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Abstract—Fuzzy Rule Interpolation (FRI) is important for 

fuzzy inference systems modeling pertaining to a sparse fuzzy 

rule base system.  The focus of this paper is on a specific class of 

FRI, i.e., monotone FRI (MFRI), for modeling monotone 

Takagi-Sugeno-Kang Fuzzy Inference System (TSK-FIS) in the 

presence of a monotone sparse fuzzy rule base.  On the other 

hand, a function is denoted as an n-ary aggregation function for 

a given n-dimensional input space and an output space when 

both the monotone and boundary properties are satisfied.  In 

this paper, a set of sufficient conditions derived from the 

principles of Ordered Weighted Averaging (OWA) and the 

concept of orness for TSK-FIS to obey the monotone property is 

firstly formulated.  We show that it is necessary to have a dense 

fuzzy rule base, which can be obtained by interpolation of fuzzy 

rules in a sparse fuzzy rule base, for constructing a monotone 

TSK-FIS.  We then devise a two-stage MFRI for establishing 

monotone TSK-FIS.  The first stage comprises a sufficient 

condition, inspired from the orness concept, to generate 

intermediate fuzzy membership functions (FMFs).  The second 

stage deduces the monotone consequent of each intermediate 

rule from the available sparse fuzzy rules.  We further extend 

our MFRI formulation to form TSK-FIS-like n-ary aggregation 

functions.   

Keywords—monotonicity, fuzzy rule interpolation, Takagi-

Sugeno-Kang Fuzzy Inference System, Ordered Weighted 

Average, orness, Aggregation Functions. 

I. INTRODUCTION 

A. Background

Originated from Zadeh [1], reasoning with Fuzzy If-Then 
rules have been popular for over five decades [2].  A well-

known challenge is a sparse fuzzy rule base [1] [3], i.e., the 

fuzzy rule base contains insufficient information pertaining to 

its total state space.  The idea of interpolative reasoning has 

been proposed to solve issues related to a sparse fuzzy rule 

base [2], e.g., linear rule interpolation [2] [3] [4].  This further 

leads to fuzzy rule interpolation (FRI)), which is one of the 

main research topics in the fuzzy community.  In general, FRI 

hinges on the notions of ordering, closeness and distance (see 

[4]) to generate intermediate fuzzy rules for obtaining a dense 

fuzzy rule base [5]. The important of FRI in fuzzy control has 

been highlighted, e.g. in [5]. 

Over the years, various FRI techniques have been 

proposed. Among them include the interpolation method for 

triangular membership functions [6], scale and move 

transformation method [7], similarity transfer interpolation 

method [8], cutting and transformation-based interpolation 

method [9]. Other more recent studies on FRI are also reported 

in [10]-[13]. Nonetheless, research on monotone Fuzzy Rule 

Interpolation (FRI) is a relatively recent development [14]. 

B. From Monotone Fuzzy Inference System To TSK-FIS-

Like n-ary Aggregation Functions

An FIS, denoted as � , is known as a monotone non-

decreasing FIS if it is a mapping �: � → �  that satisfies

� ��	
� = 
�
,	
�, … , ��,	
�, … , ��,	
��� ≤ � ��	�� =

�
,	��, … , ��,	��, … , ��,	����  for all ��,	
� ≤ ��,	�� ∈ �� , � ∈
{1, … , �}, with an �-dimensional input space � ∈ ℝ� and an

output space � ∈ ℝ .  The consideration of the monotone

property as a prior requirement has been practiced in FIS 

modelling [14]-[27]. In general, research studies on 

monotone-preserving FIS (hereafter denoted as monotone 

FIS) encompass three aspects: (i) mathematical conditions of 

an FIS (including interval-type-2 FIS [23]) to satisfy the 

monotone property for different FIS variants [15]-[27]. 

including TSK-FIS [17]; (ii) various methods to construct 

monotone FISs, either via expert knowledge [26]-[27] or data 

samples; and (iii) various applications of monotone FISs to 

different domains, including the use of TSK-FIS as n-ary 

aggregation functions [18]. 

On the other hand, a function, �	����: � → �, is known as

an n-ary aggregation function for a given bounded n-

dimensional input space, i.e., � = [0,1]� and an output space,

� = [0,1], when both monotone and boundary properties are

satisfied.   The monotoney property is defined as � ��	
� =

�
,	
�, … , ��,	
�, … , ��,	
��� ≤ � ��	�� = 
�
,	��, … , ��,	��, … , ��,	���� for all

��,	
� ≤ ��,	�� ∈ �� , � ∈ {1, … , �} .  The boundary property is

defined as �	0,0, … 0� = 0  and �	1,1, … 1� = 1.  Note that a

set of sufficient conditions for TSK-FIS to be an n-ary 

aggregation function has been presented [18]. 

C. Research Gaps and Aims

Accordingly, FRI is critical for TSK-FIS to operate as an

n-ary aggregation function, since the requirement of a dense

fuzzy rule base is necessary for constructing monotone TSK-

FIS (see the discussion after Corollary 1 [18, pp. 1867]).  A

preliminary scheme for utilizing monotone FRI in practical

modelling of the zero-order TSK-FIS has been outlined [14]

(see Figure 1).  The general idea is to achieve the lowest

possible square of the difference between simplified linear

FRI-deduced conclusions and MFRI-produced conclusions.

A Lagrangian function is adopted, and a convex programming

problem is formulated.  A unique global optimal solution,

which is also the local minimal solution, can be expected using

the Karush-Kuhn-Tucker (KKT) optimality conditions.
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Figure 1 Monotone Fuzzy Rule Interpolation scheme from [14] 

The research gaps in the literature and our research aims 
are outlined as follows. 
(1) While monotone TSK-FIS is relevant to ordered 
weighted averaging (OWA) [28][29] and orness [30], it is 
unclear how the principles of OWA and the concept of orness 
can be leveraged to construct TSK-FIS.  As such, a set of 
sufficient conditions for TSK-FIS to be monotone is devised 
based on both OWA and orness. This includes a method to 
design fuzzy membership functions (FMFs) and monotone 
consequences.  
(2) While MFRI is an important step to generate 
intermediate fuzzy rules, it is unclear how FMFs of 
intermediate fuzzy rules should be designed for constructing 
monotone TSK-FIS with a sparse fuzzy rule base, 
considering the sufficient condition.  In this paper, a method 
to design FMFs, together with MFRI [14], to generate 
intermediate fuzzy rules, is presented.  With the concept of 
hyperbox [31], we explain the importance of generating 
intermediate fuzzy rules for establishing functional TSK-FIS. 
(3) It is unclear how MFRI can be utilised for 
establishing TSK-FIS with functional consequents and 
forming TSK-FIS-like n-ary aggregation functions.  Thus, we 
illustrate the use of MFRI for TSK-FIS with functional 
consequence. Also, a set of sufficient condition for TSK-FS 
to operate line an n-ary aggregation function is outlined.  The 
use of MFRI for achieving TSK-FIS like n-ary aggregation 
function is illustrated.  

II. PRELIMINARY 

A. OWA and Orness 

An OWA operator of "  dimension is a mapping of #: 
ℝ$ → ℝ  if it has an associated weight vector % =
	&
, … , &$�'  with &( ∈ [0,1]  and ∑ &(

$
(*
 = 1 , such that 

#	+
, … , +$� = ∑ &(,(
$
(*
 , where ,(  is the - th largest 

element +(.  The weights &(  are associated with a particular 

ordered position ,( rather than with a particular element. An 

OWA operator is always commutative, monotonic and 
idempotent [28][29].  

Orness of an " -ary OWA is increasing [30], i.e., 

./
%	
�� > ./
%	���, if two "-dimensional weight vectors, 

i.e., %	
�  and %	�� , satisfy %	
� = 	&
,	
�, … , &$,	
��'  and 

%	�� = 	&
,	
�, … , &2 − 4, … , &5 + 4, … , &$,	
��' , where 

4 > 0 and 7 < 9. 

B. TSK-FIS 

Consider an TSK-FIS with an input domain �� ∈ � ∈ ℝ�, 

� ∈ {1, . . , �}, the input variable �� is partitioned into ;� ≥ 1 

FMFs.  Each partition is denoted with a linguistic term, =�
>?, 

with its corresponding FMF @�
>?	���, where /� ∈ {1, … , ;�}, 

and /
, … , /� is an integer. The Ath fuzzy If-Then rule of an 

TSK-FIS has the following form: 

BC: IF �
 is =

C AND … . AND �� is =�

C  THEN N is NC	�� 

The firing strength and normalized firing strength of the Ath 

fuzzy If-Then rule, i.e., BC: =C →  NC	��  can be obtained 

with =C	�� = ∏ =�
>?	����

�*
  and =C	�� = PQ	��
∑ PQ	��RQST

, 

respectively. An TSK-FIS is a mapping of �: � → �, with U 

fuzzy If-Then rules, i.e., �	�� = ∑ PQ	��×WQ	��RQST
∑ PQ	��RQST

=
∑ =C	��X

C*
 NC	��. 

III. FORMATION OF HYPERBOXES OF FUZZY IF-THEN RULES 

Hyperbox is a concept in fuzzy min-max neural network 

models for classification and clustering [31].  An � -

dimensional hyperbox is represented by its corresponding 

minimum and maximum points (i.e., vertices). Here, a 

hyperbox is formed by the support of antecedents, i.e., 

support of  =C , if it exists, as denoted by 

=Y
CZ	�� ={	�|=C	�� > 0�}. 

Support of =C  (denoted as =Y
CZ ) is defined as an � -

dimensional hyperbox confined by its vertices, i.e., the 

minimum point \=C  and maximum point \=C .  Both 

\=C  and \=C  are represented as two �-dimensional vectors: 

 \=C = 	�

>T , ��

>] , … , ��
>̂ � 

\=C = 	�

>T , ��

>] , … , ��
>̂ � 

such that \=C ≥ \=C  and =Y
CZ ∈ � . An example of a 2 -

dimensional hyperbox formed by two FMFs is shown in 
Figure 2. 

 
Figure 2. An example of a 2-dimensional hyperbox =Y

CZ = 	\=C, \=C� 
 

We introduce NC	� | =Y
CZ�  to denote the restriction of 

NC (x) to =Y
CZ . As long as the n-dimensional hyperbox of 

NC	�|=Y
CZ� is a subset of �, non-monotone NC	�� can produce 

monotone NC(x |=Y
CZ). 

IV . OWA AND MONOTONE TSK-FIS 

Pertinent to the antecedent and consequent parts of a 
fuzzy rule base, we outline a set of sufficient conditions for 
TSK-FIS to be monotone, as follows. 
 
Condition 1 

At the antecedent part of a fuzzy rule base, following the 

orness concept of an OWA operator, all =�
>?	��� are designed 

such that orness of the vector consisting of /� numerals, i.e., 

�=�

	���, =�

�	���, … , =�
`?	��� � increases, when �� increases.  

Condition 2 

At the consequent part of a fuzzy rule base, all NC	�|=Y
CZ� are 

monotone, i.e., NC ��	1�|=Y
CZ = 
�1,	1�, … , ��,	1�, … , ��,	1��� ≤

NC ��	2�|=Y
CZ = 
�1,	2�, … , ��,	2�, … , ��,	2��� for all ��,	
� ≤ ��,	�� ∈
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��, and all A, � ∈ {1, … , �}, but NC	�� may not be monotone 
entirely. 

Note that the proposed set of new sufficient conditions is 

restricted to the case that the maximal of two FMFs overlap 

each other at ��. 

V. NEW MONOTONE FUZZY RULE INTERPOLATION FOR 

MONOTONE TSK-FIS WITH OWA PRINCIPLES 

A.  Sparse fuzzy rule base for monotone TSK-FIS 

The sparse fuzzy rule base problem hinders effective 

modelling of monotone TSK-FIS when (1) there is an � such 

that ∑ =C	��X
C*
 =0, =C	��  is undetermined if 0/0 is 

undefined; and (2) any NC	�|=Y
CZ� is unknown.   

A fuzzy rule base is dense, if and only if (1) there is no 

� ∈ �  such that ∑ =C	��X
C*
 =0; and (2) all NC	�|=Y

CZ�  are 

defined and known.  Note that (1) and (2) are the necessary 

and sufficient conditions for TSK-FIS to satisfy the 

requirement of having a dense fuzzy rule base. 

B. MFRI for Monotone TSK-FIS 

The use of MFRI for constructing monotone TSK-FIS is 
presented as a 2-step process, as follows.  

B-I. Generating FMF(s) of intermediate fuzzy rules via the 

orness concept for TSK-FIS 

We consider a set of available fuzzy If-Then rules for 

modelling a monotone TSK-FIS.  These rules can be obtained 

from human experts or generated from a data-driven FIS.   

The available fuzzy If-Then rules satisfy Conditions (1) and 

(2) specified in Section II, but, sparse. 

Intermediate fuzzy If-Then rules need to be generated, in 

such a way that when they are used together with the 

available fuzzy rules, a monotone TSK-FIS is obtained.  

Consider the case of ;�  FMFs, where each ��  is from the 

available fuzzy rules, and the associated FMFs are denoted as 

=>?	���.  FMFs for ;�
∗ intermediate fuzzy rules, denoted as 

=>?
∗	���, should be generated to obtain a dense fuzzy rule 

base.  

;�
∗  FMFs for  intermediate fuzzy rules are designed in 

such a way that when ��  increases, orness of 

�=
	���, =�	���, … , =
∗	���, =�∗	���, … , =`?
∗	��� , =`?	��� �  always 

increases, see section II-(A).   Each pair of =>?	��� and =>?
∗	��� 

is obtained using: 

 =>?	��� = Pb?	c?�

∑ Pb?	c?�d?
b?ST e∑ Pb?

∗	c?�d?
∗

b?
∗ST

     (1) 

=>?
∗	��� = Pb?	c?�

∑ Pb?	c?�d?
b?ST e∑ Pb?

∗	c?�d?
∗

b?
∗ST

     (2) 

B-II. Generating consequents for intermediate fuzzy rules via 

MFRI [14] 

With the generated observations, the conclusions can be 

obtained using the simplified and modified linear 

interpolative reasoning scheme (linear FRI) [14].  MFRI 

focuses on the minimization of sum of squared error between 

the linear interpolative reasoning scheme-deduced 

conclusion NC∗	��  and MFRI-produced conclusion 

NC,>fg	��, subject to a set of constraints. The purpose is to 

relabel the non-monotone conclusions deduced by a 

simplified and modified linear interpolative reasoning 

scheme, denoted as System (3). 

Min ∑ 	NC∗	�� − NC∗,>fg,h	����  h*
    (3.1) 
subject to 

NC∗,>fg	�� ≥ "+�
PQ	iTjbT,i]jb],…,i^jb^�∗

NC∗	��    (3.2) 

NC∗,>fg	�� ≤ "��
PQ	iTkbT,i]kb],…,i^kb^�∗

NC∗	��  (3.3) 

NC	>T,>],…,>̂ �∗,>fg	T�	�� ≤ NC	>T,>],…,>̂ �∗,>fg	]�	��  (3.4) 

such that 	/
, /�, … , /��	
� ≤ 	/
, /�, … , /��	��, ∀ �. 

C. EXAMPLE 1:  SISO TSK-FIS 

An example of an SISO TSK-FIS model (� = 1) with a 

total of ;
 = 2 FMFs in the input domain �
  (as shown in 

Figure 3) and ;
 = 2 fuzzy rules in the �
 → �  domain is 

considered. The centroid of =
	�
� and =�	�
� are used for 

MFRI.  Here, ;

∗ = 3  and ;


∗ = 5  observations. Both are 

designed in such a way that vector ℋ	�
� , i.e., ℋ	�
� =
	=
	�
�, =
∗	�
�, =�∗	�
�, =o∗	�
�, =�	�
��  and ℋ	�
� =
	=
	�
�, =
∗	�
�, =�∗	�
�, =o∗	�
�, =p∗	�
�, =q∗	�
�, =�	�
��  increases 

when �
 increases.  
 

B
 IF �
 is =
	�
� THEN N is N
 = 1 

B� IF �
 is =�	�
� THEN N is N� = 10 

 

 
Figure 3. The available FMFs in ��  

 
(a) 

 
(b) 

Figure 4. Designs of FMFs with 3 and 5 observations 

 

 
(a) 

 
(b)  

Figure 5 Constructed TSK-FIS with (a) ;

∗ = 3 and (b) ;


∗ = 5 
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Given the designed FMFs shown in Figure 4. (a), with 

=
∗	�
�, =�∗	�
� and =o∗	�
�, the deduced outcomes of N
∗, 

N�∗, and No∗ using linear FRI are 3.0887, 5.8901, and 7.8805, 
respectively. For the designed FMFs shown in Figure 4 (b), 

the deduced outcomes of N
∗ , N�∗ , No∗ , Np∗ , and Nq∗  using 
linear FRI are 2.3515, 3.9488, 5.5584, 6.7747, and 7.8805, 
respectively. Figures 5(a) and 5(b) depict the constructed 

TSK-FIS with ;

∗ = 3 and ;


∗ = 5 observations, respectively. 
 

D. Example 2: Two-input TSK-FIS 

A two-input TSK-FIS with ;
 = ;� = 2  FMFs in the 

input domains �
 and �� (as shown in Fig. 3) and ;
 × ;� =
4 fuzzy rules in the �
 × �� → � domain is considered.  In 

this example, ;

∗ = 3 and ;�

∗ = 2 observations, as shown in 

Figure 6. Both are designed in such a way that vector ℋ	��, 

i.e., ℋ	�
� = 	=
	�
�, =�	�
�, =
∗	�
�, =�∗	�
�, =o∗	�
��  and ℋ	��� =
	=
	���, =�	���, =
∗	���, =�∗	����  increases when �
 and �� 

increase, where � = 	�
, ���.  
 

B
 IF �
 is =
	�
� and �� is =
	��� THEN N is N
 =1 

B� IF �
 is =
	�
� and �� is =�	��� THEN N is N� = 7 

Bo IF �
 is =�	�
� and �� is =
	��� THEN N is No = 7 

Bp
 IF �
 is =�	�
� and �� is =�	��� THEN N is Np = 10 

 

 
(a) 

 
(b) 

Figure 6. Designs of FMFs with 3 and 2 observations 

 

Given the designed FMFs shown in Fig. 6, the deduced 
N
∗,>fg, … N
t∗,>fg can be obtained with MFRI (by solving System 

3) as in Figure 7.  The surface plot for � versus �
 and �� is 
depicted in Figure 8. 

 
=�	�
� No = 7 N
p∗,>fg

= 7.0003 

N
q∗,>fg

= 7.2229 

N
t∗,>fg

= 8.0886 

Np = 10 

=�∗	�
� Nx∗,>fg

= 5.8495 
N
Y∗,>fg

= 6.0548 
N

∗,>fg

= 6.6028 
N
�∗,>fg

= 7.0954 
N
o∗,>fg

= 7.4533 

=
∗	�
� Np∗,>fg

= 4.0346 
Nq∗,>fg

= 4.7246 
Nt∗,>fg

= 5.8778 
Ny∗,>fg

= 6.4352 
Nz∗,>fg

= 7.0002 

=
	�
� N
 = 1 N
∗,>fg

= 3.8186 
N�∗,>fg

= 5.5710 
No∗,>fg

= 6.3269 

N� = 7 

 =
	��� =
∗	��� =�∗	��� =o∗	��� =�	��� 
 Figure 7. Dense fuzzy rule base with both available fuzzy rules and 

MFRI generated rules. 

 

 
Figure 8: The surface plot for � versus �
 and �� 

VI. EXTENSION TO TSK-FIS WITH FUNCTIONAL 

CONSEQUENTS 

Together with the notion of hyberbox (see Section III), 
the formulation in this study can be extended to TSK-FIS 
with functional consequents.  Consider a modified example 

presented in Section V-(C), where \=
 = 	0), \=
 = 	0.2), 

and \=� = 	0.7�, \=� = 	1).  With the available fuzzy rules 

in Figure 9, N
 = N� = �� .  With hyperbox, N
 = [0, 0.2], 

and N� = [0.7, 1]  are obtained.  The same FMFs with 
intermediate fuzzy rules as in Figures 4 are used for 
evaluation.  The simplest, we consider the average points of 

N
 = [0, 0.2] and N� = [0.7, 1], for simulation. 
 

B
 IF �
 is =
	�
� THEN N is N
 = �� 
B� IF �
 is =�	�
� THEN N is N� = �� 

Figure 9. The available FMFs in �� with FMFs from Fig. 3. 

 

Given the designed FMFs shown in Figure 4. (a), with 

=
∗	�
�, =�∗	�
� and =o∗	�
�, the deduced outcomes of N
∗, 

N�∗ , and No∗  using linear FRI are 0.2392 , 0.4260 , and 

0.5587, respectively. For the designed FMFs shown in Fig. 4 

(b), the deduced outcomes of N
∗ , N�∗ , No∗ , Np∗ , and Nq∗ 

using linear FRI are 0.1901, 0.2966, 0.4039, 0.4850, and 

0.5587 , respectively. Figures 10(a) and 10(b) depict the 

constructed TSK-FIS with ;

∗ = 3 and ;


∗ = 5 observations, 
respectively. 

 
(a) 

 
(b) 

Figure 10. Constructed TSK-FIS with functional consequence with (a) 

;

∗ = 3 and (b) ;


∗ = 5 
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VII. MFRI FOR DATA DRIVEN TSK-FIS-LIKE n-ARY 

AGGREGATION FUNCTIONS 

A. Sufficient conditions for TSK-FIS-like n-ary aggregation 

functions 

For TSK-FIS to operate like an n-ary aggregation 

function, the set of sufficient conditions at both the 

antecedent and consequent parts of a fuzzy rule base 

presented in Section IV, is satisfied. In addition, two 

additional conditions are added, as follows. 

(1) NC	0, 0 , … ,0� = 0, for all A, if =C	0,0, … 0� > 0; and  

(2) NC	1, 1 , … ,1� = 1, for all A, if =C	1,1, … 1� > 0. 

The two additional conditions are introduced in 

Definitions 3 (see Definition (3.3) and (3.4)) and Proposition 

1 in [18] to ensure the boundary properties.   

B. A simulated example 

In this section, a data set consists of 121 input-output data 
is generated uniformly from a two-input monotonic function, 

i.e., N = 0.2{cT + 0.7{c] , and then normalized within the 
interval of [0,1] is considered.  A two-input TSK-FIS model 
is established by considering all the 121 input-output data as 
the training set.  To generate a sparse fuzzy rule base, FMFs 

as depicted in Fig. 3, is adopted for both �
 and �� , 
respectively.  With Wang-Mendel (WM) method [32], a total 
of four fuzzy rules are obtained is presented in Fig.11.  The 
two conditions from V-A is then imposed to relabel the 

consequence for B
and Bp, in such N
= 0 and Np = 1. 
 

B
 IF �
 is =
	�
� and �� is =
	��� THEN N is N
 = 0.0306 

B� IF �
 is =
	�
� and �� is =�	��� THEN N is N� = 0.6931 

Bo IF �
 is =�	�
� and �� is =
	��� THEN N is No =  0.2199 

Bp
 IF �
 is =�	�
� and �� is =�	��� THEN N is Np = 0.8824 

Fig 11. Sparse fuzzy rules obtained from WM method 
 

FMFs of intermediate fuzzy rules, for both �
and ��, are 
designed using the orness concept. Two and three 

intermediate FMFs are added to  �
 and �� , respectively. 

FMFs from Figures 6(a) and 6(b), are adopted, for �
and ��, 
respectively.  A dense fuzzy rule base (See Figure 12) is 
obtained by solving System (3).  A surface plot, with both 
monotonicity and boundary properties, as depicted in Figure 
13, is obtained. 
 

=�	�
� No

= 0.2199 
N
p∗,>fg

= 0.6931 
N
q∗,>fg

= 0.6931 
N
t∗,>fg

= 0.6931 

Np = 1 

=�∗	�
� Nx∗,>fg

= 0.2198 
N
Y∗,>fg

= 0.4798 
N

∗,>fg

= 0.4993 
N
�∗,>fg

= 0.5294 
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Figure 12. A dense fuzzy rule base system obtained by solving System (3) 
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C. Comparisons and discussions 

Without FRI, it is impossible to compute all FIS outputs 

for all �, with only a sparse fuzzy rule base from Figure 11 . 

In other words, some �	��  ∀ �  is indeterminate, and the 
entire surface plot is not obtainable.  Therefore, a dense fuzzy 
rule base is a necessary condition for monotone TSK FIS.  

Given intermediate fuzzy rules with a linear FRI scheme, 

it is possible to deduce all conclusions NC∗	��. Without a 
fuzzy rule relabeling process, a monotone fuzzy rule cannot 
always be obtained (see Figure 14), hence a non-monotone 
surface is resulted (see Figure 15). 
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Figure 14. A dense fuzzy rule base system acquired through a linear FRI 

approach. 
 

 
Figure 15. The surface plot of � versus �
 and �� with a dense fuzzy rule 

base obtained using a linear FRI method. 
 

Consider System (3) without the sufficient conditions in 
VII(A), a monotone fuzzy rule can be obtained (see Figure 
16), resulting in a monotone surface plot (see Figure 17). 
However, the boundary properties are not satisfied.  
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Figure 16. A dense fuzzy rule base system acquired with System (3) 
without sufficient conditions in VII(A) 
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D. Remarks 

Instead of imposing hard rules to relabeling the 

consequent to 0 or 1, by following the sufficient conditions in 

Section VII (A) and then solving System (3).  Another 

alternative maybe System (4), which can ensure both 

monotone and boundary properties, as follows. 

Min ∑ 	NC∗	�� − NC∗,>fg,h	����  h*
    (4.0) 
subject to (3.2), (3.3), (3.4) and where 

NC	0, 0 , … ,0� = 0, ∀ A, if =C	0,0, … 0� > 0   (4.1) 

NC	1, 1 , … ,1� = 1, ∀ A, if =C	1,1, … 1� > 0   (4.2) 

such that 	/
, /�, … , /��	
� ≤ 	/
, /�, … , /��	��, ∀ �. 

VIII. CONCLUSIONS 
In this paper, a new sufficient condition for TSK-FIS to 

be monotone is outlined, considering OWA and orness.  This 
includes a method to design FMFs, considering the orness 
concepts. It is important to a fuzzy rule base to be dense, for 
obtaining a monotone TSK-FIS.  As a solution to sparse fuzzy 
rule base system, a MFRI is outlined. This includes a method 
to generate intermediate fuzzy rules, i.e., to generate FMFs 
with orness concept, and a simplified interpolator with 
optimization.  We further borrow the concept of hyperbox, 
allowing the functional consequence, for TSK-FIS, to be 
represented as an interval, then, the MFRI could be used to 
generate numerals.  In addition, we also outline a set of 
condition, for TSK-FIS to operate as an n-ary aggregations 
function.  Again, the use of MFRI to realize data-driven n-ary 
aggregations function, is illustrated.  

For further research, we will conduct detailed studies on 
new formulation of System (4) and its application to real-
world problems. 

ACKNOWLEDGEMENT 
This work was supported by the Fundamental Research Grant 

Scheme under Grant FRGS/1/2020/ICT02/UNIMAS/02/2, by the 
Ministry of Higher Education, Malaysia. 

REFERENCES 

[1] L.A. Zadeh, “Outline of a new approach to the analysis of complex 
systems”, IEEE Trans. Syst. Man Cybern., vol SMC-3, no 1, pp.28-44, 
Jan. 1973. 

[2] L.T. Kóczy and K. Hirota. "Interpolative reasoning with insufficient 
evidence in sparse fuzzy rule bases", Inf. Sci., vol 71, no 1-2, pp.169-
201, June. 1993. 

[3] L.T. Kóczy and K. Hirota. "Approximate reasoning by linear rule 
interpolation and general approximation", Int. J. Approximate 
Reasoning., vol 9, no 3,  pp.197-225, Oct. 1993. 

[4] L.T. Kóczy and K. Hirota. "Ordering, distance and closeness of fuzzy 
sets." Fuzzy Sets Syst., vol 59, no 3, pp. 281-293,  Nov. 1993. 

[5] L.T. Kóczy and K. Hirota. "Size reduction by interpolation in fuzzy 
rule bases." IEEE Trans. Syst. Man Cybern. Part B Cybern., vol 27, no 
1, pp.14-25, Feb. 1997. 

[6] W. Hsiao, S. Chen and C. Lee, “A new interpolative reasoning method 
in sparse rule-based systems”, Fuzzy Sets Syst., vol. 93, no. 1, pp. 17–
22, Jan. 1998. 

[7] Z. Huang and Q. Shen, "Fuzzy interpolative reasoning via scale and 
move transformation", IEEE Trans. Fuzzy Syst., vol. 14, no. 2, pp. 304-
359, Apr. 2006. 

[8] M.M.S. Yan and W.Z. Qiao, “An improvement to kóczy and hirota’s 
interpolative reasoning in sparse fuzzy rule bases”, Int. J. Approx. 
Reason., vol. 15,  no 3, pp. 185-201, Oct. 1996.  

[9] S. Chen and Y. Ko, “Fuzzy interpolative reasoning for sparse fuzzy 
rule-based systems based on α-cuts and transformations techniques”, 
IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1626-1648, Dec. 2008.  

[10]  T. Chen, C. Shang, J. Yang, F. Li and Q. Shen, "A New Approach for 
Transformation-Based Fuzzy Rule Interpolation," IEEE Trans. Fuzzy 
Syst., vol. 28, no. 12, pp. 3330-3344, Dec. 2020 

[11] J. Yang, C. Shang. Y. Li, and Q. Shen, “ANFIS construction with 
sparse data via group rule interpolation”, IEEE Trans. Cybern., vol. 51, 
no. 5, pp. 2773-2786, May. 2021. 

[12] P. Zhang, C. Shang, and Q. Shen, “Fuzzy rule interpolation with k-
neighbors for TSK models”, IEEE Trans. Fuzzy Syst., vol. 30, no. 10, 
pp. 4031-4043, Oct. 2022. 

[13] H. Lv, F. Li, C. Shang, Q. Shen, “W-Infer-polation: Approximate 
reasoning via integrating weighted fuzzy rule inference and 
interpolation”, Knowl.-Based Syst., vol 258, 109995, 2022 

[14] Y.W. Kerk, K.M. Tay, and C.P. Lim, “Monotone fuzzy rule 
interpolation for practical modeling of the zero-order TSK fuzzy 
inference system”, IEEE Trans. Fuzzy Syst., vol. 30, no. 5,  pp. 1248- 
1259, May. 2022. 

[15] E. Van Broekhoven and B. De Baets, “Only smooth rule bases can 
generate monotone Mamdani-Assilian models under center-of-gravity 
defuzzification”, IEEE Trans. Fuzzy Syst., vol. 17, no. 5, pp. 1157-
1174, Oct. 2009.  

[16] J.M. Won and F. Karray, “Toward necessity of parametric conditions 
for monotonic fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 22, no. 2, 
pp. 465-468, Apr. 2014.  

[17] K. M. Tay and C. P. Lim, "On monotonic sufficient conditions of fuzzy 
inference systems and their applications", Int. J. Uncertainty Fuzziness, 
vol. 19, no. 5, pp. 731-757, Oct. 2011.  

[18] Y.W. Kerk, C.Y. Teh, K.M. Tay, and C.P. Lim, “Parametric conditions 
for a monotone TSK fuzzy inference system to be an n-ary aggregation 
function,” IEEE Trans. Fuzzy Syst., vol. 29, no. 7, pp. 1864-1873, Jul. 
2021. 

[19] P. Hušek, “Monotonic smooth Takagi-sugeno fuzzy systems with 
fuzzy sets with compact support,” IEEE Trans. Fuzzy Syst., vol. 27, 
no. 3, pp. 605-611, Mar. 2019. 

[20] C.Y. Teh, Y.W. Kerk, K.M. Tay, and C.P. Lim, “On modelling of data-
driven monotone zero-order TSK fuzzy inference systems using a 
system identification framework,” IEEE Trans. Fuzzy Syst., pp. 3860-
3874, Jun. 2018. 

[21] H. Seki, H. Ishii, and M. Mizumoto, “On the monotonicity of fuzzy-
inference methods related to T-S inference method,” IEEE Trans. 
Fuzzy Syst., vol. 18, no. 3, pp. 629-634, Jun. 2010. 

[22] V. S. Kouikoglou and Y. A. Phillis, “On the monotonicity of 
hierarchical sum-product fuzzy systems,” Fuzzy Sets Syst., vol. 160, 
no. 24, pp. 3530-3538, Dec. 2009. 

[23] C. Li, J. Yi, and G. Zhang, “On the monotonicity of type-2 fuzzy logic 
systems”, IEEE Trans. Fuzzy Syst., vol. 22, no. 5, pp. 1197-1212, Oct. 
2014.  

[24] P. Hušek, “System identification using monotonic fuzzy models”, In 
Recent Developments and the New Direction in Soft-Computing 
Foundations and Applications, pp. 229-242, 2021. 

[25] P. Hušek, “On monotonicity of Takagi-Sugeno fuzzy systems with 
ellipsoidal regions”, IEEE Trans. Fuzzy Syst., vol. 24, no. 6, pp. 1673–
1678, Dec. 2016. 

[26] L.M. Pang, K.M. Tay, and C.P. Lim, “Monotone fuzzy rule relabeling 
for the zero-order TSK fuzzy inference system”, IEEE Trans. Fuzzy 
Syst., vol. 24, no. 6, pp. 1455–1463, Dec. 2016. 

[27] Y.W. Kerk, K.M. Tay, and C.P. Lim, “Monotone interval fuzzy 
inference systems”, IEEE Trans. Fuzzy Syst., vol. 27, no. 11, pp. 2255-
2264, Nov. 2019.  

[28] R.R. Yager, “OWA aggregation over a continuous interval argument 
with applications to decision making”, IEEE Trans. Syst. Man, Cybern. 
B, vol. 34, no. 5, pp. 1952-1963, Oct. 2004.. 

[29] R. R. Yager, “Families of OWA operators,” Fuzzy Sets Syst., pp. 125-
148, vol. 59, no. 2, Oct. 1993.  

[30] A. Krishor, A. K. Singh, and N. R. Pal, “Orness measure of OWA 
operators: a new approach,” IEEE Trans. Fuzzy Syst., vol. 22, no. 4, pp. 
1039-1045, Aug. 2014.  

[31] O.N. Sayaydeh, M.F. Mohammed, and C.P. Lim, “Survey of fuzzy 
min–max neural network for pattern classification variants and 
applications,” IEEE Trans. Fuzzy Syst., vol. 27, no. 4, pp. 635–645, 
Apr. 2019. 

[32] L.X. Wang, and J.M. Mendel, "Generating fuzzy rules by 
learning from examples." IEEE Trans. Syst. Man Cybern., vol 22, no 6, pp. 
1414-1427, Nov-Dec. 1992 

Authorized licensed use limited to: UNIVERSITY MALAYSIA SARAWAK. Downloaded on December 20,2023 at 02:47:42 UTC from IEEE Xplore.  Restrictions apply. 


