

ISSN 0128-2905. © 2019 Global Academy of Training & Research (GATR) Enterprise. All rights reserved.

Global Journal of Engineering and Technology Review

Journal homepage: www.gjetr.org

Global J. Eng. Tec. Review 4 (4) 73 – 81 (2019)

 High-Throughput of SHA-256 Hash Function with Unfolding

Transformation

Shamsiah binti Suhaili 1*, Takahiro Watanabe2

1 Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
2 Graduate School of Information, production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu-ku,

Kitakyushu-shi, Fukuoka 808-0135, Japan

ABSTRACT

Hash Function in cryptography algorithms is used to encrypt the message by giving the appropriate
output based on the structure of the hash function itself. This algorithm is important for security
application such as Keyed-Hash Message Authentication Code (HMAC), digital signature and others.
There are different types of hash function such as MD5, SHA-1, RIPEMD-160, SHA-256, SHA-224,
SHA-384, SHA-512 and others. In this paper, the unfolding transformation method was proposed to
improve the throughput of the SHA-256 hash function. Three types of SHA-256 hash function were
designed namely SHA-256 design, SHA-256 design inner pipelining with unfolding factor 2 and
SHA-256 design inner pipelining with unfolding factor 4. The designs were written in Verilog code
and the output simulations were verified using ModelSim. The simulation results showed that the
proposed SHA-256 inner pipelining unfolding with factor 4 provided the highest throughput which is
4196.30 Mbps, and with factor 2 was superior in terms of maximum frequency and was better than the
conventional SHA-256 design.

Type of Paper: other.

Keywords: Cryptography algorithm; FPGA; SHA-256 Hash Function; Unfolding transformation,

Verilog

__

1. Introduction

Cryptography is the science of writing secret codes; to ensure none can read an encrypted message

except the intended user. There are three different types of cryptographic algorithms namely

symmetric cryptography, asymmetric cryptography and hash function. While symmetric cryptography

uses only a key to encrypt and decrypt the message, asymmetric cryptography uses two different keys

and the hash function requires no key. This paper focused on the SHA-256 hash function. It

transformed a variable message input into a fixed size string hash value [1].

*
Paper Info: Revised: October 11, 2019

 Accepted: December 31, 2019

*
 Corresponding author: Shamsiah binti Suhaili

 E-mail: sushamsiah@unimas.my

Affiliation: Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

http://www.gjetr.org/
http://www.gjetr.org/

. Shamsiah binti Suhaili, Takahiro Watanabe

74 | P a g e

Global Journal of Engineering and Technology Review. 4 (4) 73 – 81 (2019)

The hash function output is called hash code, also referred to as hash value or messages digest. The

hash function input can be of any length while the output has a fixed length based on the structure of

the hash function. It is a one-way function where it is not feasible to find an input message. In this

paper, the unfolding transformation method was proposed to improve the throughput of the SHA-256

hash function. Nowadays, security on the network is a major issue in data transmission. A network

layer needs to be secure enough with cryptographic algorithms so that it can be used to accommodate

encryption and authentication processes. Therefore, high performance of cryptographic hash function

algorithm is one of the important aspects of security algorithm. Hence, designing a cryptographic hash

function algorithm on reconfigurable hardware with high speed, low power and small area

implementation needs to be considered.

The unfolding transformation method is used to improve the throughput of the SHA-256 hash

function, which is the purpose of this study. This method focused on the latency of the designs and the

architecture refers to Register Transfer Level (RTL). In this paper, unfolding transformation factor 2

and 4 were used to reduce the latencies of the SHA-256 hash function. There was parallel execution

for both designs. The combination of inner pipelining and unfolding resulted in further power

reduction because the power supply voltage was reduced aggressively, and the frequency of operation

was also reduced with small area implementation.

2. Methodology – Unfolding Design

The motivation of using unfolding method was to improve the performance in terms of throughput.

Verilog code was used to design SHA-256. The SHA-256 architecture consists of 6 top-level modules

such as counter SHA-256, message schedule, constant SHA-256, multiplexer, compression function

and output SHA-256. The difference between the conventional SHA-256 design and SHA-256

unfolding designs are the input of the inner structure of SHA-256 unfolding design. By using different

inputs, the sequence of constant and message was found to be also different. The input data was 15

blocks input of padded 32-bit data. Equation (1) was used to obtain the input message, tW for 6316  t

. Message schedule SHA-256, Wt

message input
 (1)

Where,

 (2)

 (3)

σ0 and σ1 represented sigma 0 and sigma 1. Both functions were obtained from Equation (2) and

Equation (3). Equation (2) meant that the message x was rotated right by 7 bits, the result was then

added with a right rotation of x by 18 bits and finally, the result was added with three shifts to the

right. As for Equation (3), the message x was rotated by 17 bits, the result was then rotated 19 bits to

the right and finally shifted right by 10 bits.

A counter module was used to generate the sequence the message. The final hash code was

obtained after the 64 rounds of iteration of the compression function used by the SHA-256 hash

function. A Multiplexer module helped to generate eight buffer initialisation of SHA-256, before

SHA-256 started processing the message. The constant Kt was defined using 64X32-bit ROM blocks.

Finally, the SHA-256 message digest was produced using the output module. The last output of the

compression function of SHA-256 was added with buffer initialisation in this model. Modification

=tW 150  t

1615

256

072

256

1)()(−−−− +++= ttttt WWWWW  6316  t

)()()()(3187256

0 xSHRxROTRxROTRx ++=

)()()()(101917256

1 xSHRxROTRxROTRx ++=

. Shamsiah binti Suhaili, Takahiro Watanabe

75 | P a g e

Global Journal of Engineering and Technology Review. 4 (4) 73 – 81 (2019)

must be done for each module in order to improve the performance of SHA-256 in terms of

throughput. Two parallel inputs of 32 bits and two parallel constants were needed in order to obtain

unfolding factor 2. Similarly, for unfolding factor 4, four parallel inputs of 32 bits and four parallel

constants were needed to design the unfolding transformation.

Therefore, all inputs for the next sequence of cycle need to be changed based on the movement of

input which was already applied in parallel form. Each module needed to be modified in terms of

inputs to obtain inner pipelining and unfolding with factors two and four. These modifications

provided the improvements for the SHA-256 hash function. The number of cycles is reduced based on

the number of J factors using an unfolding design technique [3]. Moreover, the throughput of the

SHA-256 algorithm is also increased using this technique. The number of cycles was reduced from

66.5 to 35.5 for unfolding factor 2 and for unfolding factor 4 it was reduced from 35.5 to 19.5. These

cycle numbers were obtained from waveform simulation results of the design. It reduced due to the

structures of SHA-256 design unfolding design change based on different inputs.

By reducing the number of cycles with unfolding transformation techniques, the throughput of the

design improved significantly. Furthermore, the performance of the SHA-256 hash function has

improved in terms of frequency due to the inner pipelining method. The frequency of SHA-256

unfolding with factor 2 increased significantly compared to conventional design. Even though the

latencies were reduced by factor 2, modification for SHA-256 unfolding with factor 4 increase the

area implementation compared with two other SHA-256 designs. However, it provided high

throughput because of low latencies.

The unfolding factor 2 and 4 architectures were produced by the modified message schedule and

compression function of the SHA-256 algorithm. The unfolding technique with factor 2 and 4 had

been implemented in this paper. Each block in the message schedule and compression function must

be considered for its modifications. The modifications of each of the block in the message schedule

and compression function must be considered. Figure 1 and Figure 2 show the block diagrams of

Temp1o and Temp2o. The following block diagrams of Temp1o and Temp2owere the modifications

of conventional Temp1 and Temp2. The input sequence of SHA-256 unfolding design remakes the

output gave different results. The compression function of the SHA-256 algorithm was added with

these equations. Temp1o consists of ∑ 1o, Cho(next_e, e, f), Message,Wt_1 and Constant,Kt_1;

while Temp2ocontains ∑ 0 o and Majo(next_a, a, b). These results were obtained using a 32-bit adder.

All data inputs were different for each of the blocks in Temp1o and Temp2o block diagram

architectures.

Figure 1. oTemp1 Block Diagram Architecture Figure 2. oTemp2 Block Diagram Architecture

+
next_e

g

next_e

e

f

𝑊𝑡_1 𝐾𝑡_1

𝑇𝑒𝑚𝑝1𝑜

+

next_a

next_a

a

b

. Shamsiah binti Suhaili, Takahiro Watanabe

76 | P a g e

Global Journal of Engineering and Technology Review. 4 (4) 73 – 81 (2019)

The Figures 3 and Figure 4 show the two architectures for Cho(next_e,e,f) and Majo(next_a,a,b).

The AND, NOT and XOR gates are all components of both the architectures, with different structures

of implementation. The data inputs for both the architectures were different from conventional

equation for function Ch and Maj. The compression function of the SHA-256 algorithm that was used

to obtain data input next_e and next_a.

Figure 3. Cho (next_e,e,f) Function Figure 4. Majo(next_a,a,b) Function

Figures 5 and Figure 6 illustrate the proposed architectures for ∑ 0 o and ∑ 1o , respectively. ∑ 0 o

was depicted by input next_a while for ∑ 1 o the input is next_e. Both architectures had all rotations

follow in the right direction with a fixed amount of values. Finally, the final outputs of ∑ 0 o and

∑ 1o was obtained by combining all inputs using an XOR gate.

Figure 5 . ∑ (𝑛𝑒𝑥𝑡𝑎) 0𝑜 Architecture Figure 6. ∑ (𝑛𝑒𝑥𝑡_𝑒)1𝑜 Architecture

Output 𝑇𝑒𝑚𝑝1𝑜 and 𝑇𝑒𝑚𝑝2𝑜 was used to calculate new next_eo and next_ao. The following
equations show the output for next_eo and next_ao.

next_eo = c + 𝑇𝑒𝑚𝑝1𝑜 (4)
next_ao = 𝑇𝑒𝑚𝑝1𝑜+ 𝑇𝑒𝑚𝑝2𝑜 (5)

Figures 7 and 8 show the block diagram architecture for Temp11 and Temp21. For Temp11, the
inputs for Ch1 were next_eo, next_e, and e while for ∑ 11, the input was next_eo. For
Temp21, the input for Maj1 were next_ao, next_a and a while for ∑ 01, the input was next_ao.

Figure 7. 𝑇𝑒𝑚𝑝11 Block Diagram Figure 8. 𝑇𝑒𝑚𝑝21 Block Diagram

Then, Temp11 and Temp21 were calculated in order to obtain next_e1 and next_a1. The outputs
for both equations are illustrated in the following equation.

next_e1 = b + Temp11 (6)
next_a1 = Temp11 + Temp21 (7)

𝑅𝑂𝑇𝑅2(𝑛𝑒𝑥𝑡 _ 𝑎)

𝑅𝑂𝑇𝑅13(𝑛𝑒𝑥𝑡 _ 𝑎)

XOR

𝑅𝑂𝑇𝑅6(𝑛𝑒𝑥𝑡 _ 𝑒)

𝑅𝑂𝑇𝑅11(𝑛𝑒𝑥𝑡 _ 𝑒)

XOR

∑ 11

𝐶ℎ1(𝑛𝑒𝑥𝑡 _ 𝑒𝑜 , 𝑛𝑒𝑥𝑡_𝑒, 𝑒)

+

next_eo

f

next_eo

next_e

e

𝑊𝑡 _ 2 𝐾𝑡 _ 2

𝑇𝑒𝑚𝑝11

෍ 0 1

𝑀𝑎𝑗1(𝑛𝑒𝑥𝑡_𝑎𝑜, 𝑛𝑒𝑥𝑡_𝑎, 𝑎)

+

next_ao

next_ao

next_a

a

𝑇𝑒𝑚𝑝21

. Shamsiah binti Suhaili, Takahiro Watanabe

77 | P a g e

Global Journal of Engineering and Technology Review. 4 (4) 73 – 81 (2019)

Since unfolding factor 4 needed four parallel executions, it was calculated until Temp12 and
Temp22.

 Figure 9. 𝑇𝑒𝑚𝑝12 Block Diagram Figure 10. 𝑇𝑒𝑚𝑝22 Block Diagram

Figures 9 and Figure 10 show the output for Temp12 and Temp22. The input for ∑ 12 was next_e1

while for ∑ 02 the input was next_a1. The sequence of the input was similar to the previous but the

data was moved one place. For example, the inputs for Ch2 were next_e1, next_eo and next_e. For

Maj2, the inputs are next_a1, next_a0 and next_a. The data for next_e2 and next_a2

was calculated based on data from Temp12 and Temp22. The following equation shows the

next_e2 and next_a2 output.

next_e2 = a + Temp12 (8)
next_a2 = Temp12 + Temp22 (9)

Similar to the compression function, the message schedule was modified from previous results.

Once the first message schedule was received, the new equation for sigma0o and sigma1o and

next_wto was processed. In order to obtain next_wt and next_wt1, the input was moved one place.

The input message for wt0 was from message wt2. This sequence started from wt2 until wt15. After

that, the input followed the sequence of next_wt starting from next_wt and next_wto. So, we needed

to add another W_message as input such as W_message and W_message1.

The architectures for both o0
and o1 functions are shown by Figures 11 and 12. Generating a

message schedule for SHA-256 is the main function of these architectures. W2 was rotated in the right

direction with a fixed amount of value for while for , a different value was used rotate it. The

2W
was right shifted by 3 in architecture, and for architecture, the W15 was right shifted by

10.

 Figure 11. o0 Architecture Figure 12. o1 Architecture

For unfolding factor 4, σ01 and σ11 were calculated with input W3 and next_wt respectively. Then,

next_wt1 was obtained by the following Equation (10). Finally, the input for σ02 and σ12 were

obtained from input W4 and next_wto respectively. The next_wto was derived from Figure 13. The

structure of next_ wt2 is shown in Figure 13. This figure shows the final structure of the message

schedule for unfolding factor 4. The input data for message W0 started with W4 until W15. The

o0
1

o0 o1

∑ 12

𝐶ℎ2(𝑛𝑒𝑥𝑡_𝑒1, 𝑛𝑒𝑥𝑡_𝑒𝑜, 𝑛𝑒𝑥𝑡_𝑒)

+
next_e1

e

next_e1

next_eo

next_e

𝑊𝑡 _ 3 𝐾𝑡 _ 3

𝑇𝑒𝑚𝑝12

෍ 0 2

𝑀𝑎𝑗1(𝑛𝑒𝑥𝑡_𝑎1, 𝑛𝑒𝑥𝑡_𝑎𝑜, 𝑛𝑒𝑥𝑡_𝑎)

+

next_a1

next_a1

next_ao

next_a

𝑇𝑒𝑚𝑝22

XOR 𝜎0𝑜
𝑊2 𝜎1𝑜

𝑅𝑂𝑇𝑅17(𝑊15)

𝑅𝑂𝑇𝑅19(𝑊15)

𝑆𝐻𝑅10(𝑊15)

XOR

𝑊15

. Shamsiah binti Suhaili, Takahiro Watanabe

78 | P a g e

Global Journal of Engineering and Technology Review. 4 (4) 73 – 81 (2019)

output sequence of next_wt used the similar method used in unfolding factor 2. The sequence of next

wt was next_wt, nextk_wto, next_wt1 and next_wt2.

next_wt1 = W2 + 𝜎01 + W11 + 𝜎11
(10)

Figure 13. Message Schedule of SHA-256 Unfolding factor 4

3. Result and Discussion

The SHA-256 unfolding factor 2 and 4, the proposed SHA-256, were successfully designed and

tested. All designs were written in Verilog code and compilation process was done using Altera

Quartus II. ModelSim was used to simulate and verify for both functional and timing simulation of the

design. Equation (11) was used to calculate the throughput of these designs.

Throughput = (512 X FMax) / Number of Cycle (11)

The results showed the throughput of SHA-256 with unfolding factor 4 increased significantly

compared to other SHA-256 designs. The proposed SHA-256 designs were compared with previous

publications as shown in Table 1. Table 1 shows the synthesis and implementation comparison results

of other SHA-256 designs in terms of FPGA implementation. By using unfolding transformation, the

performance of SHA-256 design in terms of throughput increase significantly. This is because of the

inner structure of SHA-256 design was processed in parallel form. This method can improve the

performance of SHA-256 design where the number of latencies of the design was reduced.

Implementation of SHA-256 design on different devices provided different results. Thus, by choosing

appropriate family device for implementation, the better results can be obtained.

Table 1. Synthesis and Implementation Results of Other SHA-256 Designs

Design Device ALUTs/
CLBs

Freq
(MHz)

Throughput
(Mbps)

SHA-256 Design Arria II GX 855 ALUTs 228.15 1756.58
SHA-256 Unfolding
Design (factor 2)

Arria II GX 1345 ALUTs 251.07 3621.07

SHA-256 Unfolding
Design (factor 4)

Arria II GX 2064 ALUTs 159.82 4196.30

SHA-2 [4] Virtex 5 320 CLBs 218.2 1719
SHA-2 [4] Stratix III 795 ALUTs 205.8 1621

0

1

2

3

4 5 6 7 8 9 10 11 12 13

14

15

𝜎12

𝜎02

next_wto

padded

message

. Shamsiah binti Suhaili, Takahiro Watanabe

79 | P a g e

Global Journal of Engineering and Technology Review. 4 (4) 73 – 81 (2019)

SHA(256,384,512) [5] Virtex v200pq
240-6

2207 CLBs 74 291

SHA-256 [6] Virtex v200pq240 1060 CLBs 83 326

SHA-256 [7] Stratix II 2150 ALUTs 143.164 909.816
SHA-256 [8] Virtex 5

XC5VFX70T
387 Slices 202.54 1580

SHA-256[9] XC2PV-7 755 Slices 174 1370
SHA-256 [10] Virtex-II

xc2v2000-bf957
1373 Slices 133.06 1009

SHA-256 [11] - - 41.97 335.9

SHA-256 [12] Virtex-4 610 Slices 170.75 1344.98
SHA-256 [13] Virtex-5

XC5VFX70T
387 Slices 202.54 1.58

SHA-256 [13] Virtex 1534 CLBs 35.1 2077

SHA-256 [14] Virtex E 1655 CLBs 36.4 2190
SHA-256 [15] Virtex E - 64.1 2052.1
SHA-256 [16] Virtex II 1708 slices 52.1 3100.9
SHA-256 [17] Cyclone II 7219 cells 116.24 875.22

Lee Y.K. et al. [17] discovered by using ASIC the implementation of the SHA-256 design provided

large area implementation in terms of gates which is 22,025. Even though the throughput of SHA-256

design was high but area implementation is too large. It is better to have balance between area and

throughput of SHA-256 design. This paper proposed small area implementation and high throughput

of SHA-256 design by using unfolding transformation factor 4. 2064 ALUTs was used by the

proposed SHA-256 unfolding factor 4 and 159.82 MHz was the maximum clock frequency of this

design. The throughput of this design was improved by increasing the number of unfolding factor.

From the table, the result shows that the SHA-256 unfolding design with factor 4 give the highest

throughput in terms of FPGA implementation which is 4196.30 Mbps with 159.82 MHz maximum

frequency. Consequently, the proposed SHA-256 unfolding factor 2 produced better results in terms of

maximum frequency due to the inner pipelining design where 1159 registers were used. The novelty

of this paper is the design of SHA-256 using the unfolding transformation with factor 4 can improve

the throughput of SHA-256 design. The throughput of the SHA-256 design was improved by using

this method due to the small number of latencies compared to the conventional design. The number of

clock cycles of SHA-256 unfolding factor 4 design decreased from 66.5 cycles of conventional design

to 19.5 cycles of unfolding design. Thus, the high throughput of SHA-256 design was obtained by

using the unfolding transformation method.

4. Conclusion

The study successfully completed and tested SHA-256 unfolding factor 2 and 4 designs which were

the proposed SHA-256. The area and maximum frequency are comparable to other SHA-256 designs.

The proposed SHA-256 unfolding with factor 4 design gave the highest throughput with 4196.30

Mbps based on the comparison with other SHA-256 designs. In conclusion, implementation of

unfolding transformation can improve the performance of SHA-256 hash function by reducing the

number of cycles where the data generate in parallel transformation. This leads to high throughput of

SHA-256 design. The throughput of SHA-256 design also increases significantly by using this

methodology. In the future, the Keyed-hash Message Authentication Codes (HMAC) can utilize the

proposed SHA-256 design in order to enhance the performance of security design.

. Shamsiah binti Suhaili, Takahiro Watanabe

80 | P a g e

Global Journal of Engineering and Technology Review. 4 (4) 73 – 81 (2019)

Acknowledgements

The authors would like to thank Universiti Malaysia Sarawak (UNIMAS) and Waseda University

for providing opportunity and facilities to support this project.

References

 (NIST), N. I. (August 2015). Secure Hash Function . Federal Information Processing Standards (FIPS)

Publication 180-4.

(1999). In K. Parhi, VLSI Digital Signal Processing Systems : Design and Implementation (pp. 119 - 140). John

Wiley & Sons, Inc.

Kahri, F., Mestiri, H., Bouallegue, B. and Machhout, M., 2015, March. Efficient FPGA hardware

implementation of secure hash function SHA-256/Blake-256. In 2015 IEEE 12th International Multi-

Conference on Systems, Signals & Devices (SSD15) (pp. 1-5). IEEE. 10.1109/SSD.2015.7348105

IEEE 12th International Multi-Conference on Systems, Signals & Devices (SSD15), (pp. 1-5).

H. Mestiri, F. K. (2015). Efficient FPGA Hardware Implementation of Secure Hash Function SHA-2. IJCNIS,

Vol. 7(No. 1), 9-15.

Michail, H., Kakarountas, A., Milidonis, A. and Goutis, C., 2008. A top-down design methodology for

ultrahigh-performance hashing cores. IEEE Transactions on Dependable and Secure computing, 6(4), pp.255-

268. DOI: 10.1109/TDSC.2008.15

Michail, H., Milidonis, A., Kakarountas, A., & Goutis, C. (2005, December). Novel high throughput

implementation of SHA-256 hash function through pre-computation technique. In 2005 12th IEEE International

Conference on Electronics, Circuits and Systems (pp. 1-4). IEEE. 10.1109/ICECS.2005.4633433

Michail, H., Athanasiou, G., Kritikakou, A., Goutis, C., Gregoriades, A., & Papadopoulou, V. (2010, July).

Ultra high speed SHA-256 hashing cryptographic module for ipsec hardware/software codesign. In 2010

International Conference on Security and Cryptography (SECRYPT) (pp. 1-5). IEEE.

Ahmad, I. and Das, A.S., 2005. Hardware implementation analysis of SHA-256 and SHA-512 algorithms on

FPGAs. Computers & Electrical Engineering, 31(6), pp.345-360.
https://doi.org/10.1016/j.compeleceng.2005.07.001

Li, M., Xu, J., Yang, X. and Yang, Z., 2009, July. Design and implementation of reconfigurable security Hash

algorithms based on FPGA. In 2009 WASE International Conference on Information Engineering (Vol. 2, pp.

381-384). IEEE. DOI: 10.1109/ICIE.2009.278

Lee, Y.K., Chan, H. and Verbauwhede, I., 2007, August. Iteration bound analysis and throughput optimum

architecture of SHA-256 (384,512) for hardware implementations. In International Workshop on Information

Security Applications (pp. 102-114). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77535-5_8

Padhi, M. and Chaudhari, R., 2017, December. An optimized pipelined architecture of SHA-256 hash function.

In 2017 7th International Symposium on Embedded Computing and System Design (ISED) (pp. 1-4). IEEE.

10.1109/ISED.2017.8303943

Shahid, R., Sharif, M.U., Rogawski, M. and Gaj, K., 2011, December. Use of embedded FPGA resources in

implementations of 14 round 2 SHA-3 candidates. In 2011 International Conference on Field-Programmable

Technology (pp. 1-9). IEEE. 10.1109/FPT.2011.6132680

Sklavos, N. and Koufopavlou, O., 2003, May. On the hardware implementations of the SHA-2 (256, 384, 512)

hash functions. In Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS'03.

(Vol. 5, pp. V-V). IEEE. DOI: 10.1109/ISCAS.2003.1206214

Chaves, R., Kuzmanov, G., Sousa, L. and Vassiliadis, S., 2006, October. Improving SHA-2 hardware

implementations. In International Workshop on Cryptographic Hardware and Embedded Systems (pp. 298-310).

Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/11894063_24

McEvoy, R.P., Crowe, F.M., Murphy, C.C. and Marnane, W.P., 2006, March. Optimisation of the SHA-2

family of hash functions on FPGAs. In IEEE Computer Society Annual Symposium on Emerging VLSI

Technologies and Architectures (ISVLSI'06) (pp. 6-pp). IEEE. DOI: 10.1109/ISVLSI.2006.70

binti Suhaili, S. and Watanabe, T., 2017, November. Design of high-throughput SHA-256 hash function based

on FPGA. In 2017 6th International Conference on Electrical Engineering and Informatics (ICEEI) (pp. 1-6).

IEEE.

https://doi.org/10.1109/ICIE.2009.278
https://doi.org/10.1109/ICIE.2009.278

. Shamsiah binti Suhaili, Takahiro Watanabe

81 | P a g e

Global Journal of Engineering and Technology Review. 4 (4) 73 – 81 (2019)

Sun, W., Guo, H., He, H. and Dai, Z., 2007, October. Design and optimized implementation of the SHA-2 (256,

384, 512) hash algorithms. In 2007 7th International Conference on ASIC (pp. 858-861). IEEE. DOI:

10.1109/ICASIC.2007.4415766

He, Z., Wu, L. and Zhang, X., 2018, November. High-speed Pipeline Design for HMAC of SHA-256 with

Masking Scheme. In 2018 12th IEEE International Conference on Anti-counterfeiting, Security, and

Identification (ASID) (pp. 174-178). IEEE.

