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Abstract—Walking is one of the most important daily 

activities for human beings. Patients that have abnormal 

walking gait are caused by foot drops, strokes, and other 

disabilities. Ankle-foot orthosis (AFO) are widely used to 

provide practical assistance for patients with injuries or defects 

in the lower limbs. There are many types of AFOs, including 

rigid, flexible rigid, and articulated AFOs, depending on the 

strength of the joint. Modelling ankle-foot orthosis is important 

because it has always been a challenging task to model ground 

reaction forces, particularly when the wearable rehabilitation 

robot is represented using high degrees of freedom and has 

multiple contact points with the ground. The research is aimed 

at modelling ankle-foot orthosis (AFO) using a multi-layer 

perceptron (MLP) neural network. Initially, data collection took 

place using an experimental rig. Subsequently, the model 

structure was chosen, followed by parameter estimation 

through the selected algorithm. Lastly, the models underwent a 

thorough validation process, which included evaluating their 

performance using mean-squared error (MSE) and correlation 

tests. The results showed that the MLP-NN outperformed the 

conventional method, LS in identifying the AFO system, with 

lower mean squared prediction error that is 0.000011034 and 

unbiased results across all models. In contrast to the 

conventional approach, the MLP-NN offers a good 

approximation of the AFO dynamic model. Although 

conventional methods like LS are valuable, the MLP approach 

exhibits superior performance. These findings provide valuable 

insights into AFO system modeling, implying that non-

parametric methods like MLP neural networks hold significant 

potential for advancing AFO development and control. 

Keywords— Ankle-foot orthosis, modelling, multi-layer 

perceptron, Artificial Neural Network 

I. INTRODUCTION 

Individuals with walking disabilities, be it dorsiflexion, 
plantarflexion, or both, experience deviations from the normal 
walking pattern. Ankle-foot orthoses (AFOs) emerge as a 
valuable tool for aiding walking, offering stability and 
preserving the range of motion. Research consistently 
demonstrates that gait speed improves significantly when 
AFOs are used compared to situations without them [1]. For 
clinicians, a deep understanding of AFOs' mechanical 
properties and their impact on gait is essential to ensure 
patients derive the maximum benefit from these orthotic 
devices [2]. During clinical practice, adjusting the torque 
provided by ankle-foot orthoses to align with each patient's 
body function and gait abilities is a critical consideration [1].  

Traditional therapy methods rely on manual support from 
therapists, which can be physically demanding and taxing 
when carried out continuously for extended periods [3]. 
Although it is not yet clear whether robotic therapy 
outperforms traditional methods when achieved in equal 
amounts, it is apparent that intensive and extended therapy 

consistently leads to more favorable outcomes across a range 
of assessment criteria related to patient recovery. However, to 
implement an effective robotic therapy controller for 
automated ankle-foot orthosis (AFO) systems, a thorough 
modeling process is a prerequisite. Modeling AFO dynamics 
is of paramount importance due to the inherent complexities 
involved in capturing ground reaction forces, especially when 
representing the robot with a high degree of freedom and 
multiple points of contact with the ground [4].The walking 
gait phase is shown in Fig. 1 have to be considered.  

 

 

Fig. 1. Walking gait phase. Initial Contact (IC), Foot Flat (FF), Heel-Off (HO) and 
Toe-Off (TO) [10] 

 

The prevalent method for developing such models 
includes 2D and 3D computational simulations, Monte Carlo 
simulations, direct multiple shooting methods, functional 
electrical stimulations, and musculoskeletal simulations via 
mathematical modeling [5]–[9]. 

Over the past two decades, the field has witnessed a surge 
in the application of system identification for modeling, 
gathering significant attention for its ability to accurately 
model dynamic systems. This process involves analyzing the 
input-output measurement system to derive the system’s plant. 
The system identification of a system comprises two 
fundamental phases. The initial phase entails qualitative 
operations, establishing the system's structure that links the 
input and output. In essence, this phase revolves around 
characterizing and selecting an appropriate model structure. 
The subsequent phase, estimation, aims to minimize the 
disparity between the system being identified and its model. 
The estimation methods can incorporate soft computing 
techniques, including the application of metaheuristic 
algorithms for parametric models, while resorting to neural 
networks (NNs) and fuzzy logic for non-parametric models. 
In the context of a highly non-linear system, adopting non-
parametric estimation method is the favorable approach. 

Hence, this study aims to assess the effectiveness of a 
dynamic model for ankle-foot orthosis (AFO) using non-
parametric modeling techniques, specifically employing 
multi-layer perceptron neural networks. These models are 
constructed through the system identification method, 
utilizing data collected from an experimental rig. 
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Subsequently, a comprehensive validation process is 
undertaken, meticulously comparing, and analyzing the 
obtained results. The implications of these findings are 
expected to contribute to the advancement and control of AFO 
systems. 

II. METHODS 

A. Experimental setup 

Fig. 2(a) and 2(b) depict the experimental setup and 
schematic diagram, respectively, for this study. In this study, 
an ankle-foot orthosis (AFO) rig with one degree of freedom 
(DOF) movement is employed. Both plantarflexion and 
dorsiflexion will be supported by foot motion.  

 

 

 

To provide mobility function, an actuator is attached to the 
backside of the foot brace, which transfers kinetic energy to 
the foot brace. The rig's configuration is adjusted to +20 
degrees for dorsiflexion and -20 degrees for plantarflexion. 
For the intended driven ankle-foot orthosis (AFO), a linear 
actuator is utilized. A linear actuator is primarily used because 

it offers high torque, precise stroke duration, and long-term 
dependability. The chosen linear actuator has a 51 mm stroke 
length and a 900N load rating. The LIN-ACT1-02 
Windynation linear actuator, 12 VDC, weighs 225 pounds. 
The L298N motor driver complements the linear actuator very 
well because it can handle 2A continuous current per channel 
and a supply range of 5V to 35V. A 12V power supply 
provides power to the motor driver. To measure the distance 
traveled when the actuator moves, a magnetic hall effect 
sensor is fastened to the side of the actuator. When the actuator 
moves, the IMU sensor (MPU 6050) placed underneath the 
footplate measures the positioning of the ankle. The Arduino 
Mega is connected to the motor driver and the sensors to 
capture input and output data. A USB cable is used to link the 
Arduino Mega to the computer. MATLAB / Simulink 
software is used as the modelling development environment. 

B. System identification  

System identification often involves several procedures. 
They are model estimation, model validation, model 
estimation, and model structure selection. Many different sets 
of data are acquired during data acquisition, which is a crucial 
step in modelling the dynamic system. The primary objective 
of identification is to estimate the model parameters after the 
model structure has been established. The estimated model 
must predict future output values and possess properties that 
are comparable to those of the genuine model. It is necessary 
to test the model once one has been created for the system. 
Model validity tests are processes to judge whether a fitted 
model is adequate. To make sure the model created adequately 
represents the system, this is crucial. 

C. Experimentation set up and data acquisition 

Before using the results for further system identification 
research, the experimental setup must be confirmed. To 
conduct an experimental test, data from an IMU angle and a 
bang-bang signal from the linear actuator were gathered. The 
tests' outcomes demonstrated that the data gathered from the 
experimental setup was appropriate for system identification. 
The input-output data needed for the modeling procedure were 
experimentally acquired during data collecting utilizing the 
AFO test rig. The data collection tool was created using the 
Simulink application. To provide the necessary torque to 
concurrently activate the actuator, a bang-bang signal with an 
amplitude of 1 V was used.  

From the IMU angle, which stands for the system's 
longitudinal axis, one output was gathered. The longitudinal 
axis (roll axis), which is the IMU's X-axis, was used for 
modeling IMU sensor alignment axes. The roll angle is 
calculated by combining accelerometer and gyroscope data. 
The roll angle range is 90 degrees. The roll angle is positive 
when rotating counterclockwise with respect to the roll axis 
and negative when rotating clockwise. To filter out noise at 
the start of the program, the sensor is read multiple times while 
being held steady on the ground with the Z-axis perpendicular 
to the ground and offset values for pitch and roll angle are 
calculated. When pitch and roll angle is calculated at each 
step, these values are subtracted. This removes some of the 
steady noise from sensor readings. The experiment lasted 25 
seconds with a sampling time of 0.03 seconds. A total of 6s of 
dorsiflexion and plantarflexion were collected in a 12s 
movement for each cycle. The experimental IMU angle (roll) 
and bang-bang signal responses were captured and recorded, 
as shown in Fig. 3(a) and Fig. 3(b). 

 

Fig. 2(a). The experimental setup of AFO 

 

Fig. 2(b). The experimental setup of AFO 
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III. MODEL ESTIMATION  

The process of developing mathematical models of a 
dynamic system based on measured data is known as 
parametric system identification [11]. A good model is critical 
in most model-based control approaches. After determining 
model structure, the main task of identification is to estimate 
model parameters, which are typically determined using a 
global minimum criterion function. To identify nonlinear 
dynamical systems, neural networks can be used with a variety 
of modelling techniques. The state-output model, recurrent 
state model, and nonlinear autoregressive moving average 
process with exogenous (NARMAX) input model are 
examples of these. However, the literature shows that if the 
plant's input and output data are available, the NARMAX 
model is a good choice for modelling nonlinear systems using 
standard backpropagation learning algorithms. 

Least square (LS) was used to predict the conventional 
model in this work, while neural networks were used to predict 
the non-parametric model (model estimation). The most 
practical way for identifying the best linear approximations is 
the least squares method, but there are also significant 
theoretical arguments in its favour [12]. The absolute 
deviation method does not provide adequate weight to a point 
that is much out of line with the approximation, whereas the 
minimax approach typically gives too much weight to a piece 
of data that is grossly in error. The least squares method 
significantly increases the weight of a point that deviates from 

the rest of the data, but it prevents that point from fully 
dominating the approximation.  

The architectures of neural networks are modelled after 
biological neural networks [13]. The networks are made up of 
many identical or similar simple processing units that are 
highly interconnected. The adaptive nature of networks is an 
important feature. The networks can learn from the 
information they have gathered from their surroundings. For 
system modelling, neural networks typically employ two basic 
processing elements: the perceptron and the basis function 
neuron. The perceptron is a nonlinear neuron model. This 
basic neural model is made up of two parts: a linear combiner 
and a nonlinear activation function. A linear combiner 
computes the product of the neuron's input vector, x, and the 
parameter vector, w. A nonlinear activation function applied 
to the linear combiner output. 

A. Multi-layer perceptron 

Back propagation was used in research to model the ankle-
foot orthosis (AFO) using a multi-layer perceptron (MLP) 
neural network. Because of its ability to provide a simple 
model and estimate a highly complicated formula association, 
the MLP is the most popular of the neural network family [13]. 
The MLP is made up of one layer of nodes that serves as the 
input layer and a second layer that serves as the output of the 
NN, with several intermediate or hidden layers in between. 
The network layer consists of an input layer, xi, an output 
layer, yj, and a hidden layer with varying strength weights, wij. 
The function f(.) can have the following properties: linear, 
threshold, sigmoid, hyperbolic tangent, and radial basis. The 
mapping enables the network to predict the output, ��  as 
accurately as possible. The MLP output is shown in (1): 

����, �� = 	
 �� �

 ∙�

��  �
 �� �

�
 +�


�� �
�� + �
��. (1) 

 

Although it requires more memory than other algorithms, 
Levenberg-Marquardt (LM) is chosen for network training 
due to its short convergence time. Based on the criterion in 
(2), the LM optimises the error by minimising the residual, ���, �� = ���� − ����, ��:  

 
��� = � 1
2#� � �$%��, �� ≈'

(�� )'��, *'�, (2) 

where *' represents the training data set. 

B. Model validation 

 To ensure that the model being developed is adequate, the 
validation phase is required [13]. The model is validated using 
three methods: One Step Ahead (OSA) prediction, Mean 
Squared Error (MSE), and Correlation Test. The five 
correlation functions are as follows: 

+_�� �-� = .[��� − -�����] = 1�-�, (3) +23�-� = .[4�� − -�����] = 0, ∀-, (4) +373�-� = .[4%�� − -� − 48%�������] = 0, ∀-, (5) +3737�-� = .[4%�� − -� − 48%����%���] = 0, ∀-, (6) +3�32��-� = .[������� − 1 − -�4�� − 1 − -�] = 0, - ≥ 0, (7) 

 

 +23�-� represents the cross-correlation function between 
u(t) and ε(t), �4��� = ��� + 1�4�� + 1�, 1�-� is an impulse 
function. Because the MLP model is built with the NARX 
structure, which is a nonlinear system, all five conditions must 
be met. Another LS model that uses a linear system requires 
only three conditions to be met. 

 

Fig. 3(a). The experimental IMU angle (roll) 

 

Fig. 3(b). Bang-bang signal responses 
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 The study used 2188 data points  for LS and MLP in the 
test. These data points were used as it complete 5 steps during 
children walking. The 95% confidence bands, which are 

approximately ± 1.96/ √#  (N data), are implied, and any 
significant correlation will be indicated by one or more points 
of the function lying outside the bands [14]. As a result, the 
model is considered adequate if the correlation functions are 
within the confidence intervals. 

IV. RESULTS AND DISCUSSION 

This section presents the results of modelling the ankle 
foot orthosis using conventional and non-parametric 
techniques. One-step-ahead prediction, MSE of measured and 
predicted output, and correlation tests were used for 
validation. 

A. Modelling using least square 

Two sets of 1084 data points each were created from the 
2188 data points in the parametric modelling using LS data 
set. While the second set (test set) was utilised for validation, 
the first set was used for modelling. The model's rank of two 
generated the best outcomes. The LS predictions for the roll 
axis angle are shown in Fig. 4. The graph shows that the LS 
could closely follow the real data. Actual and anticipated LS 
outputs diverge only a little. 

 

The correlation test for each roll axis angle is shown in Fig. 
5. The model's accuracy is not supported by the LS findings, 
which are outside of the 95% confidence range. 

 

The roll axis angle stability test is shown in Fig. 6. The LS 
shows that the model can be controlled. The zeros are at the 
origin, and the poles may be seen inside the unity circle. The 
poles stand in for the word "X," while the zero stands for the 
letter "O." The system is stable since the poles are located 
inside the unit circle. 

 

The best model order's LS results are displayed in Table I. 
The lower mean squared error in testing data, a correlation 
test with a 95% confidence level, and strong stability should 
be taken into account when choosing the optimum model. 
With mean squared errors for the training and testing data 
sets of 8.6816 x10-4 and 4.1837 x10-4, respectively, it was 
determined that model order 2 was the optimal model order. 

TABLE I.  COMPARISON OF LS OPTIMIZATION PERFORMANCE IN 

DIFFERENT NUMBERS OF MODEL ORDER 

Model 

Order 

MSE in 

training data 

MSE in 

testing data 
Stability 

Correlation 

Test 

2 
8.6816 x10-4 4.1837 x10-4 

Stable Biased 

4 
9.7690 x10-4    4.0323 x10-5 

Unstable Biased 

6 
    1.4 x10-3    3.4918 x10-5 

Unstable Biased 

8 
    1.9 x10-3 3.2613 x10-5 

Unstable Biased 

10 
    2.4 x10-3    3.1245 x10-5 

Unstable Biased 

 

B. Modelling using multi-layer perceptron 

The 2188-data-point data set for non-parametric 
modelling with NN MLP was divided into two sets of 1532 
and 658 data points. The first set (estimation set) was used for 
modelling, while the second set (test set) was used for 
validation. For result validation, the NN MLP modelling was 
compared using MSE and 5 correlation tests. Given the lack 
of prior information about the appropriate delay numbers and 
the model structure for NN MLP, a heuristic method was used 
to realise the structure. 

During the process, three major factors had to be 
considered: the number of delay signals, the size of the NN 
structure or the number of neurons, and the error. The final 
factor was evaluated as part of the process of determining the 
best number of delay signals and structure for each model. 
This was due to the stochastic nature of the procedure for 
obtaining the best model. The criterion was used to select the 
best model based on validation MSE, modelling MSE, and 
correlation tests. The number of neurons in this study begins 
with two neurons in the first hidden layer, two neurons in the 
second hidden layer, and one neuron in the output layer ([2 2 
1] model structure). The input layer is represented by the delay 
number. The model's performance was improved by using 
eight delay signals, eight neurons in each of the first and 

 

Fig. 4. The output and estimated output of roll axis angle (LS) 

 

Fig. 5. The correlation test for roll axis angle (LS) 

 

Fig. 6. The stability test for roll axis angle (LS) 
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second hidden layers, and one neuron in the output layer ([8 8 
1] model structure). 

The MLP predictions of the roll axis angle are shown in 
Fig. 7. The validated data are represented by a yellow vertical 
line at point 1532. The graph shows that the MLP could 
closely follow the actual data. The difference between actual 
and predicted MLP output is almost non-existent or close to 
zero. 

 

Fig. 8 depicts the correlation test for each roll axis angle. 
The MLP results are within 95% confidence level, confirming 
the model's accuracy. 

 

Table II contains a list of the numerical outcomes of the 
best model structure and delay of NN MLP. With the lowest 
mean squared error of 1.1034x10-5, model structure [8 8 1] 
with 8 delay was found to be the best model structure. 

TABLE II.   COMPARISON OF NN MLP PERFORMANCE 

Model 

Structure 
Delay MSE 

Correlation 

Test 

[2 2 1] 2 
2.3829x10-4 

Unbiased 

[4 4 1] 2 
3.5671x10-4 

Unbiased 

[6 6 1] 6 2.7149x10-4 Unbiased 

[8 8 1] 7 1.8625x10-4 Unbiased 

[8 8 1] 8 1.1034x10-5 Unbiased 

 

C. Comparative assessment and discussion 

The LS and NN MLP-based models have been validated 
using training and testing procedures. Every set of correlation 
tests has also been run. The results of all such tests show that 
the various modelling techniques considered in this study 
performed adequately well. All these tests show that the 
various modelling techniques considered in this study 
performed satisfactorily. Table 3 summarizes the 
comparative performance of conventional and non-
parametric modelling approaches in terms of mean-squared 
error and correlation test of the system. 

The comparison of the performance of NN MLP and LS 
modelling in Table 3 shows that the NN MLP based non-
parametric modelling technique provides a better 
approximation to the system response than the LS technique. 
This agrees well with other findings in [15]. The correlation 
test results also revealed that the NN MLP outperformed the 
LS. NN MLP has a lower mean-squared error than LS. 

The least squares approach is useful for tackling linear 
fitting and quadratic optimisation issues [16]. However, 
outliers and noisy data are problematic for the least squares 
technique. Outliers can sway the fitting process and alter 
model parameters, resulting in erroneous findings. When the 
model is too sophisticated for the available data or there aren't 
enough data points, the LS method may overfit the model to 
the training data. Overfitting can produce a model that 
performs well on training data but badly on unobserved data.   
LS presupposes that the variables being modelled have a 
linear connection. If the underlying connection is nonlinear, 
LS may provide biassed estimates and an erroneous model. 

This result shows that it is possible to use the NN MLP to 
resolve challenging nonlinear issues. It effectively manages 
large amounts of input data. After training, it produces 
prompt predictions, making it a valuable tool for researchers 
and practitioners in a variety of fields. Even with smaller 
samples, the same accuracy ratio is still possible. 

TABLE III.  PERFORMANCE OF CONVENTIONAL AND NON-PARAMETRIC 

MODELLING APPROACHES. 

Algorithm MSE Correlation test 

NN MLP 0.000011034 Unbiased 

LS 0.000868160 Biased 

 

V. CONCLUSIONS 

The modelling of an ankle-foot orthosis using LS 
and NN MLP, both conventional and non-parametric 
modelling techniques, has been presented. The ankle foot 
orthosis is moved along the x-axis by applying bang-bang 
torque to the system. Simulink is used to collect the 
movement of the motors. The IMU sensor was used to 

 

Fig. 7. The output and estimated output of roll axis angle (MLP) 

 

 

 

Fig. 8. The correlation test for roll axis angle (MLP) 
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measure the angle of the ankle foot orthosis. The whole signal 
was sent to an Arduino Mega. The modelling is created 
through simulation in the MATLAB/Simulink environment. 
Various modelling techniques' results have been validated 
using a variety of tests, including training and test validation, 
mean-squared error, and correlation tests. The least squares 
approach is useful for tackling linear fitting and quadratic 
optimisation issues. However, it can be inferred from the 
investigations that non-parametric modelling, such as NN 
MLP, performs better in the identification and modelling of 
ankle foot orthoses than conventional modelling, such as LS 
technique. In order to develop control strategies for the ankle 
angle of the AFO, the best model of the ankle foot orthosis 
that could be obtained from NN MLP will be applied. Prior 
to the experimental study, the developed models will be used 
as a preliminary test to investigate and comprehend the 
control schemes responding to the variation of control 
constraints or disturbances. 
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