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MESSAGE FROM THE CHAIRS 
 
 
With immense pleasure, we extend a warm welcome to Kuching, Sarawak for the 
6th IEEE Conference on Energy Conversion (CENCON 2023), taking place at the 
Imperial Hotel on October 23-24, 2023. Our mission is to be at the forefront of 
sharing cutting-edge research in electrical energy conversion, spanning power 
engineering, power electronics and drives, and high voltage engineering. This 
conference not only facilitates knowledge exchange but also offers the chance to 
explore the enchanting land of Sarawak, often referred to as the "Land of Hornbills." 
 
CENCON 2023 is jointly organized by the IEEE Malaysia Power Electronics (PELS) 
Chapter and co-organized by the Power Electronics and Drives Research Group 
(PEDG), Universiti Teknologi Malaysia (UTM) and the Department of Electrical and 
Electronics Engineering, Universiti Malaysia Sarawak (UNIMAS). We are delighted to 
have the technical co-sponsorship of the Korean Institute of Power Electronics (KIPE) 
and the generous support of the Sarawak Tourism Board and Genetron Sdn Bhd as 
our Platinum Sponsor. 
 
We are honored to introduce two distinguished keynote speakers, namely Prof Ir Dr 
Nasrudin Abdul Rahim, a renowned expert in power electronics from the University 
of Malaya, Malaysia, and Prof Dr Kai Sun from Tsinghua University, China, an 
authority in hybrid dc/ac microgrid and also the PEL Asia Pacific Regional Vice Chair. 
 
The conference promises a dynamic blend of technical paper presentations and 
product exhibitions. To date, we have received over 56 submissions from 17 
countries. Each paper underwent rigorous peer review by 100 experts in their 
respective fields, resulting in an acceptance rate of 71.4% for oral presentations. 
 
Once again, we extend a warm invitation to all delegates and their companions to 
explore the vibrant city of Kuching, Sarawak. We eagerly anticipate engaging in 
fruitful technical discussions and the exchange of innovative ideas. Following the 
conference, we encourage you to extend your stay to savor the many captivating 
attractions in the city and throughout Malaysia. 
 
Selamat Datang! 
 
 
 
Shahrin Md Ayob 
Ramani Kannan 
 
CENCON 2023 General Chairs  
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      FLOOR PLAN FOR CONFERENCE EVENT 
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PROGRAM OVERVIEW 
CENCON 2023     

  

23 OCTOBER 2023, MONDAY 

  

0800-0845 Registration 

0845-0900 Opening Ceremony & Speech by General Chair 

0900-0950 Keynote 1 : Professor Dr. Nasrudin Bin Abd Rahim 

0950-1040 Keynote 2 : Professor Dr. Kai Sun 

1040-1110 Tea Break 

1115-1235 Session 1A & Session 1B 

1300-1400 Lunch 

1400-1520 Session 2A & Session 2B 

1520-1550 Tea Break 

1550-1700 Session 3A & Session 3B 

:                       : 

1930 Gala Dinner + Best Paper Award Announcement 
 

  

  

24 OCTOBER 2023, TUESDAY 

 
0900-1020 Session 4A & Session 4B 

1020-1050 Tea Break 

1050-1150 Session 5A & Session 5B 

1300-1400 Lunch 
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TECHNICAL PROGRAM 
 
  
23 Oct 2023, Monday   
  

REGISTRATION 
Date: 23 Oct 2023, Monday 

Time: 0800-0845 
 

 
  

KEYNOTE SESSION 
Keynote Chair: Dr Norjulia Mohamad Nordin 

Date: 23 Oct 2023, Monday 

Time: 0845-1040 

Venue: Danum 10, Level 1 
  

0845-0900 Welcoming speech 
  

0900-0945 Keynote Address 1  
 

A New Era of Power Electronics in Malaysia: Research Challenges  
Professor Ir. Dr. Nasrudin Bin Abd Rahim (Universiti of Malaya, Malaysia)   

0945-1040 Keynote Address 2 
 

Hybrid AC/DC Microgrids: Configuration, Control and Future Development  
Professor Dr. Kai Sun (Tsinghua University, China)  
 
  

SESSION 1A Control of Electrical Drives 1 
Session Chairs: Shahrin Md Ayob & Yanuar Zulardiansyah Arief 

Date: 23 Oct 2023, Monday 

Seminar Room: Danum 2, Level 5 
  

1115-1135 S1A.1 
 

Analysis of Switching Loss Based on Gate Resistance in a SiC MOSFET Inverter 
 

Mun-Gyeom Park; Kyo-Beum Lee   

1135-1155 S1A.2 
 

A Speed Synchronization Strategy for a MIDP Surface-Mounted Permanent Magnet 
Synchronous Motor Drive System 

 
Gi-Jung Nam; Kyo-Beum Lee   

1155-1215 S1A.3 
 

A DC-Link Ripple Current Reduction Method Based on Variable Switching 
Sequences for Three-Level NPC Inverters  
Yunjae Bae; Kyo-Beum Lee 
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1215-1235 S1A.4 
 

Explainable Machine Learning Method for Open Fault Detection of NPC Inverter 
Using SHAP and LIME  
Hasan Ali Alkaf; Kyo-Beum Lee  

 
 
  

SESSION 1B Renewable Energy Systems 1 
Session Chairs: Tan Chee Wei & Jasrul Jamani Jamian 

Date: 23 Oct 2023, Monday 

Seminar Room: Danum 3, Level 5 
  

1115-1135 S1B.1 
 

Implementation of a Collapsible Solar Power Station for Farm Irrigation 
 

Anton Louise P. De Ocampo; Mark Justine Domingo; Melmar Eje; John Miko 
Malinao   

1135-1155 S1B.2 
 

Up-Conversion Nanoparticle Perovskite Photovoltaic Device Under Indoor LED and 
Outdoor Local Spectral Irradiances  
Kok keong Chong; Son Qian Liew; Tonni Agustiono Kurniawan 

  

1155-1215 S1B.3 
 

Preparation and Performance Characteristics of Reduced Graphene Oxide-Based 
Electrolytes of Vanadium Redox Flow Battery for Green Energy Storage  
Md Hasnat Hossain; Md Showkot Hossain; Mohd Amran Mohd Radzi; Saidur 
Rahman; Chinmay Biswas; Suhaidi Shafie 

  

1215-1235 S1B.4 
 

Operational Strategy of a Hybrid Renewable Energy System With Hydrogen-Battery 
Storage for Optimal Performance Using Levy Flight Algorithm  
Babangida Modu; Md Pauzi Abdullah; Abdulrahman AlKassem; Abba Lawan Bukar; 
Nur Hazirah Zainal  
 
  

SESSION 2A Power Electronics Converters 
Session Chairs: Mohd Junaidi Abdul Aziz & Kyo-Beum Lee 

Date: 23 Oct 2023, Monday 

Seminar Room: Danum 2, Level 5 
  

1400-1420 S2A.1 
 

Reduced Device Count Multilevel Inverter Topology for Renewable Energy 
Applications: A Brief Review 

 
Md Showkot Hossain; Md Akib Hasan; Nurul Ain Mohd Said; Wahidah Abd. Halim; 
Auzani Jidin  
  

1420-1440 S2A.2 
 

Asymmetric 21-Level Inverter Topology With Reduced Device Count for Medium 
and High Power Renewable Applications  
Uvais Mustafa; M Saad Bin Arif; Shahrin Md. Ayob; Hasmat Malik; Mohd Faisal 
Jalil; Khan Mohammad 
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1440-1500 S2A.3 

 State of Charge Estimation of Second Life Batteries Using First Order Thevenin 
Model 

 Masoud Albasheer Sahhouk; Mohd Junaidi Abd Aziz; Mohd Ibthisham 

  

1500-1520 S2A.4 
 

Investigation of a Spiral Planar Coil on Coreless Axial Flux PM Generator for Pico-
Hydro Applications  
Isiaka Shuaibu; Eric Tatt Wei Ho 

   
  

SESSION 2B Electric Vehicles 
Session Chairs: Nik Rumzi Nik Idris & Hasmat Malik 

Date: 23 Oct 2023, Monday 

Seminar Room: Danum 3, Level 5 
  

1400-1420 S2B.1 
 

Design and Simulation of a Bidirectional DC-DC Converter With PI Controller for 
Regenerative Braking in Electric Vehicles 

 
Ramani Kannan; Karantharaj Porkumaran; Komathi C; Nursyarizal Bin Mohd Nor; 
Sanjeevi Gandhi A 

  

1420-1440 S2B.2 
 

Optimal Placement of Fast Charging Station in Radial Distribution Networks 
Through Particle Swarm Optimization  
Wang Xingye; Hadi Nabipour Afrouzi; Chen Rui Geach; Ramani Kannan; Kamyar 
Mehranzamir; Dai Xinyue   

1440-1500 S2B.3 

 Comparative Analysis of Passive and Semi-Active Hybrid Energy Storage System 
Topologies for Electric Vehicle 

 Mohammad Hashim Saleh Al Takrouri; Shahrin Md. Ayob; Nik Rumzi Nik Idris; 
Mohd Junaidi Abdul Aziz; Razman Ayop; Mohd Farid Muhamad Said 

  

1500-1520 S2B.4 
 

Utilizing Energy Storage System for Three-Level Voltage Balancing Mechanism in 
Electric Vehicle Fast Charging Station  
Hadi Nabipour Afrouzi; Covington Kua; Ramani Kannan; Kamyar Mehranzamir  
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SESSION 3A Renewable Energy Systems 2 

Session Chairs: Hasmat Malik & Mohd Rodhi Sahid 

Date: 23 Oct 2023, Monday 

Seminar Room: Danum 2, Level 5 
  

1550-1610 S3A.1 
 

Comparative Studies on Different Time Series Models for Wind Power Generation 
Forecasting 

 
Anton Louise P. De Ocampo; Alvin Sarraga Alon; Gerard Francesco DG. Apolinario; 
Dylan Josh D Lopez; Enrique Festijo; Jeffrey Sarmiento; Jonathan V. Taylar; Maria 
Cecilia Venal   

1610-1630 S3A.2 
 

Control Strategy of Hybrid PV/ FC/ Battery System for A Malaysian Household 
Application 

 
Chen Rui Geach; Siti Maherah Hussin; Hadi Nabipour Afrouzi; Kamyar 
Mehranzamir; Norzanah Rosmin; Madihah Md Rasid   

1630-1650 S3A.3 
 

Harmonic Reduction for Various Nonlinear Load Using Active Filter  
Rasyidah Mohamad Idris; AbdulRahman Galadima; Mohd Habibuddin; Syed 
Norazizul Syed Nasir 

  
 
 

SESSION 3B Power Engineering Systems 1 

Session Chairs: Nik Din Muhamad & Ramani Kannan 

Date: 23 Oct 2023, Monday 

Seminar Room: Danum 3, Level 5 
  

1550-1610 S3B.1  
Improving Resilience Index Quantification Using Weighted Sum Method 

 
Hasna Satya Dini; Jasrul Jamani Jamian; Eko Supriyanto 

  

1610-1630 S3B.2 
 

Optimizing Zone Compliance for Distance Relay in Transmission Lines With 
Installed FACTS Devices  
Jalal Tavalaei; Hadi Nabipour Afrouzi; Mohammad Sanjari; Ehsan Barmala; 
Abdolreza Javanmardzadeh; Mohd Habibuddin   

1630-1650 S3B.3  
VSI Improvement by Optimally Placing and Sizing SVC in Distribution System With 
Employing Metaheuristic Technique  
Muhammad Adam Mohd Nadzri; Syed Norazizul Syed Nasir; Jasrul Jamani Jamian; 
Rasyidah Mohamad Idris; Madihah Md Rasid 
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24 Oct 2023, Tuesday   

 
SESSION 4A Renewable Energy Systems 3 

Session Chairs: Mohd Zaki Daud & Hazrul bin Mohamed Basri 

Date: 24 Oct 2023, Tuesday 
Seminar Room: Danum 2, Level 5 
  

0900-0920 S4A.1 
 

Analytical Hierarchy Process (AHP) Analysis for Load Shedding Scheme in Islanded 
Distribution System Connected With Mini Hydro Generation 

 
Norazliani Binti Md sapari; Mohd Rohaimi Mohd Dahalan; Madihah Md Rasid; 
Mohd Zaki Daud   

0920-0940 S4A.2 
 

Development of a Fuel Cell Energy Controller Design for an Electric Vehicle Engine 
via a PID-PSO Robust Control Algorithm  
Ali K Murad; Elif Altürk; Ahmed Al-Araji 

  

0940-1000 S4A.3 
 

Enhancing Solar Microgrid Efficiency and Reliability Through Smart Energy 
Management Systems  
Hasmat Malik; Mohd Junaidi Abdul Aziz; Salwan Tajjour; SS Chandel 

  

1000-1020 S4A.4 
 

Experimental Investigation of Photovoltaic-Integrated Thermoelectric Cooling 
System for Enhancing Power Generation Under Real Outdoor Conditions  
Rahul Chandel; Ram Prakash Dwivedi; Deo Prasad; SS Chandel; Hasmat Malik; 
Razman Ayop 

 
 
  

SESSION 4B Control of Power Electronics 2 

Session Chairs: Mohd Rodhi Sahid & Kismet Anak Hong Ping 

Date: 24 Oct 2023, Tuesday 

Seminar Room: Danum 3, Level 5 
  

0900-0920 S4B.1 
 

Refined Sensorless-Based ILC Approach for Permanent Magnet Synchronous 
Motors  
Sadeq Ali Qasem Mohammed; Hasan Ali Alkaf; Kyo-Beum Lee 

  

0920-0940 S4B.2 
 

Accurate Simplified SPWM Control Strategy for Single-Phase Voltage Source 
Inverter Under Varying Grid Conditions  
Noor Syafawati Ahmad; Noor Aqilah Madzlan; Jenn Hwai Leong; Ahmad Afif Nazib 

  

0940-1000 S4B.3 
 

Simplified SVPWM Technique for Ripple-Free Voltage and Current Control in Flying 
Capacitor of Five-Level Hybrid ANPC Converters  
Samer Saleh Hakami; Kyo-Beum Lee 
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1000-1020 S4B.4 
 

Development of Adaptive Fuzzy PID Controller Integrated With Slide Mode Control 
for Brushless Direct Current Motors  
Dai Xinyue; Norjulia Mohamad Nordin; Hadi Nabipour Afrouzi; Chen Rui Geach; 
Wang Xingye; Jalal Tavalaei  
 
  

SESSION 5A Power Engineering Systems 2 
Session Chairs: Awang Jusoh & Syed Norazizul Syed Nasir 

Date: 24 Oct 2023, Tuesday 

Seminar Room: Danum 2, Level 5 
  

1050-1110 S5A.1 
 

Voltage Stability Assessment for Load Shedding Distribution 
 

Michelle Lu; Lo Tzu Hsiung 
  

1110-1130 S5A.2 
 

Real-Time Simulation of SVC on Multi-Machine -9 Bus System 
 

Hasmat Malik; Anjali Atul Bhandakkar; Mohammad Junaid Khan; Mohd Junaidi 
Abdul Aziz; Lini Mathew 

  
 

1130-1150 S5A.3 
 

Insulator Defect Detection in Power Lines Based on Improved Convolution Neural 
Network  
Annie Joseph; Mohd Rahul Bin Mohd Rafiq; Kuryati Kipli; Kho Lee Chin; Tengku 
Mohd Afendi Zulcaffle; Charlie Chin Voon Sia 

 
 
  

SESSION 5B High Voltage and Electrical Insulation 

Session Chairs: Naziha Ahmad Azli & Norjulia Mohamad Nordin 

Date: 24 Oct 2023, Tuesday 

Seminar Room: Danum 3, Level 5 
  

1050-1110 S5B.1 
 

Atmospheric Pressure Plasma Jet Assisted by Magnetic Field: A Simulation Study  
Mohd Hafizi Ahmad; Nik Muhammad Azzim Addin Jalaludin; Azfar Satari Abdullah; 
Norhafezaidi Mat Saman   

1110-1130 S5B.2  
Effects of External Permanent Magnet on Atmospheric Pressure Plasma Jet: An 
Experimental Study  
Mohd Hafizi Ahmad; Azfar Satari Abdullah; Norhafezaidi Mat Saman; Ahmad Muqri 
Hadri Md Nordin 

  
 

1130-1150 S5B.3  
Development of Condition Assessment Criteria for Medium Voltage Underground 
Cable Water Ingress Joint Using Combined Diagnostic Testing  
Tashia Anthony; Azrul Mohd Ariffin; Suhaila Sulaiman; Nik Hakimi Nik Ali 
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Abstract— In a transmission line architecture, an insulator 

is essential for preventing the unintended dissipation of 

electrical current from the conductive elements into the 

surrounding environment. This purpose is accomplished by 

effectively isolating the conductors from the supporting 

framework. A defect in the insulator may cause several 

malfunctions in the transmission line. It can range from a minor 

failure to catastrophic damage. Previous studies have 

investigated some insulator defect detection technologies using 

image processing methods. In modern research, classifiers are 

frequently used for this function in widespread detection 

systems. However, there are still some issues with computational 

effectiveness and detecting accuracy. This paper introduces an 

innovative approach by proposing a hybrid system based on 

You Only Look Once (YOLOv5) and Residual Neural Network 

(Resnet50) architectures. The proposed methodology achieves 

an excellent accuracy of 99.0 ± 0.233%. It takes 25 minutes to 

complete the training process for a dataset containing 1,000 

photos of insulators. The suggested method can transform the 

inspection procedure for high-altitude insulators by smoothly 

merging the advantages of YOLOv5 and Resnet50 through a 

carefully thought-out hybrid approach. 

Keywords— Convolution Neural Network, Insulator, 

unmanned aerial vehicle, Resnet50, YOLOv5 

 

I. INTRODUCTION  

An insulator is a widely used component of a power 
transmission line system. Insulator strings are essential 
because they provide both electrical insulation and 
mechanical support for the power lines [1]. The transmission 
system needs to work without issue to serve the customers' 
continuous power and maintain its safe operation. Therefore, 
good working insulators are essential in maintaining the 
reliable operation of a power transmission system. Ensuring 
that the insulator is working in a good state requires regular 
inspection and maintenance. This is because insulators, like 
other power transmission system components, may 
deteriorate over time. Exposure to the environment for a long 
time, such that temperature increases due to heavy sunshine, 
is cultivating the deterioration rate of an insulator. It may 
experience defects such as self-explosion, breakage, etc [2]. 
The insulators are also affected by meteorological conditions 
such as rain, snowfall, and wind. The presence of wildlife, 

such as birds, also worsened the situation of the insulators by 
contaminating them. When the insulator fails, it may cause 
equipment damage, power outages, and even disasters [3]. 
The traditional method of transmission line inspection is done 
visually by human and require the inspectors' judgement on 
the condition of the components. In recent years, one of the 
most common approaches has been employing manned 
helicopters flying along the power line corridor and outfitted 
with various sensors to record the inspection data [1]. 
However, this method requires demanding human and energy 
resources apart from having high risk because of the need to 
fly near the transmission line for better inspection data 
collection. Therefore, several alternatives involving mobile 
robotics, such as Unmanned Aerial Vehicle (UAV) [4] and 
Rolling on Wires (RoW) Robots [5], have emerged to solve 
the drawbacks of the traditional method. The RoW, however, 
is prone to the ambiguity of the line’s scenario. It must adapt 
to the high versus medium voltage power lines [1], leaving 
UAV the most optimum method for modern inspection. 
Therefore, the images captured from a UAV, such as a drone, 
have created the realization of an automatic inspection of 
insulators through images. Inspection through images 
captured from a UAV has been the prominent method for 
automated insulator inspection. 

The construction of such an autonomous system involves 
the development of solid insulator defeat detection and 
diagnosis systems capable of dealing with the high variability 
in the collected data. Under controlled illumination and 
background conditions, traditional computer vision 
algorithm-based methodologies can deliver satisfactory 
results in structured images. However, most of these systems 
are based on heuristics, which necessitates a variety of 
assumptions and constructed criteria that must be manually 
calibrated and re-adjusted to perform well in previously 
unanticipated conditions. On the other hand, machine 
learning algorithms can overcome these restrictions when 
trained on relevant datasets and deliver a more flexible 
solution that is more resistant to the ambiguity of illumination 
and the background. 

Various scholars have studied the inspection of insulators 
through Convolution Neural Network (CNN) methods to 
improve each method's detection accuracy, precision and 
speed. A few CNN methods have been developed for 
insulator detection and defect classification, including single 



and multiple-stage detection methods. Types of single-stage 
detection method for insulator includes You Only Look Once 
(YOLO) [6] [7] [8] and Single Shot Multibox detector (SSD) 
[9]. In addition, multi-stage detection methods for insulators 
are Faster Region-based Convolutional Neural Networks 
(Faster R-CNN) [2] [10] [11] [12] [13] and Region-based 
Fully Convolutional Networks (R-FCN) [3]. Feng et al. [7] 
use the YOLOv5 object detection model to propose an 
automatic insulator detection approach employing 
contrasting the performance of four distinct versions of 
YOLOv5. In June 2020, the YOLOv5 model was released 
with four variants: YOLOv5s, YOLOv5m, YOLOv5l, and 
YOLOv5x. The YOLOv5s network has the most minor depth 
and width of the feature map in the YOLOv5 series. 
Comparisons were made between four different YOLOv5 
versions to show the most effective. Scholars noticed that 
larger models, like YOLOv5s, require greater training time, 
such as 1.027 hours for YOLOv5s and 4.156 hours for 
YOLOv5m. The main attribute of the YOLO method is its 
fast detection speed, which can be done in real-time. The 
method's accuracy can, however, still be increased. 

Chen et al. [14] suggested combining the YOLOv5 and 
Spatial Pyramid Pooling (SPP)-Net methods to detect 
insulator flaws. The authors show how this combination can 
find insulator faults with great accuracy and computational 
efficiency. Real-time object detection is possible with 
YOLOv5. SPP network still makes extracting features at 
different scales and aspect ratios possible, which is crucial for 
classifying objects of varied shapes and sizes. This paper's 
method for discovering insulator faults combines YOLO with 
SPP-Net and offers outstanding accuracy and real-time object 
detection. The two methods' diversity enables the quick and 
accurate detection of insulator defects.  

To identify and classify the insulators as being in 
excellent or flawed condition, Zhang et al. [15] use a UAV to 
take photographs of insulators, which are then modified using 
the Faster R-CNN algorithm. The network can extract data 
from images of various sizes and aspect ratios using the SPP 
layer, which the authors recommend adding to the Faster R-
CNN with the Resnet50 method. The authors find that their 
method is 97.8% accurate at spotting insulator issues when 
applied to a set of UAV photos of insulators. Furthermore, 
they demonstrate that their approach can yield a high 
identification rate with a low incidence of false positives. The 
modification of the Faster R-CNN method by adding an SPP 
layer, which allows the network to extract features at different 
aspect ratios and sizes, and the use of UAV data for defect 
recognition in insulators are the primary contributions of this 
paper. The authors showed that their method could locate 
insulator faults with high accuracy and a small percentage of 
false positives. 

In [16], the scientists use a collection of photos of 
insulators to train their Generalized Intersection Over Union 
(GIOU)-YOLOv3 model, which they subsequently use to 
recognise insulators in photographs. They demonstrate that 
their GIOU-YOLOv3 algorithm can reach a high level of 
accuracy in identifying insulators by evaluating it on a dataset 
of photos of insulators. The primary contribution of this study 
is the GIOU-YOLOv3 method, which the authors 
demonstrate that their technique can precisely identify 
insulators in photos. In [17], the authors use transfer learning, 
a prevalent deep learning technique, to leverage pre-trained 
CNN models. They select a suitable pre-trained model as the 

backbone network and fine-tune it using the insulator dataset 
This method lets the model learn pertinent insulator 
recognition and fault detection features.  

In [18], The authors present an improved version of the 
Faster R-CNN technique for detecting insulator flaws. They 
modify the original Faster R-CNN architecture to improve its 
efficacy in identifying and accurately localizing insulator 
defects. The paper provides a comprehensive overview of the 
modified Faster R-CNN architecture, focusing on the 
modifications made to the backbone network, region 
proposal network, and bounding box regression components. 
The authors describe how these modifications enhance 
detection efficacy and computational efficiency. Besides that, 
Qiu et al. [19] propose a method for insulator flaws detection 
using an enhanced YOLOv4 algorithm. A sample set of 
insulator images was created using aerial photos from the 
power grid, a publicly available dataset from the Internet, and 
an image augmentation technique based on Graph Cut. The 
images of insulators were pre-processed using the Laplace 
refining approach.  The YOLOv4 object recognition model's 
structure was altered using the Mobile Net lightweight 
convolutional neural network to address to address the issues 
of having too many parameters and having slow detection 
performance. Maduako et al. [20] demonstrated that, 
particularly in developing nations, combining UAV 
photography and computer vision results in a low-cost 
solution for a quick and easy inventory of electrical assets. 
The choice of deep learning architecture, the availability of 
sufficient training samples across a wide range of fault 
characteristics, the ramifications of data augmentation, and 
the balancing of intra-class heterogeneity are other factors to 
take into account when using this technology, 

For identifying insulators, many CNN designs, such as 
YOLO, SPP-Net, and Resnet50, have been suggested in the 
literature. The literature indicates that CNNs are a potential 
tool for finding insulators in photos. The research indicates 
that CNNs can identify insulators in photos with high 
accuracy. However, most of the datasets employed in the past 
researches are relatively small and need more variety, 
limiting the generalizability of the methodologies. On the 
other hand, system learning speed is another direction to be 
considered. In past research, some systems gain high 
accuracy but slow learning process, and some have higher 
learning speed but lower learning accuracy. Therefore, 
further study is required to assess the effectiveness of the 
approaches by balancing between learning speed and 
accuracy. Thus, this paper proposes an improved version of 
CNN based on YOLOv5 and Resnet50, considering the 
tradeoff between accuracy and learning speed. The remainder 
of the article is structured as follows. Section II explains the 
methodology used to achieve the goals. Section III discusses 
the results, analysis, and discussion data. Section IV is 
dedicated to the conclusion.  

II. METHDOLOGY 

In this section, the development of the system is explained 
and illustrated with a block diagram, as shown in Fig. 1. In 
this project, i5-9th Gen Central Processing Units (CPU) and 
GTX 1050 Ti Graphics Processing Units (GPU) are used to train 
on a dataset consisting of 1000 images of insulators. 



 
 

Fig. 1. Flowchart of the System 

 

A. Dataset 

The 1000 datasets were obtained from GitHub [21]. These 
datasets comprise normal and defective insulator images with 
the same light intensity. The datasets were partitioned into 
three sections: 80% of the data is used as a training set, 10% 
as a validation set, and 10% as a testing set.. 

B. Software 

TensorFlow is employed in this study. It is an open-source 
machine learning software library developed by the Google 
Brain Team. TensorFlow enables the design and execution of 
computations represented as directed graphs, known as 
computational graphs, which consist of a sequence of 
operations, or "ops," that accept inputs and generate outputs. 

C. Proposed Method 

The proposed method is developed based on the hybrid 
between YOLOv5 and Resnet50. The head component of the 
system is detached from the Resnet50 architecture and 
integrated into YOLOv5s. This approach enables the system 
to implement a process for cropping incoming input or 
images of the insulator, reducing the image's spatial 
resolution. The Resnet50 layering is imported and integrated 
into the YOLOv5s Architecture. The parameters in the 
architecture are modified to meet the requirements of 
Resnet50, ensuring smooth functionality and preventing any 
potential errors in the combination of the two systems. 

 Fig. 2 illustrates the modification of the Hybrid Yolov5s 
architecture by replacing the backbone of YOLOv5s with the 
Resnet50 layer. This structure is divided into three main 
parts. It is labelled as the system's backbone on the left of the 
images. This backbone is the Resnet50 and hybrid with 
YOLOv5s. Next, the middle part of the system has a variant 
color and boxes called the neck of the system. Lastly, the 
right with orange color is the head of the system. When 
convolutional and pooling layers, which are meant to extract 
picture features. Using filters, these layers identify and 
remove certain visual elements, such as edges and textures. 

Each residual block has several convolutional, batch 
normalization, activation functions layers and a shortcut 
connection. The shortcut connection enables the input to skip 
one or more of the block's layers and is added to its output 
before forwarding it to an activation function. This link helps 
gradients move more efficiently across the network, hence 
preventing the issue of disappearing gradients. The output of 
the residual blocks is then processed through further 
convolutional, pooling, and normalized layers before the final 
fully connected layers. The fully connected layers are in 
charge of creating the final predictions based on the retrieved 
visual elements. After it passes through the Resnet50, it will 
be passed on to the SPP-Net. When an image is loaded into a 
network that employs SPP-Net, it will initially be processed 
by many convolutional and pooling layers. These layers 
extract visual characteristics such as edges, textures, and 
forms. These features are then sent via the SPP layer, where 
the SPP layer executes various pooling operations with 
distinct pooling areas to the feature maps created by the 
convolutional layers. This enables the network to build 
numerous feature maps from the picture at various sizes. The 
SPP layer is meant to collect characteristics at several levels 
of abstraction, which might be crucial. The SPP layers are 
then concatenated and processed through many further layers 
of convolutional, pooling, and normalized layers before 
reaching the final fully connected layers.  

Finally, it will go through the last part of the system. 
When employing YOLO for object recognition, the picture is 
processed through many convolutional and pooling layers to 
extract visual properties such as edges, textures, and forms. 
Then, these characteristics are sent via the YOLO detection 
layers, which include the “neck” layers. The neck layers 
oversee processing the extracted visual elements and 
producing the final predictions. The neck layers of YOLO are 
made up of a series of convolutional layers that reduce the 
spatial dimensions of the feature maps while increasing the 
number of channels.This enables the network to prioritize the 
most vital characteristics while rejecting less vital data. This 
is accomplished by employing convolutional layers to extract 
high-level features from the feature maps created by the first 
layers and then utilizing pooling or strung convolutions to 
minimize the spatial dimensions of the feature maps. The 
decrease in spatial dimensions is significant because it 
enables the network to process more considerable input 
pictures without sacrificing computational efficiency. The 
output of the neck layers is then sent to the detection layers, 
which provide the final predictions for the image's objects. 
The detection layers are composed of fully linked layers that 
predict the class labels, bounding box coordinates, and 
confidence scores for the objects. 

III. RESULTS AND DISCUSSIONS 

The system tests datasets ranging from 800 to 1000 
insulator images. It is frequently employed in classification 
assignments when the objective is to forecast the class label 
of a specific occurrence. The equation to calculate the 
accuracy of a dataset is 

          𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                       (1) 

 

 



 
Fig. 2. Conceptional Design of the Hybrid Architecture 

 

The number of incidents accurately classified as positive 
is called True Positives (TP). The number of situations 
accurately classified as negative is called True Negatives 
(TN). The entire number of cases in the data set is Total 
Prediction. 

Accuracy alone is not enough as a performance criterion 
for a model. In some instances, when the classes are 
unequally matched, accuracy might be deceiving. Precision 
provides insight into the model's ability to identify positive 
cases reliably and may be considered a measure of the 
model's "score." The model has achieved complete precision 
if it has a precision value of 1.0, which suggest that it has not 

produced any false positive predictions. A precision value of 
0.0 means that the model made no true positive predictions, 
which means that all of the predictions it generated were false 
positives. The intermediate numbers show the proportion of 
accurate positive predictions made compared to errors. 
Equation 2 shows the calculation for precision. 

                         𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                                 (2)                                                                             

Where True Positives (TP) represent the correct 
classification of faulty insulators, and False Positives (FP) 
represent the wrong classification of non-defective insulators 
as defective. True Negative (TN) represent the correct 



classification of non-faulty insulators, while False Negatives 
(FN) represent the wrong classification of non-faulty 
insulators.  

A. Training For 800 Images Dataset 

The system processes 800 images in each session of 
epoch, with the epoch values ranging from 20, 40, 60, 80, and 
100, respectively. 

TABLE I. RESULTS FOR 800 IMAGES DATASETS 

Epoch Accuracy Precision Speed 

20 85.6±0.328% 78.1% 4.07 mins 

40 96.2±0.348% 95.7% 8.05 mins 

60 96.7±0.293% 94.8% 12.03 mins 

80 96.3±0.257% 94.5% 14.08 mins 

100 97.9±0.236% 95.3% 16.40 mins 

 
Table I shows the results for the 800 images of insulators, 

and the best result for the 100 epochs tries is 97.9 ± 0.236% 
with a speed of 16.40 minutes. The accuracy for 800 images 
per epoch increases when the epoch increases. This is because 
the proposed method trains with variant types of images when 
the dataset is increasing. The system demonstrates swift 
detection capabilities owing to its proficiency in learning 
from extensive datasets. The simulation result of the 
detection for the 800 images dataset is shown in Fig. 3, which 
stated that it predicted an accuracy of 97.9 ± 0.236%. 

 
Fig. 3. Result prediction for 800 images datasets 

B. Training For 1000 Images Dataset 

Next, the system processes 1000 images in each session 
of the epoch, with the epoch values ranging from 20, 40, 60, 
80, and 100, respectively. Table II shows the results for the 
1000 images of the insulator, and the best outcome for these 
100 epochs is 99.0 ± 0.233% with the speed of 25 minutes. 
The results show that the proposed method produces high 
recognition accuracy with considerably fast detection speed. 
The accuracy for 1000 images per epoch increases because 
when the dataset increases, the proposed method needs to 
train with various datasets. Extended learning time results 
from employing larger datasets, characterized by intricate 
patterns and variations. Smaller batch sizes are introduced to 

expedite this process by considering the tradeoff between 
accuracy and learning time. Despite the lengthened learning 
period with increasing epochs, it is still considered a fast-
training regimen. Quality and diversity of training data, a 
well-labelled dataset containing a diverse range of insulator 
images and encompassing a variety of fault categories is 
essential. The dataset must precisely represent real-world 
scenarios to teach the model the robust characteristics 
associated with various faults. It is essential to fine-tune 
hyperparameters such as learning rate, sample size, optimizer 
choice, and regularization strength. These modifications can 
have a substantial effect on accuracy. The paper uses a 
learning rate 0.01 to increase the model's precision.  

Enhanced Generalization, employing a reduced learning 
rate during training, frequently leads to improved 
performance in generalization. When the value of the 
learning rate exceeds an optimal threshold, the neural 
network tends to rapidly memorize the training examples, 
resulting in a phenomenon known as overfitting. Decreasing 
the learning rate facilitates a more comprehensive exploration 
of the parameter space by the network, thereby promoting the 
model's ability to capture significant and resilient features. 
The regularization effect can enhance the network's ability to 
generalize to unfamiliar examples and improve validation or 
test set accuracy. 

TABLE II. RESULTS FOR 1000 IMAGES DATASETS 

Epoch Accuracy Precision Speed 

20 92.7±0.335% 88.2% 3.20 mins 

40 97.5±0.319% 94.6% 6.20 mins 

60 96.3±0.280% 94.5% 12.24 mins 

80 93.6±0.254% 95.0% 18.24 mins 

100 99.0±0.233% 97.3% 25.00 mins 

 
The dataset simulation result of the detection for 1000 

images dataset is shown in Fig. 4, which stated that it 
predicted an accuracy of 99.0 ± 0.233%. 

 
Fig. 4. Result prediction for 1000 images datasets 

IV. CONCLUSIONS 

The proposed framework develops a hybrid system 
between Yolov5s and Resnet50 to detect faulty insulators. 
The detection of the system achieves an accuracy of 99.0± 



0.233% with 1000 datasets and time taken to finish the 
training within 25 minutes. These consistencies indicate that 
the model performs well, providing reliable and accurate 
predictions. Building a good CNN model requires a 
continuous cycle of experimentation. Apart from that, every 
dataset has individual properties that set it apart, such as its 
size, dispersion, noise levels, and class imbalances. These 
differences can significantly impact the decision-making 
process regarding the model architecture, hyperparameters, 
and regularization strategies. For instance, a dataset that has 
a significant class imbalance may benefit from methods to 
alleviate the imbalance issue, such as oversampling or class 
weighting. In contrast, a dataset with different lighting may 
require a more advanced model strategy regarding color 
separation. In the future, the availability of computational 
resources should be considered. GPUs are designed to 
incorporate finely tuned cores for executing parallel 
processing operations. This inherent design feature enables 
GPUs to exhibit exceptional efficiency when handling 
complex deep-learning computations. CNNs consist of 
matrix operations, convolutions, and activation functions. 
These computations can be efficiently executed in parallel 
across multiple GPU cores. Parallelism enables accelerated 
computation of both forward and backward passes, leading to 
notable performance enhancements compared to CPUs. 
GPUs can concurrently execute numerous operations, 
effectively handling the inherently parallel computations 
involved in CNN calculations. To balance between the 
accuracy and efficiency, the factors as mentioned above must 
be carefully considered.  
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