Faculty of Resource Science and Technology

Synthesis and Characterization of Molecularly Imprinted Polymer for
the Removal of Triazine Herbicides from Water Samples

Rachel Marcella anak Roland

Doctor of Philosophy
2024




Synthesis and Characterization of Molecularly Imprinted Polymer for the
Removal of Triazine Herbicides from Water Samples

Rachel Marcella anak Roland

A thesis submitted
In fulfillment of the requirements for the degree of Doctor of Philosophy

(Chemistry)

Faculty of Resource Science and Technology
UNIVERSITI MALAYSIA SARAWAK
2024



DECLARATION

| declare that the work in this thesis was carried out in accordance with the regulations
of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the
work is that of the author alone. The thesis has not been accepted for any degree and is not

concurrently submitted in candidature of any other degree.

Signature
Name: Rachel Marcella anak Roland
Matric No.: 20010014

Faculty of Resource Science and Technology
Universiti Malaysia Sarawak

Date : 30" September 2023



ACKNOWLEDGEMENT

Firstly, I am very grateful for being given the golden opportunity to further my degree in
Doctor of Philosophy at Universiti Malaysia Sarawak (UNIMAS) and now this journey has
come to the finishing line. Thank you to the Zamalah UNIMAS scholarship for sponsoring

years of PhD study in the Faculty of Resource Science and Technology (FRST).

I would like to offer my earnest gratitude towards my main research supervisor Associate
Professor Dr Showkat Ahmad Bhawani, who has constantly supported me throughout my
research and thesis writing with his diligence, encouragement, enthusiasm, and immense
knowledge. Without his endless guidance and keen involvement in every process, my
research thesis would have never been accomplished. To my co-supervisor, Associate
Professor Dr Rafeah binti Wahi, thank you so much for your moral support and motivation

throughout my PhD journey.

I would also like to thank the staff from the Faculty of Resource Science and Technology
(FRST) and the Faculty of Engineering (FENG-Chemical Engineering Department) for their

assistance in properly operating the instruments used in this research.

Finally, 1 must express my profound gratitude to my parents, Mr Roland Aji and Mdm
Angela James for providing me with unfailing support, unending encouragement, and
motivation throughout my years of PhD study and through the process of researching and
writing this thesis. Thank you also to my relatives and great friends especially Ms Collyne
who accompanied me whenever | had to do overtime in the lab until late at night. This

accomplishment would be impossible without them.



ABSTRACT

Cyanazine (CYZ), Ametryn (AME) and Atrazine (ATZ) are mostly utilized 1, 3, 5-triazine
herbicides to control the growth of broadleaf grasses and weeds, however, their extensive
usage has adverse effects on the environment, non-target organisms, and human health.
Therefore, molecularly imprinted polymers (MIPs) were applied to remove triazine
herbicides in the environment. In this study, MIPs of triazine herbicides were synthesized
by precipitation polymerization in the presence of template molecules (CYZ, AME and
ATZ), functional monomers (methacrylic acid, acrylamide, 2-vinylpyirdine, and 4-
vinylpyridine), cross-linker (ethylene glycol dimethacrylate), initiator (azo-bis-
isobutyronitrile), and solvent (toluene and acetonitrile). For comparison study, the non-
imprinted polymers (NIPs) were synthesized without the addition of template molecule. The
Fourier Transform Infra-Red (FTIR) analysis of MIPs of triazine herbicides indicated the
presence of CYZ, AME and ATZ were observed at ~756 cm™, ~1450 cm™?, and ~1389 cm~
! respectively. MIP (AAm) of CYZ had its maximum adsorption efficiency in 6 ppm CYZ
solution at pH 7, 0.1 g of polymer and 240 mins of contact time. MIP (MAA) of AME had
its highest adsorption efficiency in 7 ppm AME solution at pH 7, 0.1 g of polymer and 210
mins of contact time. MIP (2VP) of ATZ exhibited its maximum adsorption efficiency in 8
ppm of ATZ solution at pH 7, 0.3 g of polymer and 15 mins of contact time. The
thermogravimetric analysis (TGA) of MIPs of triazine herbicides depicted that the
decomposition of polymers was between ~320 °C to ~500 °C. MIP (AAm) of CYZ, MIP
(MAA) of AME and MIP (2VP) of ATZ were more selective towards their target compounds
with relative selectivity coefficients of 2.36, 2.66 and 2.77, respectively. The synthesized

MIP (AAm) of CYZ, MIP (MAA) of AME and MIP (2VP) of ATZ were successfully applied



to remove CYZ, AME and ATZ from different water samples (distilled water, tap water and

river water) with removal efficiencies between ~84% to ~95%.

Keywords: Cyanazine, Ametryn, Atrazine, precipitation polymerization, molecularly

imprinted polymers



Sintesis dan Pencirian Molekul Polimer Tercetak untuk Penyingkiran Herbisida Triazin
daripada Sampel Air

ABSTRAK

Sianazin (CYZ), Ametrin (AME), dan Atrazin (ATZ) adalah herbisida triazin yang banyak
digunakan untuk mengawal pertumbuhan rumput dan rumpai daun lebar. Namun,
penggunaannya yang berleluasa memberikan kesan buruk kepada alam sekitar, organisma
bukan sasaran, dan kesihatan manusia. Oleh itu, molekul polimer tercetak (MIPs)
digunakan untuk menyingkirkan herbisida triazin daripada alam sekitar. Dalam kajian ini,
MIPs herbisida triazin disintesis menggunakan pempolimeran pemendakan dengan
menggunakan molekul templat (CYZ, AME dan ATZ), monomer berfungsi (metakrilik,,
akrilamida, 2-vinilpiridin dan 4-vinilpiridin), penggabung silang (etilena glikol
dimetakrilat), bahan pemula (azo-bis-isobutironitril) serta pelarut (toluen dan asetonitril).
Sebagai perbandingan, molekul polimer tidak tercetak (NIPs) disintesis tanpa penambahan
molekul templat. Analisa Spektrum Inframerah Transformasi Fourier (FTIR) menunjukkan
bahawa kewujudan CYZ, AME dan ATZ dapat dikenalpasti di ~756 cm™, ~1450 cm™?, dan
~1389 cm™1. Kadar optimum penjerapan maksimum bagi MIP (AAm) CYZ diperolehi dalam
larutan CYZ 6 ppm pada pH 7, 0.1 g polimer dengan jangka waktu penjerapan selama 240
mins. MIP (MAA) AME mempunyai kadar penjerapan tertinggi dicapai dalam larutan AME
7 ppm pada pH 7, 0.1 g polimer dengan jangka waktu penjerapan selama 210 mins. MIP
(2VP) ATZ mencapai kadar penjerapan maksimum dalam larutan ATZ 8 ppm pada pH 7,
0.3 g polimer dengan jangka waktu penjerapan selama 15 mins. Analisa termogravimetrik
(TGA) bagi MIP herbisida triazin menunjukkan penguraian polimer antara ~320 °C to ~500
°C. MIP (AAm) CYZ, MIP (MAA) AME, dan MIP (2VP) ATZ lebih selektif terhadap molekul

sasaran dengan koefisien relatif selektif iaitu 2.36, 2.66, dan 2.77, masing-masingnya. MIP



(AAm) CYZ, MIP (MAA) AME dan MIP (2VP) ATZ telah berjaya menyingkirkan CYZ, AME
dan ATZ dalam pelbagai sampel air (air suling, air paip dan air sungai) dengan kadar

penyingkiran antara ~84% to ~95%.

Kata kunci: Cyanazin, ametrin, atrazin, pempolimeran mendakan, molekul polimer

tercetak

Vi
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