

Abstract—One of the major constraints in DNA computation

is the exponential increase in material consumption and

computation time for larger computation size in DNA computing

particularly in critical stages such as initial pool generation and

extraction during gel electrophoresis. In DNA computation,

both the hybridization-ligation method and parallel overlap

assembly method can be utilized to generate the initial pool of all

possible solutions. In this paper, we discuss and compare the

implementation of N × N Boolean matrix multiplication via in

vitro implementation between Hybridization-Ligation Method

and Parallel Overlap Assembly Method to show that selection of

tools and protocols affect the cost effectiveness of a computation

in terms of the material consumption, protocol steps and

execution time to compute. In general, the the parallel overlap

assembly method performs better than hybridization-ligation

method in terms of the three parameters mentioned. The

calculations are based on approximation of unique sequence

strands required for the computation and not actual calculations

on the nmol concentration.

Index Terms—DNA computing, material consumption,

hybridization-ligation method, parallel overlap assembly

method.

I. INTRODUCTION

DNA computing holds the promise for a faster and denser

computation with its massively parallel computing

capabilities. However, there are several difficulties still

remain as stumbling blocks which hinder its development as a

practical molecular computing. One of which is the amount of

DNA required for a computation that increases exponentially

with the size of the problem [1]. Current DNA computing

strategies are based on enumerating all candidate solutions

and then eliminate incorrect DNA by using selection

processes. This requires large numbers of starting molecules

at each step and each round of selection, usually via initial

pool generation and gel electrophoresis [2].

In solving HPP, the seven-node problem was encoded with

20 oligonucleotide strings. Other problems such as maximal

clique problems and encoding DNA words were solved with

28 and 108 encoded strings respectively [3]. Going further, a

HPP with 23 nodes would start to require a kilogram quantity

of DNA and an increase of nodes from 7 to 70 would require

1025 kg of nucleic acids [4]. Methods proposed for solving

TSP, clique problem, vertex-cover problem, clique problem

and set packing problems all showed exponentially increasing

Manuscript received March 10, 2014; revised May 15, 2014. This work

was supported in part by Universiti Malaysia Sarawak.

N. Rajaee, K. Hong Ping, A. Lit, D. N. S. A. Salleh, and N. Liang Yew are

with Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota

Samarahan, Sarawak, Malaysia (e-mail: {rnordiana, hpkismet, lasrani,

asdnsdharmiza, ngliangy}@feng.unimas.my).

volumes of DNA and linearly increasing time. LaBean et al

(2000) proposed that an n1.89n volume, O (n2+m2) time

molecular algorithm for the 3-coloring problem and a 1.51n

volume, O (n2m2) time molecular algorithm for the

independent set problem, where n and m are, subsequently,

the number of vertices and the number of edges in the

problems resolved [5]. Fu (1997) presented a polynomial time

algorithm with 1.497n volume for the 3-SAT problem, a

polynomial time algorithm with a 1.345n volume for the

3-coloring problem and a polynomial time algorithm with a

1.229n volume for the independent set [6]. Bunow goes on to

estimate that an extension combinatorial database would

require nearly 10
70

 nucleotides (by comparison, the universe

is estimated to contain roughly 10
80

 subatomic particles) [7].

The second problem with DNA computing is its

dependency on the reactions produced by the computation via

bio-molecular tools. The DNA computing which relies on

wet-lab processes is not an exact process. In many situations,

the DNA computer may fail to produce exact, algorithmic

results due to the concentration of different species, the

environment, the temperature and contamination. Errors can

be introduced at any protocol steps of the DNA computation

which requires utmost care in its preparation and

implementation. Thus, an increase in protocol steps will

immediately increase the possibilities for errors. The growing

numbers of test tubes involved in the computation cause the

whole operation to be labor intensive.

From our proposed algorithm and work, the quantity of

initial DNA strands to encode the problem is proportionate to

the number of vertices and edges existing in the graph

problem representing the matrix multiplication. The number

of primers to represent the elements in the product matrix is

derived from its total number of row and column indicators

whereas the total tubes to represent each element in the

product matrix is derived from the total number of primer

combinations.

Therefore, for an (m × k) • (k × n) matrix multiplication

problem, the total number of primers is m + n and total

number of tubes is m × n. For a 2 × 2 product matrix, the total

number of primers required is 4 and the total number of tubes

is also 4. However, as we have calculated, the number of

primers and tubes increases drastically for a larger N × N

computation. For a 10 × 10 product matrix, the total number

of primers required is 20 and the total number of tubes to

represent all elements in the product matrix is 100. As the size

of the problem increases, the volume of DNA increases

exponentially and the number of experimental work becomes

tedious and impractical to be considered as a viable

technology.

Thus it is necessary to study different strategies to encode

Comparison of Material Consumption, Experimental

Protocols and Computation Time in DNA Computing

N. Rajaee, K. Hong Ping, A. Lit, D. N. S. A. Salleh, and L. Y. Ng

International Journal of Machine Learning and Computing, Vol. 4, No. 4, August 2014

394DOI: 10.7763/IJMLC.2014.V4.443

