Skip to main content
Log in

A comprehensive review on nanocellulose-based membranes: methods, mechanism, and applications in wastewater treatment

Polymer Bulletin Aims and scope Submit manuscript

Abstract

As the demand for clean water sources increases, it is crucial to identify the best wastewater treatment technology that is cost-effective and energy efficient. Despite their separation performance and durability limitations due to the membrane materials and chemicals used in current production techniques, membranes are useful for recovering water from contaminated water sources. This review focuses on nanocellulose-based membranes that utilize various methods, as biodegradable and inexpensive nanocellulose has been used widely in membrane research in recent years. The research regarding nanocellulose-based membranes is growing widely as incorporating nanocellulose enhances the hydrophilic properties and mechanical strength and increases the membrane adsorption capacities, which is ideal for future commercialization. The material high aspect ratio explains this potential, large specific surface area, good capacity retention, and environmental inertness. In addition to the benefits already described, active sites include chemical moieties that might improve the efficacy of pollutants attaching to surfaces. Besides that, nanocellulose could be chemically modified to increase the surface affinity and reactivity of membranes to remove specific contaminants efficiently. Future research directions for lignocellulosic nanocellulose for wastewater treatment and the difficulties and possibilities of nanocellulose-based membranes in these fields are also discussed. Lastly, the application of nanocelluloses in water treatment with an emphasis on membranes and filters fabricated primarily of nanocellulose. Hence, nanocellulose for these membrane applications provides tremendous potential for the wastewater treatment industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Malaysia)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Not applicable.

References

  1. Abdi-Soojeede MI, Nour DH (2022) Assessments of physical analysis on water quality in benadir region, Somalia. Int J Res Arts Human 2(4):60–70. https://doi.org/10.55544/ijrah.2.4.48

    Article  Google Scholar 

  2. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Choseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Current Opinion Biotech 39(1):76–88. https://doi.org/10.1016/j.copbio.2016.01.002

    Article  CAS  Google Scholar 

  3. Abouzeid RE, Khiari R, El-Wakil N, Dufresne A (2019) Current state and new trends in the use of cellulose nanomaterials for wastewater treatment. Biomacromol 20(2):573–597. https://doi.org/10.1021/acs.biomac.8b00839

    Article  CAS  Google Scholar 

  4. Abuhasel K, Kchaou M, Alquraish M, Munusamy Y, Jeng YT (2021) Oily wastewater treatment: overview of conventional and modern methods, challenges, and future opportunities. Water (Switzerland) 13(7):1–35. https://doi.org/10.3390/w13070980

    Article  CAS  Google Scholar 

  5. Aguilar-Sanchez A, Jalvo B, Mautner A, Nameer S, Pöhler T, Tammelin T, Mathew AP (2021) Waterborne nanocellulose coatings for improving the antifouling and antibacterial properties of polyethersulfone membranes. J Membr Sci 620(1):1–10. https://doi.org/10.1016/j.memsci.2020.118842

    Article  CAS  Google Scholar 

  6. Al-Ghafri B, Lau WJ, Al-Abri M, Goh PS, Ismail AF (2019) Titanium dioxide-modified polyetherimide nanofiber membrane for water treatment. J Water Process Eng 32(1):100970. https://doi.org/10.1016/J.JWPE.2019.100970

    Article  Google Scholar 

  7. Ali GK, Omer KM (2022) Molecular imprinted polymer combined with aptamer (MIP-aptamer) as a hybrid dual recognition element for bio(chemical) sensing applications. Review Talanta 236(1):1–10. https://doi.org/10.1016/J.TALANTA.2021.122878

    Article  Google Scholar 

  8. Anis SF, Hashaikeh R, Hilal N (2019) Microfiltration membrane processes: a review of research trends over the past decade. J Water Process Eng. https://doi.org/10.1016/J.JWPE.2019.100941

    Article  Google Scholar 

  9. Ashrafi Z, Hu Z, Lucia L, Krause W (2021) Bacterial superoleophobic fibrous matrices: a naturally occurring liquid-infused system for oil-water separation. Langmuir 37(8):2552–2562. https://doi.org/10.1021/acs.langmuir.0c02717

    Article  CAS  PubMed  Google Scholar 

  10. Asif K, Lock SSM, Taqvi SAA, Jusoh N, Yiin CL, Chin BLF (2023) A molecular simulation study on amine-functionalized silica/polysulfone mixed matrix membrane for mixed gas separation. Chemosphere 311:136936. https://doi.org/10.1016/J.CHEMOSPHERE.2022.136936

    Article  CAS  PubMed  Google Scholar 

  11. Aulin C, Gallstedt M, Lindstrom T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(1):559–574. https://doi.org/10.1007/s10570-009-9393-y

    Article  CAS  Google Scholar 

  12. Azmi FI, Goh PS, Ismail AF, Hilal N, Wong TW, Misson M (2022) Biomolecule-enabled liquid separation membranes: potential and recent progress. Membranes 12(2):148. https://doi.org/10.3390/membranes12020148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baghel SS, Baranwal E (2022) Analyzing the Degradation of rivers using GI science. GISci Sustain Manag Water Resour. https://doi.org/10.1201/9781003284512-17

    Article  Google Scholar 

  14. Baker RW (2012) Overview of membrane science and technology. Membr Technol Appl. https://doi.org/10.1002/0470020393.ch1

    Article  Google Scholar 

  15. Bellio P, Luzi C, Mancini A, Cracchiolo S, Passacantando M, di Pietro L, Perilli M, Amicosante G, Santucci S, Celenza G (2018) Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1860(11):2428–2435. https://doi.org/10.1016/J.BBAMEM.2018.07.002

  16. Chakrabarty T, Giri AK, Sarkar S (2022) Mixed-matrix gas separation membranes for sustainable future: a mini review. Polym Adv Technol 33(6):1747–1761. https://doi.org/10.1002/PAT.5645

    Article  CAS  Google Scholar 

  17. Chen L, Yu H, Deutschman C, Yang T, Tam KC (2020) Novel design of Fe-Cu alloy coated cellulose nanocrystals with strong antibacterial ability and efficient Pb2+ removal. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.115889

    Article  PubMed  PubMed Central  Google Scholar 

  18. Crini G, Lichtfouse E (2018) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17(1):145–155. https://doi.org/10.1007/S10311-018-0785-9

    Article  Google Scholar 

  19. Dai Z, Ottesen V, Deng J, Helberg RML, Deng L (2019) A brief review of nanocellulose based hybrid membranes for CO2 separation. In Fibers (Vol. 7, Issue 5). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/FIB7050040

  20. Ezugbe EO, Rathilal S (2020) Membrane technologies in wastewater treatment: a review. Membranes 10(5):89. https://doi.org/10.3390/MEMBRANES10050089

    Article  CAS  Google Scholar 

  21. Flamm D (2019) Meeting new challenges in pharmaceutical freeze-drying. Processing. https://www.processingmagazine.com/home/article/15587676/meeting-new-challenges-in-pharmaceutical-freezedrying

  22. Ge J, Zhang Y, Heo YJ, Park SJ (2019) Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: a review. Catalysts. https://doi.org/10.3390/catal9020122

    Article  Google Scholar 

  23. Giakoumis T, Vaghela C, Voulvoulis N (2020) The role of water reuse in the circular economy. Adv Chem Pollut Environ Manag Protect 5:227–252. https://doi.org/10.1016/BS.APMP.2020.07.013

    Article  Google Scholar 

  24. Gohil JM, Choudhury RR (2019) Introduction to nanostructured and nano-enhanced polymeric membranes: preparation, function, and application for water purification. Nanoscale Mater Water Purif. https://doi.org/10.1016/B978-0-12-813926-4.00038-0

    Article  Google Scholar 

  25. Gopakumar DA, Arumughan V, Pasquini D, Leu SY, Abdul Khalil HPS, Thomas S (2019) Nanocellulose-based membranes for water purification. Nanoscale Mater Water Purif. https://doi.org/10.1016/B978-0-12-813926-4.00004-5

    Article  Google Scholar 

  26. Goswami R, Mishra A, Bhatt N, Mishra A, Naithani P (2021) Potential of chitosan/nanocellulose based composite membrane for the removal of heavy metal (chromium ion). Mater Today Proc 46:10954–10959. https://doi.org/10.1016/j.matpr.2021.02.036

    Article  CAS  Google Scholar 

  27. Han J, Wang S, Zhu S, Huang C, Yue Y, Mei C, Xu X, Xia C (2019) Electrospun core-shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness. ACS Appl Mater Interfaces 11(47):44624–44635. https://doi.org/10.1021/ACSAMI.9B16458/SUPPL_FILE/AM9B16458_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  28. Hussain CM, Paulraj MS, Nuzhat S (2022) Source reduction, waste minimization, and cleaner technologies. Source Reduc Waste Minimiz. https://doi.org/10.1016/B978-0-12-824320-6.00002-2

    Article  Google Scholar 

  29. Hussain S, Khan N, Gul S, Khan S, Khan H, Hussain S, Khan N, Gul S, Khan S, Khan H (2019) Contamination of water resources by food dyes and its removal technologies. Water Chem. https://doi.org/10.5772/INTECHOPEN.90331

    Article  Google Scholar 

  30. Im D, Nakada N, Fukuma Y, Tanaka H (2019) Effects of the inclusion of biological activated carbon on membrane fouling in combined process of ozonation, coagulation and ceramic membrane filtration for water reclamation. Chemosphere 220:20–27. https://doi.org/10.1016/J.CHEMOSPHERE.2018.12.071

    Article  CAS  PubMed  Google Scholar 

  31. Ismail AF, Matsuura T (2022) Pervaporation. Membr Sep Processes. https://doi.org/10.1016/B978-0-12-819626-7.00014-4

    Article  Google Scholar 

  32. Jaffar SS, Saallah S, Misson M, Siddiquee S, Roslan J, Saalah S, Lenggoro W (2022) Recent development and environmental applications of nanocellulose-based membranes. Membranes. https://doi.org/10.3390/membranes12030287

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jani M, Arcos-Pareja JA, Ni M (2020) Engineered zero-dimensional fullerene/carbon dots-polymer based nanocomposite membranes for wastewater treatment. Molecules 25(21):4934. https://doi.org/10.3390/MOLECULES25214934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jankowska A, Ejsmont A, Galarda A, Goscianska J (2022) The outcome of human exposure to environmental contaminants. Importance of water and air purification processes. Sustain Mater Sens Remedi Noxious Pollut. https://doi.org/10.1016/B978-0-323-99425-5.00003-7

    Article  Google Scholar 

  35. Jiang YS, Zhang SB, Zhang SY, Peng YX (2021) Comparative study of high-intensity ultrasound and high-pressure homogenization on physicochemical properties of peanut protein-stabilized emulsions and emulsion gels. J Food Process Eng. https://doi.org/10.1111/jfpe.13710

    Article  Google Scholar 

  36. Kalla S (2021) Use of membrane distillation for oily wastewater treatment—A review. J Environ Chem Eng 9(1):104641. https://doi.org/10.1016/J.JECE.2020.104641

    Article  CAS  Google Scholar 

  37. Kamran U, Rhee KY, Lee S-Y, Park S-J (2022) Innovative progress in graphene derivative-based composite hybrid membranes for the removal of contaminants in wastewater: a review. Chemosphere, 135590

  38. Khatri M, Qureshi UA, Ahmed F, Khatri Z, Kim IS (2018) Dyeing of electrospun nanofiber. Handbook of Nanofibers, 1–16. https://doi.org/10.1007/978-3-319-42789-8_55-1

  39. Kumar Purkait M, Singh R, Mondal P, Haldar D (2020) Pervaporation. Therm Induc Membr Sep Processes. https://doi.org/10.1016/B978-0-12-818801-9.00006-2

    Article  Google Scholar 

  40. Kumar TSM, Kumar KS, Rajini N, Siengchin S, Ayrilmis N, Rajulu AV (2019) A comprehensive review of electrospun nanofibers: food and packaging perspective. Compos B Eng 175:107074. https://doi.org/10.1016/J.COMPOSITESB.2019.107074

    Article  Google Scholar 

  41. Kumari P, Bahadur N, Dumée LF (2020) Photo-catalytic membrane reactors for the remediation of persistent organic pollutants—A review. Sep Purif Technol 230:115878. https://doi.org/10.1016/J.SEPPUR.2019.115878

    Article  CAS  Google Scholar 

  42. Lasrado D, Ahankari S, Kar K (2020) Nanocellulose-based polymer composites for energy applications—A review. J Appl Polym Sci. https://doi.org/10.1002/app.48959

    Article  Google Scholar 

  43. Li M, Liu X, Liu N, Guo Z, Singh PK, Fu S (2018) Effect of surface wettability on the antibacterial activity of nanocellulose-based material with quaternary ammonium groups. Colloids Surf, A 554:122–128. https://doi.org/10.1016/J.COLSURFA.2018.06.031

    Article  CAS  Google Scholar 

  44. Li W, Shen Y, Liu H, Huang X, Xu B, Zhong C, Jia S (2022) Bioconversion of lignocellulosic biomass into bacterial nanocellulose: challenges and perspectives. Green Chem Eng. https://doi.org/10.1016/J.GCE.2022.04.007

    Article  Google Scholar 

  45. Li W, Wang X, He M, Zhang Z, Chen J, Yang G (2022) Fabrication of high-performance nanofiltration membranes by using sulfated cellulose nanofibril as the intermediate support layer. Desalination 532:115741. https://doi.org/10.1016/J.DESAL.2022.115741

    Article  CAS  Google Scholar 

  46. Liu Y, Ahmed S, Sameen DE, Wang Y, Lu R, Dai J, Li S, Qin W (2021) A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends Food Sci Technol 112:532–546. https://doi.org/10.1016/J.TIFS.2021.04.016

    Article  CAS  Google Scholar 

  47. Liu Y, Liu H, Shen Z (2021) Nanocellulose based filtration membrane in industrial waste water treatment: a review. Materials. https://doi.org/10.3390/ma14185398

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mansoori S, Davarnejad R, Matsuura T, Ismail AF (2020) Membranes based on non-synthetic (natural) polymers for wastewater treatment. Polym Test. https://doi.org/10.1016/j.polymertesting.2020.106381

    Article  Google Scholar 

  49. Mbakop S, Nthunya LN, Onyango MS (2021) Recent advances in the synthesis of nanocellulose functionalized-hybrid membranes and application in water quality improvement. Processes. https://doi.org/10.3390/pr9040611

    Article  Google Scholar 

  50. de Medeiros ADM, da Silva Junior CJG, de Amorim JDP, Durval IJB, de Santana Costa AF, Sarubbo LA (2022) Oily wastewater treatment: methods, challenges, and trends. Processes 10(4):743. https://doi.org/10.3390/PR10040743

    Article  CAS  Google Scholar 

  51. Mokarram M, Saber A, Sheykhi V (2020) Effects of heavy metal contamination on river water quality due to release of industrial effluents. J Clean Prod 277:123380. https://doi.org/10.1016/J.JCLEPRO.2020.123380

    Article  CAS  Google Scholar 

  52. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994. https://doi.org/10.1039/C0CS00108B

    Article  CAS  PubMed  Google Scholar 

  53. Nannan N, Neethling I, Cois A, Laubscher R, Turawa EB, Pacella R, Bradshaw D, Pillay-van Wyk V (2022) Estimating the changing burden of disease attributable to unsafe water and lack of sanitation and hygiene in South Africa for 2000, 2006 and 2012. South African Med J. https://doi.org/10.7196/SAMJ.2022.v112i8b.16498

    Article  Google Scholar 

  54. Neto VD, Freire TM, Saraiva GD, Muniz CR, Cunha MS, Fechine PBA, Nascimento RF (2019) Water treatment devices based on zerovalent metal and metal oxide nanomaterials. Nanomater Appl Environ Matrices Water Soil Air. https://doi.org/10.1016/B978-0-12-814829-7.00005-7

    Article  Google Scholar 

  55. Nissilä T, Wei J, Geng S, Teleman A, Oksman K (2021) Ice-templated cellulose nanofiber filaments as a reinforcement material in epoxy composites. Nanomaterials 11(2):490. https://doi.org/10.3390/NANO11020490

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nizamuddin S, Siddiqui MTH, Baloch HA, Griffin GJ, Srinivasan MP, Mubarak NM, Abdullah EC, Mazari SA, Tanksale A (2019) Iron oxide nanomaterials for the removal of heavy metals and dyes from wastewater. Nanoscale Mater Water Purif. https://doi.org/10.1016/B978-0-12-813926-4.00023-9

    Article  Google Scholar 

  57. Noguchi H, Oo MH, Niwa T, Fong E, Yin R, Supaat N (2019) Applications of flat sheet ceramic membrane for surface water and seawater treatments—Introduction of performance in large-scale drinking water plant and seawater pretreatment pilot system in Singapore. Water Pract Technol 14(2):289–296. https://doi.org/10.2166/WPT.2019.013

    Article  Google Scholar 

  58. Norrrahim MNF, Nurazzi NM, Jenol MA, Farid MAA, Janudin N, Ujang FA, Yasim-Anuar TAT, Syed Najmuddin SUF, Ilyas RA (2021) Emerging development of nanocellulose as an antimicrobial material: an overview. Mater Adv 2(11):3538–3551. https://doi.org/10.1039/D1MA00116G

    Article  CAS  Google Scholar 

  59. Nowak D, Jakubczyk E (2020) The freeze-drying of foods—The characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods. https://doi.org/10.3390/foods9101488

  60. Odabaşi Ç, Döhğlu P, Gülmez F, Kuşoğlu G, Çağlar Ö (2021) Machine learning analysis of the feed water parameters affecting reverse osmosis membrane operation. Comput Aided Chem Eng 50:235–240. https://doi.org/10.1016/B978-0-323-88506-5.50038-3

    Article  Google Scholar 

  61. Pal N, Agarwal M (2021) Advances in materials process and separation mechanism of the membrane towards hydrogen separation. Int J Hydrogen Energy 46(53):27062–27087. https://doi.org/10.1016/J.IJHYDENE.2021.05.175

    Article  CAS  Google Scholar 

  62. Parvin F, Islam S, Urmy Z, Ahmed S, Islam AS (2020) A study on the solutions of environment pollutions and worker’s health problems caused by textile manufacturing operations. Biomed J Sci Tech Res 28(4):21831–21844

    Google Scholar 

  63. Peng K, Huang Y, Peng N, Chang C (2022) Antibacterial nanocellulose membranes coated with silver nanoparticles for oil/water emulsions separation. Carbohyd Polym 278:118929. https://doi.org/10.1016/J.CARBPOL.2021.118929

    Article  CAS  Google Scholar 

  64. Pervez MN, Talukder ME, Mishu MR, Buonerba A, del Gaudio P, Stylios GK, Hasan SW, Zhao Y, Cai Y, Figoli A, Zarra T, Belgiorno V, Song H, Naddeo V (2022) One-step fabrication of novel polyethersulfone-based composite electrospun nanofiber membranes for food industry wastewater treatment. Membranes. https://doi.org/10.3390/membranes12040413

    Article  PubMed  PubMed Central  Google Scholar 

  65. Phan D-M, Khan MQ, Nguyen V-C, Vu-Mahn H, Dao AT, Thao PT, Nguyen N-C, Le V-T, Ullah A, Khatri M, Kim I-S (2022) Investigation of mechanical, chemical, and antibacterial properties of electrospun cellulose-based scaffolds containing orange essential oil and silver nanoparticles. Polymers 14(1):85. https://doi.org/10.3390/polym14010085

    Article  CAS  Google Scholar 

  66. Qasem NAA, Mohammed RH, Lawal DU (2021) Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water 4(1):1–15. https://doi.org/10.1038/s41545-021-00127-0

    Article  CAS  Google Scholar 

  67. Qiao A, Cui M, Huang R, Ding G, Qi W, He Z, Klemeš JJ, Su R (2021) Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2021.118471

    Article  Google Scholar 

  68. Qin D, Zhang R, Cao B, Li P (2021) Fabrication of high-performance composite membranes based on hierarchically structured electrospun nanofiber substrates for pervaporation desalination. J Membr Sci 638:119672. https://doi.org/10.1016/J.MEMSCI.2021.119672

    Article  CAS  Google Scholar 

  69. Ranjit P, Jhansi V, Reddy KV (2021) Conventional Wastewater Treatment Processes. 455–479. https://doi.org/10.1007/978-981-15-8999-7_17

  70. Ray P, Singh PS, Polisetti V (2020) Synthetic polymeric membranes for the removal of toxic pollutants and other harmful contaminants from water. Remov Toxic Pollut Microbiol Tert Treatm New Perspect. https://doi.org/10.1016/B978-0-12-821014-7.00002-2

    Article  Google Scholar 

  71. Reshmy R, Thomas D, Philip E, Paul SA, Madhavan A, Sindhu R, Binod P, Pugazhendhi A, Sirohi R, Tarafdar A, Pandey A (2021) Potential of nanocellulose for wastewater treatment. Chemosphere 281:130738. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130738

    Article  Google Scholar 

  72. Roilo D, Maestri CA, Scarpa M, Bettotti P, Checchetto R (2018) Gas barrier and optical properties of cellulose nanofiber coatings with dispersed TiO2 nanoparticles. Surf Coat Technol 343(1):131–137. https://doi.org/10.1016/j.surfcoat.2017.10.015

    Article  CAS  Google Scholar 

  73. Roy K, Mukherjee A, Maddela NR, Chakraborty S, Shen B, Li M, Du D, Peng Y, Lu F, Garciá Cruzatty LC (2020) Outlook on the bottleneck of carbon nanotube in desalination and membrane-based water treatment—A review. J Environ Chem Eng 8(1):103572. https://doi.org/10.1016/J.JECE.2019.103572

    Article  CAS  Google Scholar 

  74. Sadare OO, Yoro KO, Moothi K, Daramola MO (2022) Lignocellulosic biomass-derived nanocellulose crystals as fillers in membranes for water and wastewater treatment: a review. Membranes 12(3):320. https://doi.org/10.3390/MEMBRANES12030320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Salama A, Abouzeid R, Leong WS, Jeevanandam J, Samyn P, Dufresne A, Bechelany M, Barhoum A (2021) Nanocellulose-based materials for water treatment: adsorption, photocatalytic degradation, disinfection, antifouling, and nanofiltration. Nanomaterials. https://doi.org/10.3390/nano11113008

    Article  PubMed  PubMed Central  Google Scholar 

  76. Saleem H, Zaidi SJ (2020) Nanoparticles in reverse osmosis membranes for desalination: a state of the art review. Desalination 475:114171. https://doi.org/10.1016/J.DESAL.2019.114171

    Article  CAS  Google Scholar 

  77. Saleh TA, Mustaqeem M, Khaled M (2022) Water treatment technologies in removing heavy metal ions from wastewater: a review. Environ Nanotech Monit Manag 17:100617. https://doi.org/10.1016/J.ENMM.2021.100617

    Article  CAS  Google Scholar 

  78. Sarbatly R, Krishnaiah D, Kamin Z (2012) Membrane separation technology in oil refining industry: an overview. Desalination 296:1–10. https://doi.org/10.1016/j.psep.2016.01.010

    Article  CAS  Google Scholar 

  79. Saud A, Saleem H, Zaidi SJ (2022) Progress and prospects of nanocellulose-based membranes for desalination and water treatment. Membranes. https://doi.org/10.3390/membranes12050462

    Article  PubMed  PubMed Central  Google Scholar 

  80. Seraj S, Mohammadi T, Tofighy MA (2022) Graphene-based membranes for membrane distillation applications: a review. J Environ Chem Eng 10(3):107974. https://doi.org/10.1016/J.JECE.2022.107974

    Article  CAS  Google Scholar 

  81. Sheikh M, Pazirofteh M, Dehghani M, Asghari M, Rezakazemi M, Valderrama C, Cortina JL (2020) Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: a review. Chem Eng J 391:123475. https://doi.org/10.1016/J.CEJ.2019.123475

    Article  CAS  Google Scholar 

  82. Shirazi MMA, Bazgir S, Meshkani F (2020) Electrospun nanofibrous membranes for water treatment. In A. Abdelrasoul (Ed.), Advances in Membrane Technologies. IntechOpen. https://doi.org/10.5772/intechopen.87948

  83. Sokolowski K, Blazewicz S, Nocun M, Fraczek-Szczypta A (2021) Carbon micro- and nanofibrous materials with high adsorption capacity for water desalination. Desalination 503:114936. https://doi.org/10.1016/J.DESAL.2021.114936

    Article  CAS  Google Scholar 

  84. Su C, Li Z, Zhang D, Wang Z, Zhou X, Liao L, Xiao X (2020) A highly sensitive sensor based on a computer-designed magnetic molecularly imprinted membrane for the determination of acetaminophen. Biosens Bioelectron 148:111819. https://doi.org/10.1016/J.BIOS.2019.111819

    Article  CAS  PubMed  Google Scholar 

  85. Subrahmanya TM, Arshad A, Lin PT, Widakdo J, Makari HK, Austria HFM, Hu CC, Lai JY, Hung WS (2021) A review of recent progress in polymeric electrospun nanofiber membranes in addressing safe water global issues. RSC Adv 11(16):9638–9663. https://doi.org/10.1039/D1RA00060H

    Article  Google Scholar 

  86. Tan HF, Ooi BS, Leo CP (2020) Future perspectives of nanocellulose-based membrane for water treatment. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2020.101502

    Article  Google Scholar 

  87. Toriello M, Afsari M, Shon HK, Tijing LD (2020) Progress on the fabrication and application of electrospun nanofiber composites. Membrances 10(9):1–35. https://doi.org/10.3390/membranes10090204

    Article  CAS  Google Scholar 

  88. Trache D, Tarchoun AF, Derradji M, Hamidon TS, Mascruchin N, Brosse N, Hussin MH (2020) Nanocellulose: from fundamentals to advanced applications. Front Chem 8(1):1. https://doi.org/10.3389/fchem.2020.00392

    Article  CAS  Google Scholar 

  89. Urbina L, Guaresti O, Requies J, Gabilondo N, Eceiza A, Corcuera MA, Retegi A (2018) Design of reusable novel membranes based on bacterial cellulose and chitosan for the filtration of copper in wastewaters. Carbohyd Polym 193:362–372. https://doi.org/10.1016/j.carbpol.2018.04.007

    Article  CAS  Google Scholar 

  90. Vázquez-Núñez E, Avecilla-Ramírez AM, Vergara-Porras B, López-Cuellar MDR (2021) Green composites and their contribution toward sustainability: a review. Polym Polym Compos 29(9):S1588–S1608. https://doi.org/10.1177/09673911211009372

    Article  CAS  Google Scholar 

  91. Venkatesh Murthy BS, Santhoshkumar H, Nagesh H (2022) Design and development desalination procedure to sea water using renewable sources. AIP Conf Proc 2461(1):060004. https://doi.org/10.1063/5.0092776

    Article  CAS  Google Scholar 

  92. Vilela C, Moreirinha C, Almeida A, Silvestre AJD, Freire CSR (2019) Zwitterionic nanocellulose-based membranes for organic dye removal. Materials. https://doi.org/10.3390/ma12091404

    Article  PubMed  PubMed Central  Google Scholar 

  93. Vivod V, Neral B, Mihelič A, Kokol V (2018) Highly efficient film-like nanocellulose-based adsorbents for the removal of loose reactive dye during textile laundering. Text Res J 89(6):975–988. https://doi.org/10.1177/0040517518760752

    Article  CAS  Google Scholar 

  94. Wang Z, Chen Z, Zheng Z, Liu H, Zhu L, Yang M, Chen Y (2023) Nanocellulose-based membranes for highly efficient molecular separation. Chem Eng J 451:138711. https://doi.org/10.1016/J.CEJ.2022.138711

    Article  CAS  Google Scholar 

  95. Xiang J, Liu T, Hua X, Cheng P, Zhang L, Wang S, Du W (2020) The future prospect of China’s independent R&D technology (ITK) in water resources utilization and wastewater treatment. Water Conserv Wastewater Treat BRICS Nations. https://doi.org/10.1016/B978-0-12-818339-7.00017-5

    Article  Google Scholar 

  96. Yang G, Xie Z, Cran M, Wu C, Gray S (2020) Dimensional nanofillers in mixed matrix membranes for pervaporation separations: a review. Membranes 10(9):193. https://doi.org/10.3390/MEMBRANES10090193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yin Z, Cheng Y, Deng Y, Li Z, Liu K, Li M, Chen X, Xue M, Ou J, Lei S, Luo Y, Xie C, Hong Z (2022) Functional and versatile colorful superhydrophobic nanocellulose-based membrane with high durability, high-efficiency oil/water separation and oil spill cleanup. Surf Coat Technol 445:128714. https://doi.org/10.1016/J.SURFCOAT.2022.128714

    Article  CAS  Google Scholar 

  98. Zaki M, Atiqah MSN, Khalil HPSA, Ikram H, Alfatah T, Mistar EM, Adisalamun A, Yahya EB (2022) Microbial enhancement of nanocellulose isolation from sawn timber industrial wastes and fabrication of biocomposite membranes. Bioresour Technol Rep 20:101242. https://doi.org/10.1016/J.BITEB.2022.101242

    Article  CAS  Google Scholar 

  99. Zhang B, Gao H, Tong X, Liu S, Gan L, Chen Y (2019) Pressure retarded osmosis and reverse electrodialysis as power generation membrane systems. In: Current Trends and Future Developments on (Bio-) Membranes: Renewable Energy Integrated with Membrane Operations (pp. 133–152). Elsevier. https://doi.org/10.1016/B978-0-12-813545-7.00006-4

  100. Zhang J, Hu W, Cao S, Piao L (2020) Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res 13(9):2313–2322. https://doi.org/10.1007/S12274-020-2880-Z/METRICS

    Article  CAS  Google Scholar 

  101. Zhang Y, Park SJ (2019) Facile construction of MoO3@ZIF-8 core-shell nanorods for efficient photoreduction of aqueous Cr (VI). Appl Catal B 240(1):92–101. https://doi.org/10.1016/J.APCATB.2018.08.077

    Article  CAS  Google Scholar 

  102. Zhang Y, Zhang C, Wang Y (2021) Recent progress in cellulose-based electrospun nanofibers as multifunctional materials. Nanoscale Adv 3(21):6040–6047. https://doi.org/10.1039/D1NA00508A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116(16):9305–9374. https://doi.org/10.1021/acs.chemrev.6b00225

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge Universiti Malaysia Sarawak of the grant UNI/F07/VC-HIRG/85518/P12-03/2022 for financial support.

Funding

The grant UNI/F07/VC-HIRG/85518/P12-03/2022 from Universiti Malaysia Sarawak.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. AZS contributed to data curation, writing—original draft and editing. MRR, DK, KAMS, and AKBO contributed to project administration, conceptualization, funding acquisition, and supervision. MKBB, AJ, and JU reviewed and re-edited for technical words, and all authors read and approved the final manuscript.

Corresponding authors

Correspondence to Md Rezaur Rahman or Muhammad Khusairy Bin Bakri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sueraya, A.Z., Rahman, M.R., Kanakaraju, D. et al. A comprehensive review on nanocellulose-based membranes: methods, mechanism, and applications in wastewater treatment. Polym. Bull. (2023). https://doi.org/10.1007/s00289-023-05084-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-023-05084-x

Keywords

Navigation