalam mengumpul parameter fabrikasi dan kecacatan. Satu lagi kelebihan CMP ialah keluasan pemerhatiann yang lebih berbanding dengan kaedah keratan restas yang lain seperti Focus Ion Beam (FIB). Penganalisis yang mahir memerlukan beberapa jam untuk melengkapkan satu kerja keratan rentas struktur sasaran. Secara tipikal, CMP keratan rentas dilakukan dalam tiga langkah asas: pemasangan fizikal, penrataan kasar (rough polishing) dan penrataan akhir (final polishing). Langkah ini memakan masa terutama untuk penjajaran penrataan kasar. Penganalisis perlu memastikan penjajran yang tempat sebelum mencapai penrataan akhir. Teknologi yang boleh mengurangkan masa penjajaran rataan adalah sangat diperlukan sekarang untuk menigkatkan produktiviti penrataan. Penyelidik mempunyai pengalaman selama 14 tahun menggunakan alat Allied MultiPrep TM Polishing. Allied High Tech Products. Inc. adalah pembuat terkenal dan terbaik alat penrataan (polishing machine). Penyelidikan ini akan memberikan idea baru reka bentuk dan fabrikasi satu bahagian dalam mesin penrataan yang dipanggil Rapid Alignment Polisher's Hand (RAPH). Ini justeru membantu mengurangkan masa penjajaran sasaran dengan kawalan yang cepat dan tepat disamping mengekalkan mutu penrataan keratan rentas (cross-section polishing).

Kata kunci: Kegagalan Fizikal (PFA)l, Silikon Pada Penebat (SOI), Penrataan Kimia Mekanikal (CMP).

TABLE OF CONTENTS

		Page
DEC	CLARATION	i
АСК	KNOWLEDGEMENT	ii
ABS'	TRACT	iii
ABSZ	TRAK	v
TAB	BLE OF CONTENTS	vii
LIST	Γ OF TABLES	xii
LIST	Γ OF FIGURES	xiii
LIST	Γ OF ABBREVIATIONS	xix
СНА	APTER 1: INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	3
1.3	Objectives	5
1.4	Research Limitation	5
1.4	Organization of the thesis	5
СНА	APTER 2: LITERATURE REVIEW	7
2.1	Introduction	7
2.2	CMP In General	7

2.3	CMP Challenges in The Semiconductor Industry	13
2.4	CMP Cross-Sectioning, Parallel Lapping Methods, Techniques, And Steps	13
2.4.1	CMP Cross-sectioning Methods, Techniques, and Steps	15
2.4.2	CMP Parallel Lapping Methods, Techniques, and Steps	19
2.4.3	Chemical Mechanical Polishing application in semiconductor industry	23
2.5	Etchant to remove Polysilicon	27
2.6	Etchant to Remove Oxide	33
2.7	Silicon-On-Insulator, SOI	35
2.7.1	Advantages of SOI over Bulk Silicon	36
2.7.2	SOI Challenges in Physical Failure Analysis (PFA) Technique in Laboratory	37
2.8	Machines or Fixtures that used Calibration in Failure Analysis Laboratory	38
2.9	Summary	42
CHA	PTER 3: RESEARCH METHODOLOGY	43
3.1	Overview	43
3.2	Project Plan	43
3.3	Research Methodology Flow	44
3.3.1	Delayer Sample Preparation	45
3.3.2	Assessment of Bulk CMOS Delayering Method	46
3.3.3	Proposed Pre-Processing Delayering of SOI Wafer	47
3.3.4	Parallel Lap Polishing	48

3.3.5	Poly-etchant Wet Etching	58
3.3.6	Design of Experiment (DOE) of Diluted and Time Controlled Hydrofluoric	
	Acid Etching	60
3.3.7	Design of Experiment with MiniTab 17	61
3.4	Design and Fabricate RAPH (Rapid Alignment Polisher Hand) Prototype	62
3.4.1	RAPH's Prototype A	62
3.4.2	RAPH's Prototype 'A' Weakness	63
3.4.3	RAPH's Prototype B	65
3.4.4	RAPH Performance Evaluation	68
3.4.5	RAPH Straightness Test	69
3.4.6	RAPH Unadjusted versus Adjusted Angle Variance	72
3.4.7	Mount-Unmount Consistency Test	72
3.4.8	Conclusions and Recommendations	73
3.4.9	RAPH Behaviour during High-speed Platen Spinning Test	73
CHAI	PTER 4: RESULTS AND DISCUSSION	75
4.1	Overview	75
4.2	The Use of CMOS Delayering Recipe into SOI Wafer Type	75
4.3	The Reasons for CMOS Delayering Method is Not Suitable for SOI Wafer	
	Туре	78

4.4	Proposed Method to Delayer Silicon on Insulator (SOI) by using a	
	Combination of Parallel Lap Polishing and Diluted and Time Controlled	
	Hydrofluoric Acid Etching	80
4.4.1	Delayer using Parallel Lap Polishing from Passivation Layer to Polysilicon	
	Layer	81
4.4.2	Diluted and Time Controlled Hydrofluoric Acid Etching	84
4.5	RAPH Prototypes Performance Evaluation Result and Discussion	89
4.6	RAPH's Prototype 'A' Weakness	89
4.7	RAPH's Prototype B Used for Evaluation	91
4.8	RAPH Adjustment Straightness Test Results	95
4.8.1	Tabulated Straightness Test Results and Graphical Summaries	96
4.8.2	Discussions on Adjustment Straightness Test Results	100
4.9	RAPH Unadjusted versus Adjusted Angle Variance Test Result	101
4.9.1	Discussions on RAPH Unadjusted versus Adjusted Angle Variance Test	
	Result	106
4.10	Mount-unmount Consistency Test Result	107
4.10.1	Discussions on Mount-unmount Consistency Test	111
4.11	Image Quality Test	112
4.12	RAPH Behaviour during High-Speed Platen Spinning Test Result	113
4.13	Method Application and Result	114
4.13.1	Polishing Very Long and Narrow DTI Line	114

4.14	RAPH Capability	116
4.14.1	Comparison of Conventional Polisher Sample Alignment versus RAPH	
	Sample Alignment Capability	117
4.15	RAPH Accuracy	118
4.16	RAPH Productivity	119
4.16.1	Cost	120
CHAPTER 5: CONCLUSION AND RECOMMENDATIONS		122
5.1	Conclusion	122
5.2	Recommendations	125
REFE	RENCES	127
APPE	APPENDICES	

LIST OF TABLES

		Page
Table 2.1	Slurries used in different stages of CMP Process.	34
Table 2.2	Polishing tool's model and features	38
Table 4.1	Design of Experiment (DOE) result of 7 suggested samples	85
Table 4.2	Straightness Test Conducted to compare traditional manual alignment method and RAPH Method straightness	95
Table 4.3	The wafer sample edge angles measured before and after the RAPH has been adjusted	96
Table 4.4	Tabulated Result of RAPH Unadjusted versus Adjusted Angle Variance	102
Table 4.5	Wafer edge angles after the samples are repeatedly unmounted and then mounted again repeatedly on to the polisher spindle, both with and without RAPH adjustment	107
Table 4.6	RAPH Prototype B is very stable during speed test at 600 rpm polishing Normal operation speed is 200~250 rpm	113
Table 4.7	Capability of Rapid Alignment Polisher' Hand (RAPH) Method Alignment to cut a Very Long DTI Line with a Very Narrow Width	117

LIST OF FIGURES

Figure 1.1	Multi-prep polisher machine	2
Figure 1.2	A parallel lap polishing optical image on IC surface	2
Figure 1.3	Cross-section scanning electron microscopy's image inside IC which consist of active layer, shallow trench isolation (STI) layer, ILD layer, intermetal dielectric (IMD) layer, metal layer and passivation layer	3
Figure 2.1	Low and high-pressure particle	9
Figure 2.2	Surface layer plowing by abrasive particle.	10
Figure 2.3	Development of particle contact with increased pressure.	11
Figure 2.4	Rotary-type CMP tool schematic. schematic diagram of CMP tool	12
Figure 2.5	(a) Allied multi-prep polisher machine. (b) A polisher which capable to do cross-section polishing and parallel lap polishing. (c) Polisher's arm equipped with precision stylus to measure sample feeds	15
Figure 2.6	Attaching 30µm diamond film onto spindle	16
Figure 2.7	Sample mounting for cross-sectioning	16
Figure 2.8	Sample feeding by lowering polisher arm	17
Figure 2.9	9µm diamond film	18
Figure 2.10	Final red polishing pad is used with 0.01µm colloidal silica slurry	19
Figure 2.11	Dial test indicator, horizontal type	19
Figure 2.12	Parallel lapping sample padded on polishing disc	20
Figure 2.13	Parallel lapping sample mounted on fixture	20
Figure 2.14	Parallel lapping pad with colloidal silica suspension slurry	21
Figure 2.15	Parallel lapping pad contacts with upper spindle with fixture attached	22
Figure 2.16	Checking the sample target under optical microscope	22
Figure 2.17	Nanocrystalline diamond film surface to be polished with CMP	23

Figure 2.18	CMP smoothness on NCD film. SEM micrographs of as grown and polished films. CMP was used on three different films for the indicated amount of time under identical conditions. (A) As grown, (B) 1 h CMP film, (C) 2 h, and (D) 4 h	24
Figure 2.19	Kinematic trajectory analysis results. Single particle sliding trajectory at different kinematic conditions, particle position $R=180$ mm, polishing time $t=60$ s; (a) $\alpha=2/3$, $kro=10$; (b) $\alpha=0.97$ $kro = 10$; (c) $\alpha = 1$; (d) $\alpha = 0.97$, $kro = 1$	25
Figure 2.20	Dual wafer polisher setup.	26
Figure 2.21	P Polished Cu thickness normalized to highest thickness vs Cu density normalized to highest density	27
Figure 2.22	Memory structure (Scanning Electron Microscopy cross-section view)	28
Figure 2.23	Post TMAH in scanning electron microscopy (SEM) cross-section image view	28
Figure 2.24	Post HF \rightarrow TMAH (scanning electron microscopy cross-section view)	29
Figure 2.25	Defect localization using emission microscope.	30
Figure 2.26	Optical micrograph of capacitor structure after HF DI. Poly capacitor looks pinkish colour	30
Figure 2.27	Optical Images of Gate Poly (Cell) after Parallel Lapping to polysilicon layer	31
Figure 2.28	Optical micrograph of capacitor structure after SC1 dip. Poly capacitor looks pinkish color	31
Figure 2.29	Optical micrograph of capacitor structure after SC1 dip. Poly capacitor looks colour changed from pinkish to white	32
Figure 2.30	Optical micrograph of capacitor structure after Polysilicon etch. Poly capacitor looks white colour indicating disappearance of polysilicon	32
Figure 2.31	An optical image after removing ILD Oxide layer using 20% HF concentration for 10 minutes. Polysilicon layer	33
Figure 2.32	Metal dishing and dielectric erosion	34
Figure 2.33	Surface topography after three CMP stages.	34
Figure 2.34	Topology of SOI MOSFETS	35
Figure 2.35	ULTRA POL End and edge polisher fixture for parallel lapping only	40

Figure 2.36	Allied multi-prep polisher fixture cross-section and parallel lapping	41
Figure 3.1	Overall research methodology flow chart	44
Figure 3.2	Proposed pre-processing experimentation	45
Figure 3.3	Full process die	45
Figure 3.4	The gate poly delayering process	46
Figure 3.5	The gate poly delayering process flow chart	48
Figure 3.6	Allied multi-prep polisher machine	49
Figure 3.7	Put double sided tape on fixture surface	50
Figure 3.8	Mounting a die on allied multi-prep polisher machine	50
Figure 3.9	Use cotton swab to pressure the die down to make sure stick firmly	50
Figure 3.10	Parallel lap fixture is heated on hotplate and wax is put on it	51
Figure 3.11	Cotton swab is used to spread and thin the wax	51
Figure 3.12	Fixture is removed from hot plate and sample align in between centre and edge of parallel lap fixture	51
Figure 3.13	Mount the parallel lap fixture onto polisher's hand	52
Figure 3.14	Parallel lap polishing cloth	52
Figure 3.15	A quantitative method for sample positioning distance to final polishing cloth	53
Figure 3.16	Distance between bottom of parallel polishing fixture and the platen	54
Figure 3.17	Distance between bottom of parallel polishing fixture and the platen	55
Figure 3.18	Parallel lap fixture is heated on hotplate and wax is put on it	55
Figure 3.19	Parallel lap polishing slurry	56
Figure 3.20	Applying slurry and activate coolant during parallel lap polishing	57
Figure 3.21	Optical image of SOI gate poly (cell) after parallel lap polishing until polysilicon layer	58
Figure 3.22	A Optical image of SOI gate poly (cell) after removing polysilicon layer using poly-etchant solution	59

Figure 3.23	SEM top view image shows small, thin, and dense gate polysilicon's on active, and oxide were removed	60
Figure 3.24	SEM top view image shows mini cell structure nearby DTI	61
Figure 3.25	Prototype A	63
Figure 3.26	Clam piston head out of spec	64
Figure 3.27	Locking Pin – Item 2	64
Figure 3.28	Design of Z groove to lock Z-axis while allowing X and Y-axis to move freely	66
Figure 3.29	RAPH's prototype B based plate design	67
Figure 3.30	RAPH's prototype B bottom plate design	68
Figure 3.31	Micrometre's left and right screws front and top view	69
Figure 3.32	Derivation of the equation where θ angle measured by optical microscopy	70
Figure 3.33	The case when the measured angle (measured counterclockwise) is greater than 90 degrees	70
Figure 3.34	The angle is less than 90 degrees, measured counterclockwise, so the right screw needs to be adjusted downwards to get a 90-degree angle	71
Figure 3.35	Mount and unmount polisher stage to RAPH fixture	73
Figure 3.36	Chemical and mechanical cross-section polishing in operation using RAPH	74
Figure 4.1	Optical images of full process die sample (top metal line with passivation)	75
Figure 4.2	Optical images of gate poly (cell) after applied 49% HF for 2 minutes and cleaned with acetone	76
Figure 4.3	Optical images of gate poly (cell) after applied SC1 solution for 3 minutes and cleaned by acetone	77
Figure 4.4	Optical images of gate poly (cell) poly-etchant solution	78
Figure 4.5	Top silicon die peeled off and damaged during supersonic cleaning	79
Figure 4.6	Challenges of delayering SOI technology wafer compared to bulk CMOS wafer	79
Figure 4.7	SEM top view image shows crack and damage of small, thin, and dense gate cell area on top silicon	81

Figure 4.8	Optical images of gate poly (cell) after parallel lapping polysilicon layer	82
Figure 4.9	Optical images of gate poly (cell) after removing polysilicon layer using poly-etchant solution (20NHO3:8CH3COOH:1HF)	82
Figure 4.10	SEM images of gate poly (cell) after removing polysilicon layer using poly-etchant Solution (20NHO3:8CH3COOH:1HF)	83
Figure 4.11	Structure of interest: small cell below SRAM which contain 24 bits.	84
Figure 4.12	SEM images of gate poly (cell) after immersing in 20% HF for 10 minutes resulted with all 24 bits cleaned (Sample 2)	86
Figure 4.13	SEM image of top silicon cracks due to over-etched DTI trench, (Sample 7)	86
Figure 4.14	Polysilicon and oxides remain on top of silicon surface due to HF under-etch for Sample 1	87
Figure 4.15	Sample 2, remaining BOX holds top silicon from peeled off/cracks	88
Figure 4.16	SEM titled images of an active pattern at cell area after immerse wright etchant solution for 5 seconds. The silicon defect appeared as holes (show by arrows)	88
Figure 4.17	Clam piston head out of spec	90
Figure 4.18	Locking pin – Item 2	90
Figure 4.19	RAPH's prototype B	92
Figure 4.20	RAPH's prototype B 3D view	92
Figure 4.21	RAPH's prototype B front view	93
Figure 4.22	RAPH's prototype B side view	93
Figure 4.23	RAPH's prototype B top view	94
Figure 4.24	Graphical summary of wafer edge angles before RAPH adjustment	97
Figure 4.25	Graphical statistical summary of wafer edge angles after RAPH adjustment	98
Figure 4.26	Equal variances test for wafer edge angles before and after RAPH adjustment	99
Figure 4.27	Boxplot of angles before and after RAPH adjustment.	100
Figure 4.28	Graphical statistical summary of wafer edge angles after repeated polishing of a single wafer sample, without RAPH adjustment xvii	103

Figure 4.29	Graphical statistical summary of wafer edge angles after repeated polishing of another single wafer sample, this time with RAPH adjustment	104
Figure 4.30	Boxplot comparing wafer edge angles without RAPH adjustment (una) with angles after RAPH adjustment (adj)	105
Figure 4.31	The test for equal variances	106
Figure 4.32	Statistic graphical summary of wafer edge angles after the sample is repeatedly unmounted and mounted on the polisher spindle, without RAPH adjustment	108
Figure 4.33	Statistic graphical summary of wafer edge angles after the sample is repeatedly unmounted and mounted on the polisher spindle, with RAPH adjustment	109
Figure 4.34	The boxplot of unmount-mount test wafer edge angles, RAPH versus Regular Polisher Hand (Regular)	110
Figure 4.35	The equal variances test shows significant overlap between the confidence intervals for the standard deviation of wafer edge angles	111
Figure 4.36	SEM result shows a comparable polishing quality of RAPH method as compared to traditional manual alignment	112
Figure 4.37	Top view optical microscope of 835 μm long DTI line with 0.942 μm width	114
Figure 4.38	Top view optical microscope with 1000x. Measurement of DTI Width = $0.942 \mu m$	115
Figure 4.39	Middle seam of DTI line which RAPH is tested to polish from start to end point (polishing line is indicated with yellow dash line)	115
Figure 4.40	DTI voids defect was able to be observed below trench. Method used: RAPH advanced polishing	116
Figure 4.41	Conventional/regular polisher hand cross-sectioning step flow	119
Figure 4.42	Rapid alignment polisher hand cross-sectioning step flow	119

LIST OF ABBREVIATIONS

adj	Adjusted
ANOVA	Analysis of variance
BHF	Buffered Oxide Etch
BOX	Buried oxide
CDA	Compress dry air
СНЗСООН	Acetic Acid
CMOS	Complementary Metal Oxide Semiconductor
СМР	Chemical Mechanical Polishing
Cu	Copper
CVD	Chemical Vapor Disposition
DI	De-ionized
DOE	Design of Experiment
DTI	Deep Trench Isolation
EBR	Edge Bead Removal
FA	Failure Analysis
FLGT	Floating gate
GOX	Gate Oxide
HF	Hydrofluoric
H2O	Water
H2O2	Hydrogen Peroxide
IBM	International Business Machine
IC	Integrated circuits
ILD	Inter-level dielectric layer

IMD	Intermetal Dielectric
IP	intellectual property
Lab	Laboratory
NCD	Nanocrystalline diamond
NHO3	Nitric Acid
NH4OH	Ammonium Hydroxide
PFA	Physical failure analysis
PFIB	Plasma Focus Ion Beam
PI	Polyimide
RAPH	Rapid Alignment Polisher Hand
Rcu	Copper polishing rate
RFIC	Radio frequency integrated circuits
RIE	Reactive Ion Etching
ROI	Region of interest
Rox	Oxide polishing rate
rpm	Radius per minute
SC1	Standard Clean 1
SEM	Scanning Electron Microscopy
SiO2	Silicon Dioxide
SOC	Systems-on-chip
SOI	Silicon on Insulator
SRAM	Random-Access Memory
stdev	Standard deviation
STI	Shallow Trench Isolation
ТМАН	Tetramethylammonium hydroxide

Unadjusted

una

CHAPTER 1

INTRODUCTION

1.1 Research Background

Chemical Mechanical Polishing (CMP) is a basic approach to allow extremely flat and smooth surface be produced at several critical steps in semiconductor manufacturing process flow (Banerjee et al., 2008). International Business Machine (IBM) invented CMP in the semiconductor industry in late 80's to enable more metal layers to be included in their integrated circuits (IC) (Woodie, 2007). The idea was to perform planarization of oxide inter-level dielectric layers (ILD) by depositing metal layer and add another layer of oxide. These layers of oxides must be smooth and not wavy to enable more metal layers to be stacked in IC. Without CMP, layers stacking will follow previous material's topology. This will cause metal short if multiple metal layers are deployed in IC. CMP has been carried out by means of the special liquids containing particles of an abrasive material and alkaline chemical substances (Khmelev et al., 2006). CMP process is used to planarize ILD since last two decades and currently it is employed for tungsten contacts, vias, shallow trench isolation (STI), and for copper interconnects in dual damascene architecture (Banerjee et al., 2008). In X-Fab Sarawak Sdn. Bhd. Failure Analysis (FA) laboratory, Allied Multi-Prep Polisher machine Figure 1.1 uses CMP process to perform a physical sample de-processing. Deprocessing is a process to remove thin film layers which applied in the wafer fab in reverse order during physical failure analysis (PFA) (Wagner, 2001). Allied Multi-Prep Polisher machine is capable to perform sample de-processing using parallel lap and cross-section polishing techniques. Parallel lap polishing technique is employed to delayer or remove thin layers such as Nitrides, Oxides, Aluminium, and low dielectric constant materials inside the