
  

 

Abstract—One of the major constraints in DNA computation 

is the exponential increase in material consumption and 

computation time for larger computation size in DNA computing 

particularly in critical stages such as initial pool generation and 

extraction during gel electrophoresis. In DNA computation, 

both the hybridization-ligation method and parallel overlap 

assembly method can be utilized to generate the initial pool of all 

possible solutions. In this paper, we discuss and compare the 

implementation of N × N Boolean matrix multiplication via in 

vitro implementation between Hybridization-Ligation Method 

and Parallel Overlap Assembly Method to show that selection of 

tools and protocols affect the cost effectiveness of a computation 

in terms of the material consumption, protocol steps and 

execution time to compute. In general, the the parallel overlap 

assembly method performs better than hybridization-ligation 

method in terms of the three parameters mentioned. The 

calculations are based on approximation of unique sequence 

strands required for the computation and not actual calculations 

on the nmol concentration.  

 
Index Terms—DNA computing, material consumption, 

hybridization-ligation method, parallel overlap assembly 

method.  

 

I.  INTRODUCTION 

DNA computing holds the promise for a faster and denser 

computation with its massively parallel computing 

capabilities. However, there are several difficulties still 

remain as stumbling blocks which hinder its development as a 

practical molecular computing. One of which is the amount of 

DNA required for a computation that increases exponentially 

with the size of the problem [1]. Current DNA computing 

strategies are based on enumerating all candidate solutions 

and then eliminate incorrect DNA by using selection 

processes. This requires large numbers of starting molecules 

at each step and each round of selection, usually via initial 

pool generation and gel electrophoresis [2]. 

In solving HPP, the seven-node problem was encoded with 

20 oligonucleotide strings. Other problems such as maximal 

clique problems and encoding DNA words were solved with 

28 and 108 encoded strings respectively [3]. Going further, a 

HPP with 23 nodes would start to require a kilogram quantity 

of DNA and an increase of nodes from 7 to 70 would require 

1025 kg of nucleic acids [4]. Methods proposed for solving 

TSP, clique problem, vertex-cover problem, clique problem 

and set packing problems all showed exponentially increasing 
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volumes of DNA and linearly increasing time. LaBean et al 

(2000) proposed that an n1.89n volume, O (n2+m2) time 

molecular algorithm for the 3-coloring problem and a 1.51n 

volume, O (n2m2) time molecular algorithm for the 

independent set problem, where n and m are, subsequently, 

the number of vertices and the number of edges in the 

problems resolved [5]. Fu (1997) presented a polynomial time 

algorithm with 1.497n volume for the 3-SAT problem, a 

polynomial time algorithm with a 1.345n volume for the 

3-coloring problem and a polynomial time algorithm with a 

1.229n volume for the independent set [6]. Bunow goes on to 

estimate that an extension combinatorial database would 

require nearly 10
70

 nucleotides (by comparison, the universe 

is estimated to contain roughly 10
80

 subatomic particles) [7]. 

The second problem with DNA computing is its 

dependency on the reactions produced by the computation via 

bio-molecular tools. The DNA computing which relies on 

wet-lab processes is not an exact process. In many situations, 

the DNA computer may fail to produce exact, algorithmic 

results due to the concentration of different species, the 

environment, the temperature and contamination. Errors can 

be introduced at any protocol steps of the DNA computation 

which requires utmost care in its preparation and 

implementation. Thus, an increase in protocol steps will 

immediately increase the possibilities for errors. The growing 

numbers of test tubes involved in the computation cause the 

whole operation to be labor intensive. 

From our proposed algorithm and work, the quantity of 

initial DNA strands to encode the problem is proportionate to 

the number of vertices and edges existing in the graph 

problem representing the matrix multiplication. The number 

of primers to represent the elements in the product matrix is 

derived from its total number of row and column indicators 

whereas the total tubes to represent each element in the 

product matrix is derived from the total number of primer 

combinations. 

Therefore, for an (m × k) • (k × n) matrix multiplication 

problem, the total number of primers is m + n and total 

number of tubes is m × n. For a 2 × 2 product matrix, the total 

number of primers required is 4 and the total number of tubes 

is also 4. However, as we have calculated, the number of 

primers and tubes increases drastically for a larger N × N 

computation. For a 10 × 10 product matrix, the total number 

of primers required is 20 and the total number of tubes to 

represent all elements in the product matrix is 100. As the size 

of the problem increases, the volume of DNA increases 

exponentially and the number of experimental work becomes 

tedious and impractical to be considered as a viable 

technology. 

Thus it is necessary to study different strategies to encode 
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