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Abstract: The evolutionary algorithm has been extensively used to solve a range of combinatorial optimization problems. The 
adaptability of evolutionary algorithm mechanisms provides diverse approaches to handle combinatorial optimization 
challenges. This survey paper aims to comprehensively review the recent evolutionary algorithm variants in addressing 
combinatorial optimization problems. Research works published from the year 2018 to 2022 are identified in terms of problem 
representation and evolutionary strategies adopted.  The mechanisms and strategies used in evolutionary algorithms to address 
different types of combinatorial optimization problems are discovered. Two main aspects are used to classify the evolutionary 
algorithm variants: population-based and evolutionary strategies (variation and replacement). It is observed that the hybrid 
evolutionary algorithm is mostly applied in addressing the problems. Hybridization in evolutionary algorithm mechanisms 
such as initialization methods, local searches, specific design operators, and self-adaptive parameters enhance the algorithm’s 
performance. Other metaheuristic approaches such as genetic algorithm, differential evolution algorithm, particle swarm 
optimization, and ant colony optimization are still preferable to address combinatorial optimization problems. Challenges and 
opportunities of evolutionary algorithms in combinatorial optimization problems are included for further exploration in the 
field of optimization research. 

Keywords: Combinatorial optimization problem; Evolutionary algorithm; Hybrid mechanisms. 

1. INTRODUCTION 
Inspired by Darwin’s theory of evolution, the evolutionary algorithm promotes a phenomenon known as the survival of the 
fittest [1]. A natural evolution occurs within a population of individuals that strives for survival and reproduction. In the context 
of problem-solving, the quality of a collection of candidate solutions determines the chance they will be kept and used to 
construct further solutions. There are several motivations for the growth of evolutionary algorithms such as an increasing trend 
towards applying parallel approaches to address complex problems demand algorithms that are both flexible and efficient [2]. 
Furthermore, an evolutionary algorithm can be applied to a diverse array of problems with minimal need for customization or 
tailoring to a specific problem. Additionally, they demonstrate the capability to yield satisfactory solutions within a reasonable 
time [1]. 

A combinatorial optimization problem (COP) is commonly viewed as a search space comprising a collection of all objects 
of interest including the desired solutions and defined by discrete variables (Boolean or integers) [1]. It can be very large and 
complex depending on the number of variables involved [3]. There are many types of COP in real-world situations, such as 
traveling salesman problems, nurse rostering problems, university course timetabling problems, exam timetabling problems, 
job shop scheduling problems, knapsack problems, shortest path orienteering problems, and many more. 

As far as we are aware, there is a limited number of survey papers on the application of evolutionary algorithms on COPs. 
Table 1 shows the scope of these papers. Most of these papers focus on single and multi-objective problems, without any 
discussion of the mechanism of evolutionary algorithm. Certain operators of evolutionary algorithms are explained and 
reviewed. This paper aims to fill this gap with a comprehensive survey of evolutionary algorithm variants and their 
mechanisms. In this paper, recent variants of evolutionary algorithms and their applications on COPs are discovered. 
Characteristics of evolutionary algorithms are defined and used as guidance in determining the belonging of an algorithm to 
the family of evolutionary algorithms. Mechanisms of each evolutionary algorithm variant on specific problem presentation 
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of COPs are explained. Their performance in tackling these COPs is identified. 
The remainder of the paper is organized as follows. In section 2, the methodologies employed for conducting the survey 

are explained. Section 3 provides a comprehensive definition of the evolutionary algorithm. The types of COPs covered in this 
paper are listed in Section 4. Section 5 reviews and summarizes the variants of the evolutionary algorithm in COPs and their 
mechanisms. Challenges and opportunities of the evolutionary algorithm in COPs are emphasized in Section 6. Finally, 
conclusions are given in Section 7. 

 
Table 1. Summary of survey paper on the evolutionary algorithm 

Reference Title Scope of the paper 
[4] Introductory overview: optimization 

using evolutionary algorithms and 
other metaheuristics 

Optimizing environmental models by evolutionary 
algorithm and other metaheuristics for single and 

multi-objective problems 
[5] A comprehensive review on 

evolutionary algorithm solving multi-
objective problems 

Categorization of evolutionary algorithm in multi-
objective optimization for different objects and 

purposes.  
[6] A survey on recent progress in the 

theory of evolutionary algorithms for 
discrete optimization 

Review recent advancements in evolutionary 
algorithms theory in terms of population, crossover 

operator, and diversity mechanism to address 
stochastic and dynamic challenges.  

 

Table 2. List of journals considered in this survey paper 

Journal No. of papers Journal No. of papers 
Expert System with Applications 8 European Journal of Operational Research 1 
Computers and Industrial Engineering 4 Evolutionary Intelligence 1 
Swarm and Evolutionary Computation 4 Asia-Pacific Journal of Operational 

Research 
1 

Applied Soft Computing 3 Applied Intelligence 1 
Computers and Operation Research 3 Artificial Intelligence Evolution 1 
Information Science 3 IEEE Transactions on Evolutionary 

Computation 
1 

Mathematics 3 Sustainable Operations and Computers 1 
Soft Computing 3 Others 3 
IEEE Access 2   

Total: 53 
 

2. SURVEY METHODOLOGY 
The aim of this survey is to review the recent applications of evolutionary algorithms on COPs. About 100 related papers, 
published between 2012 and 2022 are collected. As the keywords "evolutionary algorithm" and "combinatorial optimization 
problem" are too broad, additional related keywords are identified and used in our search such as genetic algorithm, differential 
evolution, particle swarm optimization, ant colony optimization, genetic programming, and evolutionary strategies. Out of the 
100 papers, only 53 papers are considered for further review. These 53 papers were selected based on favored journals such as 
Expert System with Applications (8), Computers and Industrial Engineering (4), Swarm and Evolutionary Computation (4), 
Applied Soft Computing (3), Computers and Operation Research (4), Information Science (3), Mathematics (3), Soft 
Computing (3), IEEE Access (2) and others. Well-established journals/conferences are preferred as a precaution against 
predatory journals. Furthermore, these journals/conferences provide a comprehensive understanding of algorithm design and 
applications [6]. Table 2 shows the journal list in this survey paper. 

3. EVOLUTIONARY ALGORITHM (EA)  
There are two features of an EA that differentiate it from other algorithms [2]. Firstly, it operates on a population-based 
approach. Secondly, the individuals within the population interact and exchange information. EA is considered one of the 
metaheuristic approaches [4]. The term "metaheuristic" originated from two Greek words, “meta” and “heuristic” which 
gives the meaning of “beyond” and “to discover”. In the optimization view, a metaheuristic is a high-level procedure that 
applies multiple heuristic approaches to obtain a near-optimal solution to a COP. The mechanism of an EA is explained by the 
following components [1]: 

• Representation (definition of individuals) 
• Evaluation function (fitness function) 
• Population, parent selection mechanism 
• Variation operators; recombination and mutation 
• Survivor selection mechanism (replacement) 
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Table 3. Number of papers reviewed for each type of COP 

Combinatorial Optimization Problem No. of papers 
Vehicle Routing 12 

Travelling Salesman 10 
Job Shop Scheduling 10 

Timetabling 10 
Knapsack 5 

Other 6 
Total 53 

 
 
 

 

 
Figure 1. Variants of evolutionary algorithm 

 

 
Figure 2. The basic structure of GA.  

4. COMBINATORIAL OPTIMIZATION PROBLEM (COP)  
In addressing an optimization or modeling problem, it is necessary to identify a specific solution in a search space [1]. This 
search space consists of a collection of all objects of interest including the desired solution. The problem is known as a 
combinatorial optimization problem if the search space is defined by discrete variables, such as Booleans or integers. The 
computational complexity in optimization or modeling problems depends on the problem size [1]. The problem size is 
determined by the dimensionality of the problems subject to a number of variables. The number of possible solutions grows 
exponentially with the size of the problem. More time is needed to solve a huge problem. There are six types of COPs identified 
in this survey; Vehicle Routing, Travelling Salesman, Job Shop Scheduling, Educational Timetabling, Knapsack, and others 
(Traffic Light Intersection/ Shortest Path Problem). Table 3 shows the number of papers reviewed for each type of COP. 

5. APPLICATION OF EAS AND COPS 
In this section, multiple variants of EA used to address COPs are identified. This section describes the mechanism and 
performance of each variant. Figure 1 shows the application of EA variants on various COPs.  From our observation, a Hybrid 
Evolutionary Algorithm (HEA) is the most applied variant in addressing COPs. Followed by a Genetic Algorithm (GA), 
Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Differential Evolution Algorithm (DEA), and others. 
Genetic Programming (GP) is the least applied variant in addressing COPs. 

5.1 Genetic Algorithm (GA) 
Genetic Algorithm (GA) is a search method based on the principles of natural selection and genetics [7]. It was first introduced 
by Holland in 1975 to study adaptive behavior, as evidenced by the title of his early research book: “Adaptation in Natural 
and Artificial Systems” [8]. The GA encodes a solution (chromosomes) in binary string representation, which is called genes. 
The value of genes is called an allele [7]. To evolve good solutions in the GA, fitness proportionate selection, a low probability 
of mutation, and genetic recombination (crossover) are performed [8]. New generating solutions are evaluated, and the 
population is replaced. 

The basic GA is shown in Figure 2 [7]. Line 1 indicates a counting for the generation of a population. A population is then 
initialized (line 2) and each chromosome in the population is evaluated by a fitness function (line 3). Two best chromosomes 
(known as parents) are selected (line 5). The two parents undergo crossover to produce a child (known as offspring) (line 6). 
The offspring is mutated (line 7). Then, the population is updated (line 8). A number of iterations are executed until a 
termination criterion is met. 
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GA is commonly applied for complicated and large-size problems due to their competitive behavior that allows the 
survival of solutions adapted to favorable environments [9], [10]. It exhibits the potential to increase convergence speed and 
enhance final solutions quality [11]. The flexibility of GA encouraged further research focuses on modifying their mechanisms 
such as initialization [11], [12] and genetic (crossover and mutation) operators [13], [14] to further optimize their performance. 

Kobeaga et al. [13] proposed an EA to address an orienteering problem. An orienteering problem is similar to a traveling 
salesman problem or maximum collection problem. The objective was to maximize the total profit while visiting nodes in a 
route. A solution was represented in a sequence of nodes. An initial population was randomly generated in two steps. First, a 
subset of nodes was randomly chosen with probability 𝑝𝑝. Second, a route was randomly created through permutation of the 
nodes. A hybrid of tournament and roulette wheel selection was applied to select parents. An edge recombination crossover 
was implemented. A node inclusion method and Lin-Kernighan heuristic were used to improve the mutation of the route length. 
At some generations, tour improvement procedure (add/drop operators) was performed. The proposed algorithm was tested on 
344 TSPLib instances. It was compared with three state-of-the-art algorithms (GRASP with path relinking, tabu search, and 
two-parameter interactive algorithm). It was competitive for low to medium-sized instances and exceptional for large-sized 
instances. 

Plata-González et al. [15] proposed a GA to address a knapsack problem (KP). The KP involves selecting items with profit 
and weight values to maximize profit while staying within a knapsack's weight capacity. GA was used to modify the weight 
and profit of all items. A chromosome was represented in binary strings. A tournament selection was applied to select two 
fittest chromosomes. One point crossover and mutation operator were applied on the selected chromosomes to produce two 
offspring. Two types of tailored instances were introduced: easy-to-solve, and hard-to-solve. The proposed GA was tested on 
benchmark instances (Pisinger) for verification. Computational results showed that the tailored instances could improve the 
algorithm's performance. 

Ruiz et al. [16] proposed a Biased Random Key of Genetic Algorithm (BRKGA) to address an open vehicle routing 
problem (OVRP). A solution was represented in a binary matrix. The binary matrix comprised a number of clients and routes. 
A random-key vector was used to initialize the solution. Each solution was randomly assigned with a value between [0,1]. A 
predecessor list and random-key vector were then used to determine the next client visited in a route. The fitness value of the 
solution was then evaluated. Two groups of solutions were identified: elite and non-elite individuals. An elite individual was 
mated with either elite or non-elite individuals in a crossover stage. An offspring was generated and went through a mutation 
procedure. In the mutation procedure, an offspring with a new random-key vector was created. A 3-neighborhood local search 
strategy was applied to improve the solution quality. Strategic oscillation was used to prevent the algorithm from being stuck 
in local optima. This approach was tested on three benchmark datasets (Christofides, Li et al., and Golden et al.). The algorithm 
performed better than others (bumblebee mating optimization, wide solution neighborhoods metaheuristic, honeybee mating 
optimization, tabu search, and ant colony system). 16 out of 30 instances were improved by the proposed algorithm. 

Cruz-Piris et al. [10] proposed a GA to address a traffic light intersection problem. A Traffic Cellular Automata (TCA) 
simulator was used to develop several types of intersections. A solution was represented in a sequence of bits. It comprised 
input of vehicles in the intersection. A value of 0 represented the absence of vehicles and 1 represented the presence of vehicles. 
Each solution was then evaluated based on the cost of intersection (number of vehicle conflict points). The solutions were 
sorted based on fitness values from low (best value) to high (worst value). The fittest solutions (without conflict) were 
automatically selected for the next generation. The rest of the solutions were paired randomly and combined using the crossover 
function. A new solution was obtained and mutated with random changes (using Gaussian distribution with mean 0 and 
standard deviation). A solution with conflict points was remarked as invalid and removed by the algorithm. The proposed 
algorithm obtained a new best solution to traffic intersection problems without any conflicts. The proposed algorithm improved 
a traditional solution by 9.21% to 6.98%. 

Defersha and Rooyani [11] proposed a two-stage genetic algorithm (2SGA) to address a flexible job shop scheduling 
problem (FJSP). The objective was to determine the best sequences of job assignment to machines. A chromosome was 
represented in two segments: a left-hand-side (LHS) segment for job sequence and a right-hand-side (RHS) segment for 
machine operation sequence. In the first stage, a machine was assigned based on the job sequence in the LHS segment. The 
LHS segment was then combined with the RHS segment based on a shorter completion time machine. The combined segments 
(chromosome) consisted of three parts: job, order, and machines. In the second stage, a K-ways tournament mechanism was 
used to evaluate and select the best chromosomes. The selected chromosomes in a mating pool were then randomly paired. 
Tailored genetic operators were performed on each pair of chromosomes to produce offspring: single-point crossover, job 
crossover, assignment crossover, operation-swapping mutation, and assignment-altering mutation. The 2SGA was tested on 
several benchmark problems (Hurink, Jurisch, and Thole). It (using one CPU) performed better than other parallel genetic 
algorithms (using 48 CPUs). The proposed algorithm improved in terms of convergence speed and solution quality as 
compared to a regular GA. 

Yuan et al. [9] proposed a co-evolutionary genetic algorithm (CGA) to address a flow shop group scheduling (FSGS) 
problem with job-related blocking and transportation times. The objective was to minimize job processing time. A chromosome 
was constructed in three processes: block mining, extraction, and recombination. Two groups were identified in the block 
mining process: group scheduling and job scheduling. The extraction process was used to remove redundant blocked jobs in 
the population. The unblocked jobs were then inserted into an empty chromosome. A classical tournament was applied to 
select the chromosomes with the best fitness value. A partial mapping crossover was applied to the two best chromosomes. A 
single-point exchange mutation was then applied to the new solutions. A coordination-oriented generic evolution operator was 
used to select and update the job sequences in a group schedule. The CGA was tested on actual data from the pipe-making 
production. It outperformed the other three methodologies (tabu search, two-level iterated greedy algorithm, and hybrid 
genetics and particle swarm optimization) in terms of solution effectiveness and search quality. 
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Park et al. [14] proposed a GA with a waiting strategy and rerouting indicator (RI) to address vehicle routing problems 
with simultaneous pickup and delivery (VRPSPD). The objective was to minimize transportation costs. A chromosome was 
represented in a sequence of nodes. The distance between nodes developed a route that traveled by a vehicle. Identical vehicles 
traveled through the nodes (customers) based on demand location, amount of product requested, and product variety index. 
The fitness value of each chromosome was evaluated based on the total distance traveled by the vehicles and the total amount 
of product transported. Two best chromosomes were selected by using a roulette wheel method. A two-point crossover was 
applied to these chromosomes to generate offspring. A scramble mutation operator was applied to the offspring to obtain a 
near-optimal solution. The waiting strategy with a rerouting indicator was implemented when new demands arrived during 
product delivery. The proposed algorithm was tested on simulated data. Its performance was compared with that of a CPLEX 
solver and other neighborhood searches (general, adjacent, and 2-segment swap). A real-life-sized instance was solved with 
reasonable computational time by the proposed algorithm. 

Komijan et al. [17] proposed a GA to address a bus routing problem. The bus routing problem included factors such as 
gender separation, routing special students, and mixed loading into consideration. The objective was to minimize transportation 
costs and time. A chromosome was segmented into three parts: a sequence of bus stations, a sequence of students, and a 
sequence of visiting students at the same route. Two best chromosomes were selected based on their fitness value. A two-point 
crossover was applied to these chromosomes to generate offspring. A swap-mutation operator was used in a mutation 
procedure. Finally, an elitism method was applied to select the best solution. The proposed algorithm was employed on a real-
world dataset of four schools in Tehran. The bus routing was improved in terms of an optimal number of stations visited and 
cost reduction. 

Perez et al. [18] proposed a specific 3D chromosome in a GA to address a university timetable scheduling. The 3D 
chromosome consisted of a three-dimensional matrix (day, hour, group). Each chromosome's fitness was determined by 
subtracting the total penalties from the total preferences. The two fittest chromosomes were recombined with a single-point 
crossover to generate offspring. Mutation operator was carried out by exchanging professor slots, available time or day of 
subjects, and available time or day between two slots. The proposed algorithm was employed on a real-world dataset of the 
University of Isthmus, Mexico. At least one optimal solution with zero penalties was obtained. 

Ghannami et al. [12] proposed a GA with Stratified Opposition-based Sampling (SOBS) to address the shortest path 
problem (SP) between pairs of nodes in a network. The SOBS method has produced a diversified initial population. A 
chromosome was represented in a sequence of nodes. Levenshtein distance was used to measure the chromosome length. The 
length of the chromosome was reduced by using an opposition-based learning (OBL) strategy. Two random chromosomes 
performed a one-point crossover to generate offspring. The SOBS-GA was tested on deterministic networks (fixed 20 nodes) 
and random networks (generated by Watts–Strogatz, Erd¨os–R´enyi, Waxman, and Barab´asi–Albert models). In comparison 
to a pseudo-random number generator (PRNG), the proposed algorithm generated more precise solutions in less computational 
time and with an improved initial population. 

Abduljabbar et al. [19] proposed a GA to address a course timetable scheduling problem. A chromosome was represented 
in a binary code of 24 bits in length. The chromosomes consisted of elements such as university departments, courses, lecture 
halls, instructors, instructor schedules, and days. Two fittest chromosomes were selected using a roulette method. Single-point 
and two-point crossover operations were performed on these chromosomes. Finally, mutated chromosomes were selected to 
update the population. The proposed GA was tested on real-world data from the College of Computer Science, University of 
Technology-Baghdad. A flexible scheduling system was obtained. 

Mahjoob et al. [20] proposed a Modified Adaptive Genetic Algorithm (MAGA) to address a multi-product and multi-
period inventory routing problem (MMIRP). The MMIRP is similar to a vehicle routing problem. The objective was to 
minimize the number of vehicles, transportation costs, and inventory costs.  A chromosome was represented in a binary matrix. 
The binary matrix consisted of a number of customers and periods. The modified GA was executed in two phases: construction 
and improvement. In the construction phase, two parents were selected based on the summation of vehicles, transportation 
costs, and inventory costs. The two selected parents then went through a column or row crossover of the matrix to create 
offspring. A mutation operator was applied to the offspring by flipping a position of two random rows or columns of the matrix. 
An adaptive genetic operator was used to strengthen the performance of the crossover and mutation operators. The proposed 
GA was tested on generated instances. The proposed methodology was better than the Cplex software and heuristic method 
from the literature. 

Neumann et al. [21] proposed a GA to address a KP with stochastic profit. Two types of profit were considered: expected 
profit and variance of profit. The objective was to maximize the profit. KP with stochastic profit was described as profit with 
an uncertain probability of weights. A solution was comprised of a number of items.  Each item consisted of profit and weight. 
It was then evaluated by using a fitness function. Two boundaries were applied in this fitness function: Chebyshev’s inequality 
and Hoeffding’s bounds. These boundaries were introduced to handle the uncertainty of weight in KP. Specific crossover and 
heavy tail mutation were then applied to maximize the profit. The proposed algorithm was tested on the Pisinger dataset. Better 
solutions were produced than other evolutionary algorithms ((1+1) EA heavy-tailed mutation and (µ+1) EA). 

A total of thirteen papers on GA are reviewed: vehicle routing (4), job shop scheduling (2), timetabling (2), knapsack (2), 
and others (3).  Several initialization strategies were introduced to enhance the quality of initial solutions; such as a block-
mining-based artificial chromosome [9], biased random key [16], and stratified opposition-based sampling [12]. Adjustments 
to genetic operators were performed to prevent solutions from getting trapped in local optima. These modifications include 
strategic oscillation [16], a node inclusion method and Lin-Kernighan heuristic [13], adaptive genetic operators [20], and 
specific design genetic operators [9], [11], [21]. In addition, fitness evaluation was also improved by introducing two 
boundaries: Chebyshev’s inequality and Hoeffding’s bounds [21].  
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Figure 3. The basic structure of DEA  

5.2 Differential Evolution Algorithm (DEA) 
Differential Evolution Algorithm (DEA) is a stochastic population-based optimization algorithm. It was introduced by Ken 
Price and Rainer Storn in 1995 [8], [22]–[24]. Figure 3 shows the main operations involved in a DEA [25]. A population of 
individuals (vectors) is initialized (line 2). Three vectors are randomly selected (line 5). A differential mutation is performed 
on these vectors to create a mutant vector (line 6). A crossover is performed between the mutant vector, 𝑣𝑣𝑖𝑖,𝑡𝑡 and a random 
parent vector, 𝑥𝑥𝑖𝑖,𝑡𝑡 to obtain a target vector, 𝑢𝑢𝑖𝑖,𝑡𝑡 (line 7). The target vector is compared with the randomly selected parent vector 
(line 8). The parent vector in the current population is replaced if the target vector is better (line 9). The generation count is 
then incremented (line 14). 

DEA is generally known to successfully solve COP due to its simple structure, robustness, and ease of use [26], [27]. In 
classic DE, a user specifies control parameters and mutation strategies, which are kept constant during the optimization process 
[28]. Researchers investigating new components to enhance their capability in solving binary/discrete problems with large 
dimensions[26]. Additionally, ongoing research is carried out to enhance DEA performance in terms of computational 
time[29], convergence speed [27], and preventing trapped in local optima [26].  

Ali et al. [26] proposed a DEA to address a binary KP. A solution was represented in a continuous vector. The length of 
a vector equals the total number of items. A mapping method was introduced to convert the continuous value to a binary value. 
A repairing method was introduced in fitness evaluation to remove items that exceed the ratio of profit to weight. A DE/rand/1 
mutation strategy was then performed to produce a mutant vector. A target vector was obtained via binomial crossover between 
the mutant vector and parent vector. Finally, a greedy selection strategy was applied to identify elite solutions for the next 
generation. A diversity mechanism was used to avoid solutions stuck in local optima. The proposed DEA was tested on the 
KP benchmark.  A performance comparison was made with other state-of-the-art algorithms (GAs with three different local 
searches (BFGS, Nelder-Mead, Conjugate Gradient), and GA without local search).  Good solutions were obtained in a better 
computational time. 

Hu et al. [29] proposed a DEA with an uncertainty handling technique (DEA_UHT) to address a stochastic reentrant job 
shop scheduling problem (SRJSSP). The objective was to minimize the processing time of each job by each machine. A job 
sequence was formed on reentrant-largest-order-value (RLOV). An active schedule was generated by allocating the jobs to 
machines based on the sequence. The processing time of each solution was computed by using an optimal computing budget 
allocation technique (OCBAT). A roulette wheel selection was applied to select the best solution. Insert-based and interchange-
based operators were applied to the selected solutions as replacements for mutation and crossover operations. A poor solution 
was removed by a hypothesis test technique (HTT). The proposed DEA_UHT was tested on the JSSP benchmark dataset. It 
was faster than other methodologies (PDEA and DEA_UHT_O). 

Gao et al. [30] proposed a DEA to address a ship-uploading scheduling problem. A solution was represented in a long 
array with three components: the number of incoming ships, the order of unloading ships, and the allocation of conveyors. 
Initial solutions were randomly generated. The addition and subtraction of arrays were carried out in the mutation stage to 
produce a new target vector. The crossover procedure was then applied by swapping fragments of vector components. After 
the crossover, infeasible solutions were possibly produced. An improvement method was then carried out to repair the 
infeasible solutions. The proposed DEA was tested on simulated and real-world datasets. A comparison was made with the 
CPLEX solver and other DE variants (ADE, CODE, JADE, JDE, and SADE). The proposed algorithm was found to be 
effective and efficient both on benchmark data and real-world datasets. 
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He et al. [27] proposed an adaptive multi-objective differential evolutionary algorithm (AMODE) to address an energy-
efficient open shop scheduling problem (EOSSP). The objective was to minimize makespan, mean tardiness, and total energy 
consumption. A solution was represented in a two-layer random key. The first layer consisted of the operation sequence. The 
second layer consisted of the machine speed sequence. Each layer was assigned with a real number in a range of (0,10).  A 
fuzzy correlation entropy analysis (FCEA) was used to determine the quality of each solution. Three solutions with a higher 
FCEA value were selected for mutation and crossover operators. Adaptive opposition-based learning (AOBL) was utilized 
within a mutation operator to enhance the search capability. Any infeasible solution obtained was then repaired. A crossover 
was performed on the operation sequence and machine speed sequence. An external archive technique was used to select the 
best solution. The proposed AMODE was tested on a benchmark dataset (Tailard's instances). It outperformed the three well-
known algorithms (NSGA-II, NSGA-III, and MOEA/D). 

Morais et al. [28] proposed a self-adaptive discrete differential evolution (SADE) to address a permutation flow shop 
(PFS) scheduling problem. Three types of SADE were introduced: (DSA-DE), DSADE-PFS1, and DSADE-PFS2. A solution 
was represented in a continuous vector.  A largest-order value (LOV) method was used to convert the continuous vector into 
a permutation of a task in a discrete domain. A self-adaptive mechanism was employed to allow good control of parameters. 
A mutation factor and crossover rate were generated in this mechanism. Different mutation strategies were applied in each 
SADE. A binary crossing was operated in all types of SADE to produce a test vector.  A lower-cost function of the test vector 
replaced a target vector. The algorithm was competitive in addressing several benchmark datasets (Carlier, Heller, Reeves, and 
Tailard).  

A total of five papers on DEA are reviewed: job shop scheduling (4) and knapsack (1). DEA was known as a powerful 
tool for solving continuous optimization problems [26], [30]. A mapping method and largest order value (LOV) method were 
applied to handle the continuous nature [26], [28]. Several techniques were proposed in fitness evaluation to reduce 
computational cost such as optimal computing budget allocation technique (OCBAT), hypothesis test technique (HTT) [29], 
fuzzy correlation entropy analysis (FCEA) [27], and repairing method [26]. Furthermore, opposition-based learning [27] and 
different adaptive mechanisms were tested to have good control of parameters in DEA [28].  
 
5.3 Genetic Programming (GP) 
Introduced by Koza in 1992, Genetic Programming (GP) is perceived as the “programming of computers by means of natural 
selection”, or “automatic evolution of computer programs” [8]. GP produces a new generation by iteratively applying genetic 
operations such as crossover, mutation, and reproduction. This is an extension of Genetic Algorithms in which individuals 
(computer programs) within a population are represented using a tree structure. In the tree structure, a node indicates a function 
(instructions to execute), and a link indicates an argument for each instruction. The tree’s leaves are called terminals [31]. 

GP initializes individuals in a population by two primary methods; Full or Grow [31]. Both methods initialize individuals 
in a population based on a predefined maximum depth of a tree. A tree’s size and shape are specified in the Full method. 
Variations of sizes and shapes are allowed in the Grow method. 

Figure 4 shows the basic structure of GP [31]. The first population of an individual computer program is generated 
randomly using available functions and terminals (line 1). Iteratively, the fitness value of each individual computer program 
is evaluated (line 3). Two fittest computer programs are then selected to perform genetic operations (line 4). A new individual 
computer program is created through crossover (line 5) and mutation procedures (line 6). The best individual computer 
program is then updated. This process is repeated until the termination criterion is met. 

In COPs, GP is commonly used to solve job shop scheduling. A tree structure in GP can be represented as a mathematical 
formula to determine the priority of a certain job [32].  A priority is a numerical value (integer or floating-point number) that 
enables the ranking of machine jobs.  

 
 

 

 
Figure 4. The basic structure of GP 
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Lin et al. [3] proposed genetic programming hyper-heuristic (GP-HH) to address a multi-skill resource-constrained project 
scheduling problem (MS-RCPSP). A solution was represented in a binary tree. Each binary tree consisted of a sequence of 
task vectors. Ten low-level heuristics were used to develop a single task vector. A left-shifted method was then used to assign 
a single task vector to the available resources. The fitness value of each single task vector was then evaluated. Two best-fitted 
task vectors were then selected by using a roulette wheel method. A crossover was performed between these two best-fitted 
vectors to generate a subtree. In a mutation procedure, the subtree below a mutation point was replaced by a randomly generated 
tree. The new binary tree continued growth until it reached a maximum depth. GP-HH was tested on the iMOPSE benchmark 
dataset. It was compared with three other algorithms (hybrid ACO, GRASP, greedy_DO, and hybrid differential evolution and 
greedy algorithm). It was effective in handling the MS-RCPSP with respect to average cost, computational time, convergence 
rate, and solution precision. 

Braune et al. [32] proposed a GP learning approach to generate priority rules for dispatching jobs in flexible shop 
scheduling problems. A solution was represented in a tree structure. There are two types of tree structures used: single-tree 
and multi-tree. The single tree structure consisted of terminals for jobs and machine decisions. In the multi-tree structure, a 
full or grow method was applied to generate an initial population. The fitness value (average makespan) of each tree was then 
evaluated. The fittest tree was selected by using a roulette wheel method, rank-based, and tournament selection. A single-point 
crossover was applied to generate a subtree. A standard GP mutation was carried out to select a node within a parent tree and 
to cut the branches. The cut branches were replaced by a new sequence of nodes. The generated subtree consisted of a 
dispatching rule which was used as learning information for the next generation. The proposed algorithm was tested on 
benchmark instances (Brandimarte and Lawrence). Better priority rules were generated. 

A total of two papers on GP are reviewed. An expression tree used in GP creates a dispatching rule that helps in decision-
making between tasks and resources. In [3], GP functioned as a high-level strategy to manage several low-level heuristics 
during the evolutionary process. Meanwhile, single-tree and multi-tree approaches were performed to minimize the makespan 
of the jobs machine [32]. 

5.4 Particle Swarm Optimization (PSO) 
Particle Swarm Optimization (PSO) was introduced by Kennedy and Eberhart in 1995 [33]–[36]. PSO algorithm was inspired 
by a swarm of birds that search for food with information sharing between the individuals in the swarm. The individuals 
(known as particles) represent locations in a multidimensional search space. Particles move randomly in the search space to 
find the maximum/minimum of a given objective function. Figure 5 shows the PSO algorithm [35]. A particle is initialized by 
its location and velocity (line 1). Each particle’s fitness value is then evaluated (line 4). The particle with the best fitness value 
is updated as a personal best location (line 7). The fitness value among all particles is then compared with the previous global 
best location. The new global best location is updated if the particle achieves a new fitness value (line 9). Each particle's 
velocity (line 11) and new location (line 12) are then updated. The process is repeated until a stopping criterion is met. 

PSO is popular due to its computational simplicity, adaptability [33], flexibility, fast convergence, and few parameter 
settings [36]. It can efficiently explore different solution spaces throughout the search process and converge toward high-
quality solutions [37]. Several PSO variants, modified velocity equations, neighborhood topology, and local search strategies 
are suggested to enhance PSO performance [38]. 
 
 

 
Figure 5. The basic structure of PSO. 
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Shi et al. [34] proposed a discrete PSO with local search to address a split delivery routing vehicle problem (SDVRP). An 
integer coding method was used to represent a particle. Each particle had 6 × 𝑛𝑛𝑛𝑛 + 1 (𝑛𝑛𝑛𝑛 is the number of customers) elements 
and comprised three parts (position of a particle, delivery amount to each customer, and velocity of a particle). An initial 
particle was generated by using three different methods; the save algorithm (for non-split delivery), the split sweep algorithm, 
and random generation (for split delivery). The position of a particle was transformed into a float number between (0,1). t was 
then evaluated based on a fitness function. The personal best position and global best position were then updated. The updated 
position of a particle was changed back into an integer number form for a local search procedure. Five local search strategies 
were implemented (relocation, exchange, 2-opt, improvement of k-split procedure, and split exchange and split swap). Three 
types of velocity equations (inertia velocity equations, constriction velocity equations, and local neighborhood topology 
velocity equations) were applied to update the particles in the swarm. The proposed algorithm was tested on five sets of 
instances (Solomon, Belenguer et al., Campos et al., Archetti et al., and Chen et al.). Good solutions were found for 32 
instances and improved solutions were obtained for 35 instances. 

Mingo Lopez et al. [38] proposed a hybrid particle swarm optimization with genetic operators (HPSOGO) to address a 
multidimensional knapsack problem. A particle was represented in a vector of real numbers. It was transformed into a vector 
of binary variables by using a random number generation process. The fitness value of each particle is then evaluated to 
determine the personal best location and global best location. Crossover and mutation procedures were performed on the 
personal best location and global best location. 2 random bits of personal best and 1 random bit of global best were copied to 
a current particle. The current particle’s velocity was then mapped in a range [0,1]. A sigmoid function acts as a threshold that 
returns the value 0 or 1 to update the particle’s location. HPSOGO was tested on ORLib benchmarks. Its performance was 
competitive with other PSO-based algorithms (PBPSO, MBPSO, CBPSO1, BPSOTVAC, CBPSOTVAC, and BPSOSIPAC) 
in obtaining optimal solutions. 

Imran Hossain et al. [33] proposed a PSO with two new operations to address a university course scheduling problem 
(UCSP). A particle was represented in a one-dimensional matrix (consisting of a complete schedule for instructors, batches, 
and groups). Initial particles were generated by randomly allocating timeslots to allocated courses of all instructors. Each 
particle was then evaluated based on quality and violation of the instructor’s preferences. The fittest solution among all particles 
was selected as the global best solution. The velocity of each particle was then calculated by using a swap sequence strategy. 
It transformed a particle solution into another known as an intermediate solution. As the forceful swap operation applied to the 
intermediate solution could cause conflicts, a repair mechanism was applied by randomly moving the conflicting courses to 
non-conflicting positions. A selective search method was then applied to determine the fittest intermediate solution. It was 
then updated as a final solution. The proposed PSO was tested on a real-world dataset from Khulna University of Engineering 
& Technology. It showed improvement in terms of quality solutions as compared to other traditional methods (genetic 
algorithm, harmony search, and producer-scrounger method). 

Gulcu et al. [39] proposed a PSO to address a discrete multiple traveling salesman problem (MTSP). A particle consisted 
of a sub tour of each salesman. The position of each particle was evaluated by a fitness function. Two variants of PSO were 
introduced: APSO (metaheuristic) and HAPSO (hyper metaheuristic). In APSO, an initial particle was randomly generated. In 
HAPSO, Greedy Randomized Adaptive Search Procedure (GRASP) was used to generate an initial particle. 2-opt, path-relink, 
and swap operators were applied to obtain a particle with the best global position in both algorithms. Both APSO and HAPSO 
were tested on five TSP instances. HAPSO showed greater robustness compared to APSO and other algorithms in the literature 
(genetic algorithm and ant colony optimization). 

Dahmani et al. [37] proposed an adaptive PSO to address a quadratic knapsack problem (KP) with a conflict graph. The 
objective was to maximize the total profit of items in a knapsack within the capacity limit. A constructive greedy procedure 
was applied to generate an initial particle. A fitness function was used to evaluate the position of each particle. The best 
personal position and global best position were then computed. Each particle’s velocity and position were then updated. A 
local neighborhood optimization procedure was introduced to repair any infeasible solutions. The quality of solutions was then 
enhanced. Finally, a 2-opt strategy was used to refine the solution quality. The proposed algorithm was tested on benchmark 
instances (Shi et al., Billionet and Soutif, and Yamada et al.). High-quality solutions were produced in average computational 
time as compared to other methodologies (modified descent method, neighborhood search-based metaheuristic, and GLPK 
solver). 

Marichelvam et al. [40] proposed an improved particle swarm optimization (IPSO) with a two-stage procedure to address 
a hybrid flow shop scheduling problem (HFSSP). The objective was to minimize the weighted sum of the makespan and total 
flow time. A particle was represented in a sequence of jobs. In the first stage, the shortest processing time (SPT) dispatching 
rule was applied to arrange jobs in descending order. NEH (Nawaz, Enscore, and Ham) constructive heuristic was then used 
to generate initial particles. Particles were then evaluated based on their position. The personal best position and global best 
position were updated. Each particle’s velocity and new position were then computed. In the second stage, variable 
neighborhood search (VNS) was applied to improve the quality of the global best solution. IPSO was tested on manufacturing 
industry data in Hosur, India. The algorithm’s performance was superior to other methods (genetic algorithm, water flow-like 
algorithm, tabu search, variable neighborhood search-priori approach). 

Tan et al. [41] proposed a hybrid particle swarm optimization with particle elimination (HPSO-PE) to address a school 
timetabling problem (STP). A particle was represented in a two-dimensional matrix of resources (teacher, students, classes, 
and rooms) and time. The current position was considered the local best solution. It was then set as the global best solution. 
Mutation, local, and global crossover operations were performed in the current position. A horizontal and vertical swapping 
was introduced to improve the effectiveness of the mutation and crossover procedures. A Hill Climbing method was used to 
update the local and global best position of particles. Poor particles were removed. HPSO-PE was tested on an XHSTT-2014 
dataset. It was effective in addressing small and medium instances. 
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Thepphakorn et al. [36] proposed a hybrid particle swarm optimization-based timetabling (HPSOT) to address a university 
course timetabling problem (UCTP). Two variants of PSO were introduced: Standard particle swarm optimization (SPSO) and 
Maurice Clerc particle swarm optimization (MCPSO). The largest unpermitted period degree (LUPD) was applied to generate 
initial particles. A number of events were listed in a sequence. An event was allocated to an empty timetable to create a 
candidate particle (timetable). A random key technique was applied to each candidate particle. Each candidate particle was 
then evaluated to update the personal best position and global best position. Each particle’s velocity was then updated. A repair 
process was adopted for any infeasible solutions found. The quality of a current particle was then compared. It was replaced if 
the new solution was found better. Two local search strategies were introduced to improve solution quality: Exchange operator 
(EO) and Insertion operator (IO). The proposed HPSOT was tested on a real-world dataset from Thailand. A comparison of 
five combinations EO:IO was made for both SPSO and MCPSO. Computational results showed that the 25%: 75% ratio of 
EO:IO configuration could generate a better total operating cost. It performed better than the original variants of PSO for all 
problem instances. 

A total of eight papers on PSO are reviewed: vehicle routing (1), traveling salesman (1), job shop scheduling (1), 
timetabling (3), and knapsack (2). Several variants were introduced such as Discrete PSO [34], Metaheuristic PSO (APSO) 
and Hyper Metaheuristic PSO (HAPSO) [39], Adaptive PSO [37], Standard PSO (SPSO) and Maurice Clerc PSO (MCPSO) 
[36]. Additional genetic operators [38], [41] and local search strategies [34], [36], [37], [40]were performed to improve the 
solution quality in the proposed algorithms.   

5.5 Ant Colony Optimization (ACO) 
The double-bridge experiment by Deneubourg et al. [42] and Goss et al. [43] inspired the development of the first ACO 
algorithm by Dorigo et al. (1991) [35]. The experiment explained the behavior of ants in finding the shortest path from their 
nest to food sources. A trail pheromone was laid by the ants along their way to the food sources. The traces marked by the ants 
lead others to the food sources [35], [44]. Figure 6 shows an iterative process of an ant to create a solution (path). In line 1, 
pheromone values are initialized. The ants then construct a sequence of solutions (line 4). The pheromone values are then 
updated (line 7). It decreases (evaporation) by a certain probability value. For a good solution, the pheromone values are 
increased (intensification). This information is transferred from one iteration to another until a stopping criterion is met. 

ACO can utilize problem information well while constructing solutions [45]. Although there is an evaporation mechanism, 
ACO can easily trapped in local optima [45], [46] and require long running time  [46] when solving more complicated 
problems. Consequently, a new ACO is developed concerning optimizing ACO parameters [47], and pheromone updating 
strategy [46], [48]. 

Wang et al. [47] proposed a hybrid of a Symbiotic Organism Search (SOS) and ACO algorithm to address a traveling 
salesman problem. An initial population (a group of ants) was randomly generated. Each ant carried a probability value. The 
probability value was obtained via pheromone trail (𝛼𝛼) and heuristic information (𝛽𝛽) between two cities. The SOS method was 
applied to control these two parameters (𝛼𝛼 and 𝛽𝛽). They were updated via three phases: mutualism, commensalism, and 
parasitism. A new solution was obtained in the mutualism phase. It was then used as a reference in the commensalism phase. 
The reference solution was used to update the other ants. In the parasitism phase, an artificial parasite was obtained and replaced 
ants in the population. Adjustment of 𝛼𝛼 and 𝛽𝛽 balanced the pheromone guidance in finding the minimum travel distance. One 
local optimization strategy (combination of nearest neighbor and path reversion) was applied to improve the solution quality. 
The proposed SOS-ACO was tested on different TSP instances in TSPLIB. A comparison was made with the other two 
algorithms (ACO with local optimization, and ACO). The proposed algorithm obtained better quality solutions for large-sized 
instances. 
 
 

 
Figure 6. The basic structure of ACO 
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Li et al. [46] proposed Saltatory Evolution Ant Colony Optimization (SEACO) to address a traveling salesman problem 
(TSP). A solution was represented by a pheromone matrix. The pheromone matrix consisted of a number of city nodes and the 
distance between cities. An initial solution was generated by randomly assigning an ant to any city node. Any unvisited city 
was chosen by an ant via the roulette wheel method.  The process was repeated until an ant returned to the starting point. 
Saltatory evolution was introduced to tackle a long-running time of traditional ACO. It was carried out in three stages: path 
performance evaluation, near-optimal path identification rules generation, and near-optimal path identification. SEACO was 
tested on 24 random instances from TSPLIB. A comparison was made with a traditional ACO in terms of complexity. 
Optimization speed for large-sized instances was improved. 

Jia et al. [45] proposed a Confidence-based Ant colony optimization (CBACO) to address a bi-level capacitated electric 
vehicle routing problem (CEVRP). In CEVRP, three kinds of vertices were considered: depot, customers, and charging 
stations. A max-min ant system (MMAS) was used to construct two types of routes: direct vehicle routing (CBACO-D), and 
giant routes that include all customers (CBACO-I). The nearest neighbor search and simple enumeration (SE) methods were 
used to obtain the fittest solution. Through confidence-based selection, a sub-solution (capacity feasible) was selected and 
refined. A recharging schedule was generated by using a SE method. It was used to repair the feasibility (electricity) of the 
sub-solution. This feasible solution was then evaluated, and pheromone information was updated. For CBACO-D, a 2-opt, and 
node-shift strategy was used to improve the solution. CBACO was tested on two benchmark datasets from IEEE WCCI2020. 
CBACO-D and CBACO-I routing strategies were compared. CBACO-I performed better for large instances as it promotes 
diversity in a population. Meanwhile, CBACO-D converged prematurely. The proposed CBACO was competitive with other 
methods (bilevel ACO, genetic algorithm, simulated annealing, variable neighborhood search, and iterated local search). 

Zhao et al. [49] proposed ACO to address a multi-objective traveling salesman problem. An evolutionary experience-
guided pheromone updating strategy was introduced to improve efficiency and quality of optimization. A solution was 
represented in a pheromone matrix. Multiple pheromone matrices were handled by several groups of ants. Each group has its 
own pheromone and heuristic matrix. The shortest pheromone trail was measured in an Euclidean distance. Intragroup 
evolutionary information-guided pheromone updating (IGPU) was used to update the pheromone matrix and to avoid the 
solution from being stuck at local optima. A learning automata (LA) with adaptive strategies was performed to update the 
pheromone matrix for each group. The proposed algorithm was tested on nine multiobjective benchmarks of TSP. Its 
performance was competitive as compared to other methods (multiobjective EA using decomposition and ant colony, 
bicriterion ant, multiobjective ACO, multiobjective ACS, and population-based ACO for multiobjective). 

Thiruvady et al. [48] proposed a surrogate-assisted ant colony optimization (SACO) to address resource-constrained job 
scheduling with uncertainty. Two new techniques were introduced: fine-tuned local search and global updates on the 
pheromone trail. A solution was represented in a permutation of jobs. It was then mapped to a schedule by using greedy 
heuristics. A pheromone trail was weighted by a job position. The local pheromone trail was updated every time a job was 
selected and added to a schedule. Permutation swapping and 𝛽𝛽-sampling procedures were applied in a local search procedure 
to achieve the best local trail. The 𝛽𝛽-sampling procedure moves the subsequences of job permutation to different parts of the 
pheromone trail. A promising solution was identified by calculating the distance between the two trail solutions. The proposed 
algorithm was tested on ORLib instances. The proposed SACO outperformed traditional ACO in terms of computational time 
and uncertainty levels. 

A total of five papers on ACO are reviewed: vehicle routing (1), traveling salesman (3), and job shop scheduling (1). 
Symbiotic Organism Search (SOS) was incorporated into ACO to optimize parameters [47]. Pheromone updating strategies 
were introduced to avoid solutions stuck in local optima, such as Intragroup evolutionary information-guided pheromone 
updating [49]. Besides, local search was applied to refine the solutions: a combination of nearest neighbor and path reversion 
[47]. Saltatory evaluation ACO was introduced to tackle the long execution time of ACO [46]. 

5.6 Other Approaches 
5.6.1 Artificial Bee Colony 
Artificial Bee Colony (ABC) algorithm was invented by Karaboga in 2005 [50]. It is simulating the behavior of honeybees in 
searching for food sources. The ABC algorithm comprises three key elements: a food source, employed bees, and unemployed 
bees (scout and onlooker). There are four stages involved; population initialization, employed bee, onlooker, and scout. In the 
initialization phase, a scout bee initializes a population of food sources (solutions). In the employed bee phase, the information 
on a food source (amount of nectar) is evaluated. An employed bee then shares the information with an onlooker bee that is 
waiting in the hive.  

In the onlooker bee phase, an onlooker bee probabilistically chooses a rich nectar food source (good quality solution) 
based on the information shared by the employed bee. A good solution is stored in memory. A poor food source is abandoned. 
In the scout bee phase, an employed bee with an abandoned food source becomes a scout bee. The scout bee then randomly 
populates a new solution. This process continues until the best solution is obtained or a termination criterion is met. 

ABC algorithm was originally tested with a set of benchmark numerical test functions [50]. It is able to produce very good 
results at low computational costs in optimization problems.  Its successful performance as compared to other well-known 
evolutionary algorithms (GA, PSO, DE, and ACO) has motivated researchers to extend the use of this algorithm to other areas. 

Zhu et al. [51] proposed an ABC algorithm to address a school timetabling problem (STP). In a food source initialization, 
educators were allocated to a scheduled timetable based on their availabilities, preferences, and expertise. Employed bee was 
then allocated to each of the scheduled timetables. The scheduled timetable was then evaluated. In the onlooker phase, a 
parameter called trail was used as a boundary to limit the exploration of food sources. The food source was abandoned once 
the limit had been reached. The employed bee with an abandoned food source then became a scout bee and attempted to find 
a new food source. A swapping method was applied in a virtual search space (VSS) to improve the bee’s ability to search for 
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a new food source. The proposed ABC was tested on a randomly generated dataset. A comparison was made between ABC 
and constraint programming (CP). Satisfactory solutions for large-sized instances were obtained. 

5.6.2 Cuckoo Search  
Cuckoo Search (CS) algorithm was proposed by Yang and Deb in 2009 [52], [53]. It is a nature-inspired metaheuristic 
algorithm based on the brood parasitic behavior of some cuckoo species that lay eggs in another bird's nest (host nest) [52], 
[54]. Figure 7 shows the basic structure of CS. In the initial phase, a population of 𝑛𝑛 host nests is generated. Cuckoos are 
attracted by these initial host nests. They lay their eggs in these host nests randomly (Levy flights). The quality of a host nest 
is then compared with that of another random host nest. If the random host nest is better, it will replace the old one. A fraction 
(𝑝𝑝𝛼𝛼) of each nest is calculated. The worst nests are abandoned and new ones are constructed. These nests are then evaluated 
and nests with good quality are kept. The good-quality nests are then ranked and the current best nest is identified. This process 
iterates until it reaches a maximum generation or stopping criterion. In an early comparison between CS algorithm with GA, 
PSO, and other conventional algorithms, the CS algorithm showed superior performance in solving many optimization 
problems [54].   CS algorithm exhibits a good balance of intensive local search and an efficient exploration of the whole search 
space. In a survey of CS variants and applications [52], it shows advantages in terms of fewer parameters as compared to other 
algorithms, and ease of hybridization with other optimization algorithms. 

Zhang et al. [53] proposed a random walked discrete cuckoo search (RW-DCS) algorithm to address a traveling salesman 
problem (TSP). A discrete cuckoo search was applied to maintain the diversity of a population. An initialization of paths (host 
nests) was performed by using a roulette wheel method. A starting city in a path was randomly selected. The next city added 
to the path was selected by a probability based on its distance from the previous city. The quality of a path was evaluated based 
on its length. The shorter path gives a higher-quality solution. The original Levy flights were replaced by a local adjustment 
operator (2-opt) and discrete random walk. The fitness of a new path was then calculated. If the fitness of a new path was 
higher than the original path, the current path was updated as a globally optimal solution. The proposed RW-DCS was tested 
on a TSPLIB dataset. Its performance was superior in terms of convergence speed and population diversity as compared to 
other methods (Discrete Cuckoo Search, Discrete Bat Algorithm, and Discrete Sin-Cosine Algorithm).    

5.7 Hybrid Evolutionary Algorithm (HEA) 
The EA-based hybrid approach is robust in practice and is a rapidly growing research area with great potential [1]. Memetic 
Algorithm (MA) is one of the most popular EA-based hybrids. MA improves the algorithm performance by incorporating a 
local search in a Genetic Algorithm. On the other hand, other hybrids could incorporate parallel computation, apply local 
search strategies on initialization and variation mechanisms, and implement a diversification strategy on population.  

5.7.1 HEA (Memetic Algorithm) 
Nesmachnow et al. [55] proposed a parallel evolutionary algorithm (EA) to address a traffic light synchronization problem. 
The objective was to improve the average speed of buses and other vehicles. A master-slave model was applied in the parallel 
EA. In a master phase, a seeded initialization procedure was applied to generate initial candidate solutions (traffic light 
configurations). These configurations were passed to the slave for simulation (using SUMO) and evaluation. The evaluated 
configurations were returned to the master for optimization. A one-point crossover was applied to recombine the two fittest 
configurations. A Gaussian mutation and random modification methods improved the recombined configuration. The best 
configuration was then determined by using a standard tournament selection. The proposed EA was tested on the actual data 
of the Bus Rapid Transit system, in Uruguay. Improvements were shown in the bus's average speed (up to 15.4%) and other 
vehicles (by 24.8%). 
 

 
Figure 7. The basic structure of Cuckoo Search 
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Rezaeipanah et al. [56] proposed an Improved Parallel Genetic Algorithm with Local Search (IPGALS) to address a 
university course timetabling problem (UCTP). A chromosome was represented in a two-dimensional vector of gene sequences 
(event time and event location). Initial population was generated randomly and evaluated. A roulette wheel method was used 
to select two fittest chromosomes. The two fittest chromosomes were then recombined with three crossover operations 
(uniform, onepoint, and heuristic) to generate offspring. Three mutation operators (local, global, and swap) were performed to 
refine the offspring. A distance of feasibility (DF) criterion was measured in an improvement operator to reduce a violation of 
hard constraints. Finally, an elitism operator was used to determine the best offspring. The proposed IPGALS was tested on 
BenPaechter and ITC-2007 Track 2 benchmark instances. It produced superior solutions compared to other techniques 
(Improved GA, Improved GA with local search). 

Altıntaş et al. [57] proposed a self-adaptive MA to address an exam timetabling problem (ETP).  ETP involves an 
assignment of a set of exams to a certain list of periods (subject to some constraints). Multiple constructive low-level heuristics 
were applied to generate initial solutions (first population). Evaluation of solutions involved penalizing unassigned exams and 
calculating a number of conflicts. Two fittest solutions were selected (based on historical performance) for crossover operations 
to obtain offspring. The offspring were refined by using two mutation operators. A Hill Climbing algorithm was then applied 
to the refined offspring by moving each exam to a period with the lowest penalty. The offspring replaced the worst solution in 
the population. The proposed algorithm was tested on instances obtained from two universities in Turkey. A comparison of 
classroom utilization rates was carried out. Self-adapted parameters used in the proposed algorithm demonstrated excellent 
performance, resulting in improved classroom utilization rates. 

Wang et al. [58] proposed an adaptive MA to address dynamic electric vehicle routing problems (DEVRP) with time-
varying demands. A chromosome was represented in a sequence of customer nodes. In an initialization step, chromosomes 
were generated randomly and evaluated. The two fittest chromosomes were selected (using a binary tournament) based on the 
minimum travel distance. Order crossover (CO) and 2-opt mutation operator were then performed to generate offspring. Two 
different inverse-based adaptive local search operators (Single inverse (SI) and Multiple inverse (MI)) were used to refine the 
offspring. An immigrant scheme was then used to replace the worst chromosome in the population. The proposed adaptive 
MA was tested on VRPLIB instances. The proposed algorithm with the adaptive local search (SI) performed better than other 
algorithms (genetic algorithm and variants of memetic algorithm).  

Liu et al. [59] proposed a memetic search with efficient local search and extended neighborhood (MATE) in addressing 
vehicle routing with simultaneous pickup-delivery and time windows. A chromosome was represented in a set of vehicle 
routes. Each route consisted of a sequence of customer nodes. Residual capacity and radical surcharge (RCRS) heuristics were 
applied in the initialization stage. Customers were assigned to a route with minimum cost until it reached the RCRS criterion 
(number of remaining vehicles, and distance of the customer to the depot). In a crossover phase, two parents were randomly 
selected. An offspring inherits a random route from each parent. A route-assembly-regret-insertion (RARI) method was applied 
to insert unassigned customers into the offspring. Move operators (local search) with step size changes were then applied to 
improve the quality of the offspring. A removal-and-insertion operator was employed to obtain the best solution. MATE was 
tested on a Solomon benchmark dataset. A comparison was made with other algorithms (genetic algorithm, parallel simulated 
annealing, lexicographic-based two-stage, and adaptive large neighborhood search-path relinking). The proposed MATE 
algorithm achieved new best solutions in 12 of 65 instances. 

Jiang et al. [60] proposed a relevance matrix evolutionary algorithm (RMEA) to address a capacitated vehicle routing 
problem (CVRP). A CVRP contained 𝑁𝑁 customers. A chromosome was represented in a 𝑁𝑁 × 𝑁𝑁 relevance matrix. The 
relevance matrix was evaluated based on three aspects: surrounding customers, the maximum distance between all customers, 
and local information of elite individuals. The two fittest chromosomes were selected for a crossover stage. Three-step 
crossover and swap-mutation operations were performed on the two fittest chromosomes to generate offspring. The relevance 
matrix was then updated for the next generation. A diversity preservation strategy was triggered if the best solution was not 
found in certain generations. Several local operators (remove, swap, and replace) were employed in this strategy to refine the 
quality of solutions. The proposed RMEA was tested on three CVRP benchmarks (E, CMT, and Golden). It outperformed (fast 
convergence speed) eight state-of-the-art heuristic methods (genetic algorithm, adaptive variable neighborhood search 
algorithm, swarm-based constructive optimization algorithm, intelligent water drops algorithm, large neighborhood search 
algorithm, and ant colony optimization algorithm, ant colony optimization-simulated annealing, and greedy randomized 
adaptive search procedure). 

Al-Taani et al. [61] proposed an MA to address a traveling salesman problem (TSP). A solution was represented in a sum 
of all tours’ costs performed by a number of salesmen. Initial tours were selected randomly. A tournament selection method 
was applied to choose the fittest solution. One-point and two-point strategies were applied to the two fittest solutions in a 
crossover stage. In the mutation stage, a swapping strategy was then applied to the generated offspring. A local search 
procedure (hill climbing algorithm) was used to improve each individual’s fitness and accelerate the convergence speed. The 
proposed MA was tested on TSPLIB instances. The algorithm performance was competitive when compared to other methods 
(ACO, Adaptive PSO, Hybrid PSO). 

Afsar et al. [62] proposed a memetic evolutionary algorithm (MEA) to address a bi-objective fuzzy job scheduling problem 
(FJSP). The objective was to minimize makespan and energy consumption. A solution was represented in a sequence of jobs 
processing time (on all machines). A non-dominated sorting genetic algorithm (NSGA-II) was employed to generate random 
individuals. Parents were selected by using a lower selective pressure method (randomly paired individuals in a population). 
Each pair of individuals was then recombined (to generate offspring). The makespan of offspring was improved by using Tabu 
search. A heuristic procedure was used to reduce the non-processing energy (NPE) of each offspring. NPE was defined as the 
energy consumed while the machine is in an idle state. Finally, Mixed integer programming (MIP) solver was carried out to 
further improve these non-dominated solutions. The job starting time of each solution was modified by the MIP solver to 
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ensure the optimality of NPE. The proposed MEA was tested on twelve FJSP instances. Optimal solutions were obtained. 
Nikfarjam et al. [63] proposed a bi-level EA to address a traveling thief problem (TTP). The objective was to maximize 

the structural diversity of a set of solutions. A TTP is a combination of a traveling salesman problem and a knapsack problem. 
A solution was represented in a set of tours. Each tour consisted of a sequence of cities (with different capacities of items for 
knapsack). An initial population was randomly generated. Two fittest tours were then selected for edges assembly crossover 
(EAX) to generate a new tour. The new tour was mutated by a 2-opt operator. A bit-flip mutation was used to generate the 
new packing list (items with more profits) for the new tour. In a local search, two KP operators (Dynamic programming or 
alternatively (1 + 1)) were used to determine an optimal packing list for the tour. The new tour with a higher profit of packing 
list replaced the current solution. The proposed algorithm was tested on TTP benchmark instances. The use of KP operators 
improved population diversity and produced an efficient set of solutions. 

Calvete et al. [64] proposed a hybrid EA to address a bus routing problem. The objective was to minimize both the routing 
cost and the total walking distance of individuals to a pickup point. A chromosome was represented in a set of bus routes. Each 
route consisted of a sequence of pickup points. Initial solutions were randomly generated and evaluated. Two fittest 
chromosomes were selected and recombined by two crossover operations (uniform and one-point) to generate offspring. 
Offspring was then mutated and went through four local search procedures. Finally, a non-dominated sorting genetic algorithm 
(NSGAII) was applied to arrange the quality of solutions based on their non-domination rank. This strategy identified the best 
members within the population for the next generation. The proposed algorithm was tested on a set of instances (Schittekat) 
from literature. The new chromosome representation improved the algorithm’s performance. 

5.7.2 HEA (Other Hybrid) 
Zhang et al. [65] proposed a hybrid of Evolutionary Scatter Search with Particle Swarm Optimization (ESS-PSO) to address 
a vehicle routing problem with a time window (VRPTW). A solution was represented in a sequence of customer nodes. Initial 
solutions were generated by using an ESS diversification method with two types of Push Forward Insertion Heuristics (PUSH). 
Two reference sets (minimum travel distance and least number of vehicles) were obtained by using an ESS reference set update 
method. An ESS subset generation method was then performed to select the fittest solutions (one subset solution and two 
subset solutions). For one subset solution, a GA operator was performed by applying a route-exchange crossover and customer-
extracted mutation. Two new mutated solutions were obtained. For two subset solutions, a new operator called route +/- was 
performed to generate a new solution. The new solutions obtained were then used as initial particles in a route-segment PSO. 
One particle was selected as a "starting solution" and its velocity was updated based on the guidance solution (reference sets 
from ESS) and current solution. Two learning strategies (a path-relinking method and a selection method) were applied to 
update better solutions. The proposed ESS-PSO was tested on a Solomon benchmark. It produced good solutions as compared 
to other methodologies (Local genetic algorithm, multi-objective evolutionary algorithm, Tabu Search-Artificial bee colony). 

Maskooki et al. [66] proposed a Customized Genetic algorithm (CGA) with dynamic programming (DP) to address a 
moving-target traveling salesman problem (MTSP). The MTSP is similar to a traveling salesman problem. The objective was 
to maximize the number of ships in a route and to minimize total travel distance within a working day with two shifts (8-16 
hours). A solution was represented in a layered graph (discrete time slot). Each layer consisted of nodes (number of ships 
visited) and a route of surveillance boats. A dynamic programming operator was applied to generate initial solutions. Two 
criteria (the number of visited boats and the travel distance) were evaluated to select two fittest solutions (parents). A modified 
crossover and two mutation operators (replacement and insertion) were performed on the parents to obtain two offspring. 
Infeasible solutions were fixed. The proposed CGA was tested on a real-world dataset of a surveillance boat in the Baltic Sea. 
It was more competitive in solving large-sized instances than an ILP solver. 

Lu et al.  [67] proposed a Hybrid Evolutionary Algorithm (HEA) to address a covering salesman problem (CSP).  The 
CSP is similar to a traveling salesman problem. A solution was represented in a sequence of nodes traveled by a salesman.  
Initial solutions were generated by using a greedy constructive procedure and refined by a two-phase tabu search. In the first 
phase, two operators (insertion and deletion) were used to search for infeasible or redundant solutions. Drop and interchange 
operators were then used in the second phase to refine the solutions. Two solutions were then selected randomly to perform a 
solution reconstruction strategy (crossover procedure). A generated offspring was then improved by a destroy-and-repair 
mutation procedure. The two-phase tabu search was applied again in a local refinement procedure. The proposed HEA was 
tested on CSP benchmark instances. It produced good solutions for small and medium-sized instances as compared to other 
methodologies (local search algorithm, integer linear programming-based heuristic algorithm, hybrid ant colony optimization 
algorithm, multi-start iterated local search algorithm, parallel variable neighborhood search algorithm, ABC, and GA). 

Dofadar et al. [68] proposed a Hybrid Evolutionary Approach to address a university course allocation problem (UCAP). 
The hybrid evolutionary approach combined a Local Repair Algorithm (LRA) and a Modified Genetic Algorithm (MGA). A 
solution was represented in three segments (course index, classroom type, and faculty index). The LRA was used to generate 
initial solutions. For each solution, the switching tolerance method was applied to reallocate the course and faculty index. Each 
solution was then evaluated. A solution with a maximum score was then updated (as an intermediate solution) and used in 
MGA. Course index and faculty index were then recombined in a crossover procedure. If a current score was not updated, the 
switching tolerance method was activated. A mutation procedure was performed by modifying the faculty and course elements 
in the solution. The proposed algorithm was tested on a real-world dataset Department of Computer Science & Engineering of 
BRAC University. It was compared with other methodologies (genetic algorithm, memetic algorithm, stochastic hill climbing, 
simulated annealing, and tabu search. Cost-efficient and less time-consuming solutions were obtained.   

Ilhan [69] proposed an Improved Simulated Annealing with Crossover Operator (ISA-CO) to address a capacitated vehicle 
routing problem (CVRP). A solution was represented in an integer string (number of customers and number of vehicles). An 
initial solution was created by randomly picking a starting point. Customers were continuously added to the solution until it 
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reached the capacity limit. Local search operators (swap, scramble, insertion, and reversion) were applied to improve the initial 
solutions. Two solutions were then selected based on a predefined rate. A partially mapped crossover (PMX) and order 
crossover (CO) were performed on the solutions to obtain new solutions. The new solutions were then refined. The proposed 
ISA-CO was tested on 91 benchmark instances (Augerat et al., Christofides and Eilon, Christofides et al.). It performed better 
than other methodologies (enhanced savings calculation, differential evolution algorithm with local search, hybrid large 
neighborhood search algorithm, unsupervised fuzzy clustering, artificial bee colony, hybrid firefly algorithm). 

Arik [70] proposed a population-based Tabu search (𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃) with evolutionary strategies to address a permutation flow 
shop scheduling (PFSS) problem.  A solution was represented by a sequence of job orders. A profile fitting procedure (based 
on the idle time of machines) was applied to generate initial solutions. The solutions were evaluated and arranged in ascending 
order (based on makespan value). Local search procedures (insertion, swapping, double swapping) were applied to improve 
the quality of each solution. If the solutions were trapped in local optima, two-point crossover, and swap-mutation procedures 
were carried out to refine the solutions. The best solution was then updated. The proposed 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃  was tested on Taillard’s 
instances. It produced good quality solutions as compared to others (discrete differential algorithm, and iterated greedy). 

Agrawal et al. [71] proposed a two-stage evolutionary algorithm to address a multi-objective Euclidean traveling salesman 
problem (ETSP). The two stages were identified as heuristic local search HLS and the second stage of heuristic local search 
(SHLS). Both stages consisted of identical steps, including 1) initialization, 2) non-dominated ranking, 3) guided crossover, 
4) guided mutation, and 5) elitism. A solution (chromosome) was represented in a sequence of cities traveled by a salesman. 
In the HLS, each chromosome was formed by randomly picking a starting city and extended by using a nearest-neighbor 
strategy. The fitness of each chromosome was then evaluated and sorted by using a non-dominated ranking method. A guided 
crossover was used to generate offspring. The quality of the offspring was then improved by a 2-opt mutation operator. The 
offspring were used as seed solutions in the SHLS. However, the initialization step in SHLS applied a random weight for 
distances of cities. The steps of HLS were then repeated. Finally, an elitism method was applied to select the best solution. 
The proposed algorithm was tested on four TSP benchmark datasets. It showed great performances as compared to others 
(classic GA, PSO, ACO, and hybrid PSO-ACO). 

Lu et al. [72] proposed a hybrid evolutionary approach (HEA) to address a minimum spanning tree problem (MSTP). A 
solution was represented in a set of vertices. A randomized construction procedure was applied to generate initial solutions. 
The initial solutions were then improved by a tabu search procedure. Two parents were randomly selected. A backbone-based 
crossover was performed on the parents to generate offspring. A destroy-and-repair procedure was used in a mutation operator 
to generate multiple distinct offspring. An iterated tabu search (ITS) procedure with threshold exploration was then carried out 
to search for the best solution. The proposed HEA was tested on benchmark instances from OR-library. It produced good 
quality solutions in competitive computational times as compared to others (large-scale neighborhood search algorithm, ACO, 
enhanced second order algorithm, relaxation adaptive memory programming algorithm, and biased random-key genetic 
algorithm). 

A total of eighteen papers on HEA are reviewed: memetic algorithms (10) and other hybrids (8). Additional local search 
[60], [63], [70]was incorporated in the proposed algorithms to improve the quality of solutions and increase convergence 
speed, such as hill-climbing [57], different inverse-based adaptive local search [58], move operator [59], and tabu search[62], 
[72]. Modifications on genetic operators (crossover and mutation) were made to enhance the balance of exploration and 
exploitation in algorithms, such as a route-assembly-regret-insertion (RARI) method [59], modified crossover and mutation 
(replacement and insertion) [66]backbone-based crossover and destroy-and-repair procedure [72]. Furthermore, selection 
strategies were applied to obtain the best solution; removal-and-insertion operator [59]  a non-dominated sorting genetic 
algorithm (NSGAII) [64], and learning strategies (a path relinking method and selection method)  [65]. 

5.8 Summary of EA Variants and Their Applications 
In this section, EA variants and their applications in COP are summarized in Table 4. We can observe that HEA is a mostly 
applied variant in tackling COP. Out of 18 papers applying HEA, most of the COP covered is a vehicle routing problem. Table 
5 presents the summary of the methodology used in each variant for specific COP, organized by year and variant to highlight 
the trends. 
 

Table 4. EA variants and their applications 

COP GA DEA GP PSO ACO Other HEA 
Vehicle Routing 4 - - 1 1 - 6 

Travelling Salesman - - - 1 3 1 5 
Job Shop Scheduling 2 4 1 1 1 - 1 

Timetabling 2 - - 3 - 1 4 
Knapsack 2 1 - 2 - - - 

Other 3 - 1 - - - 2 
Total 13 5 2 8 5 2 18 
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Table 5. Summary table of EA variants and their applications 

Variant Year Methodology COP Reference 
GA 2018 Edge Recombination Crossover, novel method for 

node inclusion, and Lin-Kernighan heuristic. 
Other 

(Orienteering) 
[13] 

2019 GA with tailored instances. Knapsack [15] 
2019 Biased random key with GA (BRKGA) and 

codification predecessor.  
Open vehicle 

routing 
[16] 

2019 Cellular Automata and Genetic Algorithm.  Other (Traffic light 
intersection) 

[10] 

2020 
 

Two-stage GA. Flexible Job Shop 
Scheduling 

[11] 

2020 
 

A block-mining-based artificial chromosome 
construction strategy.  

Group Scheduling [9] 

2021 
 

GA with waiting strategy (WS) and rerouting 
indicator (RI). 

Vehicle routing 
simultaneous 

pickup and delivery 

[14] 

2021 
 

GA with penalty operator.  Bus routing [17] 

2021 
 

Specific 3D chromosomes.   University 
Timetable 
Scheduling 

[18] 

2021 
 

Stratified opposition-based sampling (SOBS) in 
GA. 

Other  
(Shortest Path) 

[12] 

2022 
 

GA with flexible multi-solutions timetable.  Timetable Schedule [19] 

2022 Two phases modified adaptive GA: construction 
and improvement. 

Inventory Routing [20] 

2022 
 

Heavy tail mutations and specific problem 
crossover. 

Knapsack [21] 

DEA 2021 
 

Incorporates new components to solve the 
standard issue of DE.  

Knapsack [26] 

2022 
 

DEA with uncertainty handling techniques 
(OCBAT & HTT).  

Stochastic 
Reentrant Job Shop 

Scheduling 

[29] 

2022 
 

Redefined Addition & Subtraction for Crossover 
& Mutation Purposes.  

Other  
(Ship-Unloading 

Scheduling) 

[30] 

2022 
 

Adaptive multi-objective DEA. Open shop 
scheduling 

[27] 

2022 
 

Self-adaptive mechanism with different mutation 
operators. 

Permutation Flow 
Shop Scheduling 

(PFSS) 

[28] 

GP 
 

2020 Hyper-heuristic GP.  Multi-skill 
resource-

constrained Project 
Scheduling 

[3] 

2022 
 

Two types of decision trees generate new priority 
rules.  

Flexible Job 
Scheduling 

[32] 

PSO 
 

2018 Five steps local search with k-split and split 
exchange procedures. 

Split Delivery 
Vehicle Routing 

[34] 

2018
  
 

Hybrid PSO with genetic operators for binary 
variables. 

Multidimensional 
Knapsack 

[38] 
  

2019 
 

Forceful swap operation with repair mechanism 
and selective search.  

University Course 
Scheduling 

[33] 

2019 
 

Two PSO-based algorithms; APSO and HAPSO.  Multiple Travelling 
Salesman 

[39] 

2020 
 

PSO with local neighborhood optimization 
procedure.  

Knapsack [37] 

2020 
 

Two-stage PSO with Variable neighborhood 
search (VNS).  

Hybrid Flow Shop [40] 

2021 PSO with Particle Elimination. School timetabling [41] 
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2021 

 
Hybrid PSO with two variants: SPSO & MCPSO.  University course 

timetabling 
[36] 

ACO 
 

2021 ACO with Symbiotic Organism Search (SOS). Travelling 
Salesman 

[47] 

2022 
 

Saltatory Evolution ACO.  Travelling 
Salesman 

[46] 

2022
  

 

Confidence-based selection ACO.  Capacitated Electric 
Vehicle Routing 

[45] 

2022 
 

An evolutionary experience-guided pheromone 
updating strategy and novel Intragroup 
Information-Guided Approach.  

Multi-objective 
TSP 

[49] 

2022 
 

Surrogate-assisted ACO. Resource 
Constrained Job 
Scheduling with 

Uncertainty 

[48] 

Other 
approach 

2021 
 

ABC algorithm with Virtual Search Space (VSS).  School Timetabling [51] 

2022 
 

Random walked discrete cuckoo search. Traveling Salesman [53] 

HEA 
(MA) 

2019 
 

Parallel EA with master-slave model. Other (Traffic light 
intersection) 

[55] 

2021 
 

Parallel GA with Local Search and Distance of 
feasibility (DF) criterion. 

University course 
timetabling 

[56] 

2021 Self-Adaptive MA.   Exam Timetabling [57] 
2021 

 
MA with two local search operators (Single and 
Multiple Insertion).  

Dynamic Electric 
Vehicle Routing 

[58] 

2021 
 

MA with efficient local search and extended 
neighborhood (MATE).  

Vehicle Routing 
with Simultaneous 
Pickup-Delivery 

and Time Windows 

[59] 

2022 
 

Relevance Matrix Evolutionary Algorithm 
(RMEA) with diversity preservation strategy. 

Capacitate Vehicle 
Routing 

[60] 

2022
  

 

A hybrid of GA and Hill Climbing algorithm 
(HCA). 

Multiple Traveling 
Salesman 

[61] 

2022 MA with tabu search and heuristic procedure. Job Shop 
Scheduling 

[62] 

2022 Bi-level EA with two KP operators. Other  
(Travelling Thief) 

[63] 

2022 Hybrid EA with four local search procedures.  Bus Routing Design [64] 
HEA 

(Other) 
2018 

 
A hybrid of Evolutionary Scatter Search (ESS) 
and PSO. 

Vehicle routing 
problem with time 

windows 

[65] 

2021 
 

Customized GA with dynamic programming.   Moving-Target 
Traveling Salesman 

[66] 

2021 Two-phase tabu search with the Lin-Kernighan 
method. 

Covering Salesman [67] 

2021 Local Repair Algorithm (LRA) and Modified 
Genetic Algorithm (MGA).  

Course Timetabling [68] 

2021 Improved simulated annealing (for initial 
solutions) with crossover. 

Capacitated Vehicle 
Routing 

[69] 

2021 Population-based tabu search with evolutionary 
strategies. 

Permutation Flow 
Shop Scheduling 

(PFSS) 

[70] 

2021 Two stages EA with heuristic local search (HLS). Multi-objective 
Euclidian TSP 

[71] 

2022 Hybrid EA with adaptive tabu search. Other (Minimum 
Spanning Tree) 

[72] 
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Figure 8. Variants of EA and its application per year 

    
In addition, Figure 8 shows the application of the EA variant in COP domains from 2018 until 2022.  The application of 

EA variants for COPs has demonstrated an increasing trend over these years. We can observe that the total number of HEAs 
(18) between 2021 and 2022 demonstrates the adaptability of EA in tackling COPs. 

6. CHALLENGES AND OPPORTUNITIES OF EA IN COPS 

6.1 Diversified Initial Solutions versus Computational Time 
The nature of each COP brings different objectives, variables, and constraints. The flexibility of EA in optimizing various 
COPs influences its overall performance and quality. A high number of variables and problem dimensionality increase the 
complexity of a COP. EA may struggle to explore the exponential growth in the problem's search space within a reasonable 
time. Diversified solutions could mitigate suboptimal solutions obtained from inefficient exploration in EA. Premature or slow 
convergence occurs when suboptimal solutions get trapped in local optima [68]. Initial solutions with better diversity and 
fitness give a better chance of finding good solutions in EA [12], [69]. Table 6 shows several initialization methods proposed. 
These methods were proven to give an intensification search by promoting diversity and avoiding premature convergence [62], 
[65]. 
   Diversified initial solutions provide a reasonable computational time for small-size instances but pose more significant 
challenges when dealing with large-size instances. Large instances require more computational time due to parameter tunings 
and additional steps in initialization methods [13]. Excessive exploration in EA hinders an algorithm’s capacity to achieve 
superior solutions within a small number of generations. The proposed initialization methods are still controllable in terms of 
exploration [12], [59]. Figure 9 shows that the HEA variant mostly applies the initialization method in their mechanism. 

Table 6. Initialization methods in EA mechanisms 

Variant COP Initialization method Reference 
GA 

  
Other (Orienteering) Random number generation with d2d parameter [13] 
Other (Shortest path)  Stratified opposition-based sampling (SOBS)  [12] 

DEA Ship scheduling Random number generation [30] 
PSO 

  
Knapsack Greedy constructive [37] 

Job Shop Scheduling SPT dispatching rule and NEH algorithm [40] 
Timetabling Largest unpermitted period degree (LUPD)  [36] 

ACO Vehicle Routing Nearest neighbor and simple enumeration [45] 
HEA Job Shop Scheduling Non-dominated sorting genetic algorithm 

(NSGA-II) 
[62] 
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  Vehicle Routing Evolutionary scatter search (ESS) and Push 
Forward Insertion Heuristics (PUSH). 

[65] 

Vehicle Routing Residual capacity and radical surcharge (RCRS) 
heuristics 

[59] 

Traveling Salesman Greedy constructive and two-phase tabu search [67] 
Vehicle Routing Improved by local search operators (swap, 

scramble, insertion, and reversion)  
[69] 

Job Shop Scheduling Profile fitting [70] 
Timetabling Local Repair Algorithm (LRA)  [68] 

Other (Minimum 
spanning tree) 

Improved by tabu search. [72] 

 
 

 
Figure 9. Number of papers applied the initialization method in EA mechanisms 

6.2 Balancing Exploration and Exploitation  
Balancing exploration and exploitation in EA is crucial to achieving optimal performance. It can be achieved by measuring 
the convergence speed and computational time.  Excessive exploration may lead to slow convergence and require more 
computational time [12]. Meanwhile, excessive exploitation can result in premature convergence, giving poor solutions [45]. 
Incorporating local search could improve the exploitation in EA [59], [61], [67]. In optimization, “local search” refers to a 
heuristic mechanism that is focused on finding a solution within its local neighborhood that is as good or better than others. 
Such a solution is termed a local optimum [1],[2]. Table 7 shows local search strategies applied in the EA mechanism. These 
strategies were applied to refine solutions. They improved the convergence speed by promoting new neighborhoods for the 
current best solutions [34], [70]. 

Figure 10 shows the maximum number of iterations applied at which the convergence occurs. The number of iterations in 
each EA variant is determined by improved solutions obtained from applied local search strategies [45], [58]. Improved 
solutions compared with near-optimal solutions in terms of objective function value, the best solution obtained [40], a 
hypothesis test model [46], a smaller optimality gap [70], and learning strategies applied [34], [58]. For instance, an adaptive 
selection strategy applied in [34] destroyed the structure of last generation solution and caused slow convergence speed. In 
addition, several factors are still being considered to explore different neighborhoods and escape local optima, such as problem 
representation, size of instances, and initial solutions [34], [45]. Developing appropriate local search strategies is essential to 
avoid unnecessary local moves [58]. 

HEA variant shows the most applied local search in their EA mechanism as shown in Figure 11. In the future, the 
integration of more efficient local search strategies could be implemented to improve both the overall search process and the 
quality of solutions [58], [59], [61]. 

 

Table 7. Local search strategies in EA mechanisms 

COP Local search strategies 
(Refine solutions) 

Variant Number of 
local 

searches 

Maximum number 
of iterations 

Reference 

Job Shop 
Scheduling 

 

Variable neighborhood 
search (VNS) 

PSO 1 20 [40] 

Insertion, swapping, double 
swapping 

HEA 3 1000 [70] 

Tabu Search and heuristic 
procedure 

HEA 1 30 [62] 
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Other (Thief 
Traveling) 

KP operators and Dynamic 
programming 

HEA 2 10000 [63] 

Traveling 
Salesman 

 

Saltatory evolution (path 
performance evaluation, 

near-optimal path 
identification rules 

generation, and near-
optimal path 

identification.) 

ACO 3 200 [46] 

Hill climbing  HEA 1 1000 [61] 
Vehicle 
Routing 

 

5 local strategies were used 
in genetic operators 

(relocation, exchange, k-
split, split exchange, split 

swap, and 2-opt) 

PSO 5 15000 [34] 

Confidence-based 
selection, 2-opt, and node-

shift strategy 

ACO 3 30 [45] 

Single inverse and multiple 
inverse. 

HEA 2 30 [58] 

Move operators (local 
search) with step size 

changes 

HEA 1 50 [59] 

A diversity preservation 
strategy: local operators 

(remove, swap, and 
replace)  

HEA 3 100 [60] 

 

6.3 Specific Design Operator to Meet the Type of COP 
Choosing the right operators, such as selection, crossover, and mutation, is crucial for effectively balancing exploration and 
exploitation in EA. The operators are specifically constructed to align with the distinct characteristics and demands of the 
problem at hand. Collaboratively, they enhance the quality of solutions through consecutive generations [64]. Table 8 shows 
operators introduced to replace the crossover, mutation, and selection mechanism in EA.  

The specific design operators employed to substitute the mutation and crossover operators in EA for a more compact 
search [29]. Furthermore, the selection operators applied could avoid repeating the evaluation of poor solutions [29], hence 
reducing the computational cost [27].  
 
 

 
 

Figure 10. Number of iterations based on local search 
applied in EA mechanisms 

 
 

Figure 11. Number of papers applied local search in EA 
mechanisms 
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Table 8. Specific crossover, mutation, and selection in EA mechanisms 

Variant COP Crossover Mutation Selection Reference 
GA Knapsack Specific crossover 

operator   
Heavy-
tailed 

Standard selection [21] 

DEA 
  

Job Shop 
Scheduling 

Interchange-based 
operator 

Insert-based 
operator 

Hypothesis test 
technique (HTT) 

[29] 

Job Shop 
Scheduling 

Standard crossover Adaptive 
opposition-

based 
learning 
applied 

External archive 
technique 

[27] 

PSO 
  

Timetabling Swap sequence strategy Repair 
mechanism 

Selective search [33] 

Timetabling Horizontal and vertical swapping of 
matrices 

Particles 
elimination 

[41] 

ACO Traveling 
Salesman 

Intragroup evolutionary information-
guided pheromone updating (IGPU) 

Learning automata 
(LA) with adaptive 

strategies 

[49] 

HEA 
  

Vehicle 
Routing 

Random crossover Route-
assembly-

regret-
insertion 
(RARI) 
method 

A removal-and-
insertion operator 

[59] 

Vehicle 
Routing 

Uniform and one-point  Mutated 
using four 

local search 
procedures 

NSGAII [64] 

Vehicle 
Routing 

route-exchange crossover, customer-
extracted mutation, and route +/- 

operator. 

Two learning 
strategies (a path-
relinking method 
and a selection 

method) 

[65] 

Timetabling MGA crossover MGA 
mutation 

Switching tolerance  [68] 

Minimum 
spanning tree 

Backbone-based 
crossover 

Destroy-
and-repair 
procedure 

Iterated tabu search 
(ITS) procedure 
with threshold 

exploration 

[72] 

 

6.4 Population Diversity versus Parameter Tuning 
Population diversity tends to decline over the evolutionary process. It is primarily attributed to the exploitation aspect of an 
algorithm due to the selection of higher-fitness individuals for the next generations. Multiple studies have recommended 
introducing variation and adjusting relevant parameters as potential solutions to address this issue [47], [71]. However, a large 
number of parameters gives more combinatorial space for parameter setting and requires more time to manually manage the 
parameter tuning. Figure 12 shows the average computational time of an algorithm for different numbers of parameters used 
in the self-adaptive strategies. Note that the computational time for different strategies may vary depending on the specific 
type of COP under investigation. 

A self-adaptive algorithm was introduced in EA to control the parameter setting [28] and to align with the problem 
representation [20]. Table 9 shows the application of self-adaptive parameters in EA. Adaptive crossover and mutation 
operators were created by learning experiences of individuals’ fitness values [58] These operators use real-time feedback to 
control the selection mechanism of local optimization algorithms [20], [57]. 

In summary, diversified initial solutions give more exploration space in EA. However, excessive exploration could lead 
to slow convergence and require more computational time. Applying local search, designing specific operators for different 
types of COP, and employing self-adaptive strategies could improve the algorithm's performance while achieving better 
solutions. Across these modifications, HEA was observed to apply more local search and specific design operators (see Table 
10). In the PSO variant, both studies achieved less than 0.0001 p-values as compared to other methods in terms of best solutions 
[37], [40]. Meanwhile, two variants of confidence-based selection ACO had shown different effects on the diversified initial 
solutions and local search applied in terms of convergence speed and solution quality [45]. 
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Figure 12. Average time (in seconds) for different numbers of parameters applied in EA mechanisms 

Table 9. Self-adaptive parameters in EA 

Variant COP Self-adaptive 
strategies 

 Parameters Number of 
instances 

Average 
Time (s) 

Reference 

GA Vehicle 
Routing 

Adaptive crossover 
and mutation 

operators 

4 96 49.6 [20] 

DEA 
  

Job Shop 
Scheduling 

Three types of Self 
Adaptive DEA 
introduced in 

mutation 

3 110 5.32 [28] 

Ship 
scheduling 

Semi-adaptive 
parameters 

3 25 209 [30] 

PSO Knapsack Adaptive parameter 
swarm intelligence 

3 45 32.73 [37] 

ACO Traveling 
Salesman 

Parameters 
controlled by the 

Symbiotic 
Organisms Search 

(SOS) method 

2 10 N/A [47] 

HEA Vehicle 
Routing 

 Adaptive local 
search: Single 

inverse and 
multiple inverse. 

2 1 N/A [58] 

 

Table 10. EA variants and applications of initialization method, local search, specific operators, and self-adaptive parameters 

 

 

Reference Initialization 
method 

Local 
search 

Specific 
Operators 

Self-adaptive 
parameters 

Variant 

[65] / - / - HEA 
[40] / / - - PSO 
[37] / - - / PSO 
[59] / / / - HEA 
[45] / / - - ACO 
[68] / - / - HEA 
[62] / / - - HEA 
[72] / - / - HEA 
[30] / - - / DEA 
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Figure 13. The trend of hybridization strategies (initialization method, local search, specific operators, self-adaptive 

parameters) in EA mechanisms 

From Figure 13, the application of hybridization strategies in EA increased since 2018. Adopting strategies such as 
initialization method, local search, specific design operators, and self-adaptive parameters has shown that the HEA variant is 
highly competitive in tackling COP. Better performance is achieved in terms of convergence speed [65]. The use of local 
search (such as move operator with step changes) is effective in obtaining high-quality solutions [46]. In the future, different 
hybridizations of optimization EA can be explored to obtain a more robust performance of HEA [68]. 

7. CONCLUSION 
An evolutionary algorithm (EA) is a population-based and metaheuristic approach that complies with five mechanisms: 
initialization, evaluation, selection, variation, and replacement. It can be applied to a diverse array of problems such as COP 
with minimal need for tailoring. This paper surveys 53 applications of EA in six types of COPs: vehicle routing problem, 
knapsack problem, job scheduling problem, timetabling problem, knapsack problem, and others. HEA variant has shown an 
increasing trend since 2018. Adoption of hybridization strategies such as initialization method, local search, specific design 
operator, and self-adaptive parameter tuning in EA mechanisms improve the algorithm performance in terms of convergence 
speed and solution quality. Challenges and opportunities of these achievements are discussed to provide improvement in the 
future. 
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