
SYNTHESIS OF METAL-ORGANIC FRAMEWORKS VIA WATER-BASED ROUTES

A green and sustainable approach

霊

Tasser Azim Sami-Ullah Rather Showkal Ahanel Shawan Prashant M. Bratt

Synthesis of Metal-Organic Frameworks via Water-Based Routes

A Green and Sustainable Approach

Edited by

Yasser Azim

Assistant Professor, Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India

Sami-Ullah Rather

Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia

Showkat Ahamd Bhawani

Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia

Prashant M. Bhatt

Staff Scientist, Advanced Membranes and Porous Materials Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

Elsevier

Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2024 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-323-95939-1

For Information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Candice Janco

Acquisitions Editor: Gabriela Capille
Editorial Project Manager: Kathrine Esten
Production Project Manager: Rashmi Manoharan

Cover Designer: Miles Hitchen

Typeset by Aptara, New Delhi, India

Dedication

Sir Syed Ahmad Khan for his enormous efforts in promoting modern education and the establishment of Muhammadan Anglo-Oriental College, which later evolved into Aligarh Muslim University.

Contents

Con Pref	tributo ace	ors	xii xv
1.	Inti	oduction to metal-organic frameworks	1
	Utsa	av Garg and Yasser Azim	
		Historical background	1
	1.2	Porosity of MOFs	2
		1.2.1 Classification	
		1.2.2 Surface area, pore volume, and pore size distribution	4
	1.3	Green methods of synthesizing MOFs	5 5
		1.3.1 Solvent-based synthesis	5
		1.3.2 Solvent-free synthesis	Ġ
		1.3.3 Sustainable metal precursors	10
		1.3.4 Eco-friendly alternatives for linkers	11
	1.4	MOF applications for a sustainable future	11
		1.4.1 Methane and hydrogen storage in MOFs	12
		1.4.2 Selective gas adsorption in MOFs	12
		1.4.3 Catalysis in MOF _s	12
		1.4.4 Magnetic properties of MOFs	13
		1.4.5 Drug storage and delivery in MOFs	14
	1.5	Future outlook and challenges	15
		Acknowledgment	16
		References	16
2.	Fur	damentals of metal-organic frameworks	25
		Husain and Malik Nasibullah	
	2.1	Introduction	25
	2.2	Background of metal-organic frameworks	26
	2.3	Metal-organic framework chemistry and field of	
		inorganic chemistry	27
	2.4	Morphologically modifiable structure of MOFs	29
	2.5	The selective properties of metal-organic frameworks	
		making them promising futuristic materials	29
	2.6	Existing and emerging synthetic procedures in compliance	
		with green chemistry	31
	2.7	Conclusion and outlook	32
		Poforoncos	33

3.		d and role of linkers for metal-organic frameworks Ali, Mohd Muslim, Saima Kamaal and Musheer Ahmad	35
	3.1 3.2	Introduction Types of organic linkers 3.2.1 Anionic organic linker for metal–organic framework	35 36 36
	3.3	N-heterocyclic-based linkers or neutral organic linkers 3.3.1 Ditopic N-heterocyclic linkers	44 44
	3.4	Conclusion References	46 46
4.		crowave-assisted synthesis of metal–organic	51
		Khalid Rahaman, Taposi Chatterjee and Seikh Mafiz Alam	٠.
	4.1	Introduction	51
	4.2	Historical developments of MOFs	52
		Conventional synthesis of MOFs	53
	4.4	Microwave-assisted synthesis of MOFs	55
		4.4.1 Faster Synthesis	56
		4.4.2 Phase-selective synthesis	59
		4.4.3 Crystal size reduction	60
	4.5	Factors affecting MOF synthesis by MW irradiation	61
		4.5.1 Temperature and reaction time	61
		4.5.2 The pH of the reactive mixture	62
	4.6	Advantages of microwave-assisted synthesis over the	
		conventional method	64
	4.7	Microwave-assisted synthesis: a green and sustainable	
	4.0	approach	64
	4.8 4.9	Critical analysis Conclusion and future prospects	66 66
	4.3	References	67
5.	Нус	drothermal synthesis of metal-organic frameworks	73
	Mol	nd Muslim, Arif Ali and Musheer Ahmad	
	5.1	Introduction	73
	5.2	Hydrothermal synthesis of MOFs	76
		5.2.1 Synthesis of Cu-MOFs	78
		5.2.2 Synthesis of Fe-MOFs	80
		5.2.3 Synthesis of Zr-MOFs	82
		5.2.4 Synthesis of Zn-MOFs	85
		5.2.5 Synthesis of other MOFs	86
	5.3	Conclusion and prospects	87
		Acknowledgment	88 88
		References	ŏŏ

	,	93
		33
6.1	Introduction	94
0.1		94
		95
		96
6.2		97
		98
	6.2.2 Liquid-assisted grinding method	99
	6.2.3 Ion- and liquid-assisted grinding method	104
6.3	Mechanochemical synthesis of MOF-based nano-composites	106
6.4	•	
	,	109
6.5		
	•	110
		110
		110
		111
		112
6.6		112
		114
6.7		114
	Acknowledgment	115
	References	115
Sor	nochemical synthesis of metal-organic frameworks	121
Тар	osi Chatterjee, SK Khalid Rahaman and Seikh Mafiz Alam	
7.1	Introduction	121
		121
		122
	7.1.3 Acoustic cavitation	123
7.2	Instruments employed and experimental variables	126
		126
		129
		130
7.3		131
		131
		131
		132
		136
7 4		137
,.,		137
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 Sor 7.1	 6.1.1 Metal-organic frameworks (MOFs) 6.1.2 Mechanochemical synthesis 6.1.3 Mechanochemistry for MOF synthesis 6.2 Methods of mechanochemical synthesis of MOFs 6.2.1 Neat grinding 6.2.2 Liquid-assisted grinding method 6.2.3 Ion- and liquid-assisted grinding method 6.3 Mechanochemical synthesis of MOF-based nano-composites 6.4 Structural characterization of mechanochemically synthesized MOFs 6.5 Mechanistic research on the synthesis of mechanically produced MOFs 6.5.1 Synchrotron PXRD for in situ and real-time monitoring of mechanochemical reactions 6.5.2 Raman spectroscopy for real-time monitoring of mechanochemical reactions 6.5.3 Combined X-ray diffraction and Raman spectroscopy for in-situ study of milling reactions 6.6 Challenges to the mainstream implementation of mechanochemical method 6.7 Conclusion and perspective Acknowledgment References Sonochemical synthesis of metal-organic frameworks Taposi Chatterjee, SK Khalid Rahaman and Seikh Mafiz Alam 7.1 Introduction 7.1.1 Sonochemistry: a brief overview 7.1.2 Historical developments of sonochemistry 7.1.3 Acoustic cavitation 7.2 Instruments employed and experimental variables 7.2.1 Types of instruments used in sonochemistry 7.2.2 Factors influencing sonochemical processes 7.2.3 Safety measures during the process 7.3 Synthesis of MOFs 7.3.1 MOFs: a brief overview 7.3.2 Conventional synthesis of MOF 7.3.4 Advantages sonochemical synthesis over conventional methods

8.	Synthesis of metal-organic frameworks with ionic liquids					
		ul Nisa, Nargis Akhter Ashashi and Haq Nawaz Sheikh	143			
			143			
	8.1 8.2	Introduction Synthesis of MOFs in ILs	143			
	0.2	8.2.1 Ionothermal synthesis	146			
		8.2.2 Room-temperature synthesis in ILs using additives	147			
	8.3	Anion incorporation/structure-directing effects	147			
	8.4	IL cation incorporation/templating	149			
	8.5	ILs incorporation/combined control of both the cation and anion	153			
	8.6	Ionothermal synthesis when neither the cation nor the				
		anion of the IL are present in the MOF	154			
	8.7	Exceptional features of ionothermally synthesized MOFs	155			
	8.8	Conclusion	155			
		References	155			
9.	Sol	ubility and thermodynamic stability of				
		metal-organic frameworks				
		nd Khalid, Samrah Kamal and Shaikh Arfa Akmal				
	9.1	Introduction	159			
	9.2	Fundamentals of MOFs	160			
	9.3	Solubility of MOF	161			
		9.3.1 Uses of soluble MOF	165			
	9.4	Stability of MOF	166			
		9.4.1 Water-stable MOF	166			
		9.4.2 Thermodynamic stability of MOF	167			
		9.4.3 Factors affecting the thermodynamic stability of MOF	168			
		9.4.4 Methods improving the stability of MOF9.4.5 Applications of thermodynamically stable MOF	170 172			
	9.5	Concluding remarks and future prospective	172			
	J. .J	References	174			
10.		Preparation and applications of water-based zeolitic imidazolate frameworks 17				
			17 3			
		at Vakil and M. Shahid				
	10.1		179			
	10.2	, , , , , , , , , , , , , , , , , , , ,	101			
	10.3	microwave-assisted ZIF-11 Synthesis	181 185			
	10.3	10.3.1 Synthesis of some water-based ZIFs	187			
	10.4	·	189			
	10.1	10.4.1 Energy storage devices	189			
		10.4.2 Gas separation	190			

			Contents	xi
		10.4.3 Drug delivery 10.4.4 Catalysis		190 190
	10.5	•		191
		other compounds10.5.1 Zeolitic imidazolate frameworks versus		191
		metal–organic frameworks 10.5.2 Zeolite imidazolate frameworks versus		191
	40.6	commercially available products		192
	10.6	Conclusion and future outlook References		193 193
11.		aration and applications of water-based		100
		eticular metal–organic frameworks		199
	Sami-	-Ullah Rather		
		Introduction		199
		Preparation		201
	11.3	Applications 11.3.1 Adsorption and separation		205 205
		11.3.2 Catalysts		213
		11.3.3 Sensors		214
		11.3.4 Biomedical		214
	11.4			215
		References		216
12.		aration and applications of water-based dination pillared-layer		219
		łusain, Benjamin Siddiqui, Malik Nasibullah,		
		em Ahmad, Mohd. Asif and Mohd. Sufian Abbasi		
	12.1	Introduction		219
	12.2 12.3	Brief history of the construction of CPL Different synthesis procedures employed		220
		in the preparation of CPL		221
	12.4	0		221
	12.5 12.6	1 0 / 11	S	223223
	12.6	Potential applications of pillared layered MOFs Conclusion and outlook		223
	12.7	References		224
13.		aration and applications of water-based ous coordination network		227
	-	nka Singh and Kafeel Ahmad Siddiqui		
	13.1	Introduction		227
		13.1.1 Terminology		228
		13.1.2 Designing permanent porosity		228

xii Contents

		Preparation	229
	13.3	Structural analysis	233
	13.4	I I'	250
		13.4.1 Photoluminescence/magnetism	250
		13.4.2 Sorption	252
		13.4.3 Variable temperature luminescence analysis	252
	13.5	Conclusion	253
		Acknowledgment References	253 253
14.	Meta	al-organic frameworks for wastewater treatment	257
		aruzzaman, Samim Khan, Basudeb Dutta and	_0,
		nmmad Hedayetullah Mir	
	14.1	Introduction	257
	14.2	Wastewater treatments	264
		14.2.1 Conventional methods	265
		14.2.2 Recognition of pollutants in wastewater through	
		MOFs	266
	14.3	MOFs in removal of wastewater pollutants	269
		14.3.1 Dyes removal	269
		14.3.2 Toxic agrochemicals removal	274
		14.3.3 Pharmaceutical products	276
		14.3.4 Heavy metals removal	280
		14.3.5 Nutrients removal	289
	14.4	14.3.6 Radioactive substances removal	290 29 1
	14.4	Conclusion and future scope References	293
		References	230
15.		strial aspects of water-based metal-organic	
	fram	eworks	30 3
	Atif F	lusain, Malik Nasibullah, Farrukh Aqil and Abdul Rahman Kl	ian
	15.1	Introduction	303
	15.2	Synthetic procedures pertained to green chemistry	305
	15.3	,	
		green method	306
	15.4	Versatility of water leading to a sustainable approach	
		and new domains of industry	307
	15.5	Emerging industrial applications of water-based MOFs	308
	15.6	Present and future challenges for a wider industrial	
	. <u>. </u>	implementation of water-based MOFs	309
	15.7	Conclusion and future prospects	310
		References	311
Index	(313

Preface

This book offers solid, quantitative descriptions and reliable guidelines, reflecting the maturation and demand of the field and the development of metalorganic frame (MOF) works. It summarizes the fundamental approaches and principles to prepare MOF works. The book particularly emphasizes the exciting preparation and applications of zeolitic imidazolate frameworks (ZIFs), isoreticular metal-organic frameworks (IRMOFs), coordination pillared-layer (CPL), and more. This book will be interesting for researchers working in the fields of MOF works, composite materials, material science, applied science, organic chemistry, and environmental chemistry. Additionally, the book will be useful for the scientists working on the preparation of MOF works from water-based systems. Furthermore, it will be equally helpful for the students in the development MOF works as well as graduates in material science, chemical engineering, environmental engineering, organic synthesis, and environmental chemistry. The book will serve as a reference book for industries working on the design and manufacturing process of MOF works.

The introductory chapter begins by covering basic information about MOFs and their applications. In the second chapter, the fundamentals of MOFs are discussed. The third chapter covers the kind and role of linkers for MOFs. Chapters four to eight describe different ways of synthesis of MOFs. Chapter nine provides valuable information about the solubility and thermodynamic stability of MOFs. Chapters 10 to 13 concentrate on the preparation and applications of essential water-based MOFs. Chapter 14 provides information about the applications of MOFs for wastewater treatment. Finally, the last chapter is dedicated to the industrial aspects of water-based MOFs.

Finally, we assure the readers that the information provided in this book can serve as a very important tool for anyone working on the MOF works. We are grateful to all the authors who contributed chapters to this book and who helped to turn our thoughts into reality. Lastly, we are grateful to the Elsevier team for their continuous support at every stage to make it possible to publish on time.

Index

Page numbers followed by "f" and "t" indicate, figures and tables respectively.

A	Crystal size reduction, 60
Acoustic cavitation, 121, 123	Cyanide ion, 267
mechanism involved in, 124	
Adsorption	D
capacities, 277	DIGDUV
process, 270f	3D crystal structure of, 247f
push-pull mechanism for, 270f	Dimethylammonium (DMA) ligands, 286
uptake, 274	Disease-causing biological organisms, 266
Alternating current (AC) voltage, 127	Ditopic carboxylate-based linker, 37
Anionic MOF framework, 149	Ditopic N-heterocyclic linkers, 44
Anionic organic linker, 36	Domestic effluent, 259
Arrhenius equation, 57	Drug delivery, 190
Arsenic removal, 280	Dyes
Atrazine, 274	adsorption capacities of, 273t
structure of, 275 <i>f</i>	removal, 269
В	E
Bath-type sonicator, 126, 128f	Earth's water reservoirs bar chart distribution
Bi-nodal edge-transitive networks, 280 <i>f</i>	258 <i>f</i>
Bio-degradability, 6	Electrochemical sensor, 268
Biomass utilization, 9	Electrostatic interactions, 277
Bio-MOFs, 205	Energy
BODWIC10, 233	efficient method, 291
BONNEY's crystal structure, 233	storage devices, 189
Brunauer-Emmett-Teller (BET), 162	Enthalpy process, 271
consistency criteria, 4	Evaporation method, 131
	Exogenous ligands, 76
C	Experimental variables, 126
CAJVOC	
3D crystal structure of, 249f	F
Carboxylate-based hexatopic linkers, 40	FAFSOY, 3D crystal structure of, 243f
COKBIQ	FAFSUE, 3D crystal structure of, 240f
3D crystal structure of, 238f	FENHIS, 3D crystal structure of, 237f
Coordination polymers, 162	FIMYAD, 3D crystal structure of, 248f
Copper	FIMYEH, 3D crystal structure of, 248f
based metal–organic frameworks, 80f	Flexible frameworks, 223
prolinate, 78	FOSYAP, 3D crystal structure of, 235f
threoninate, 78	
Covalent bonds, 227	G
CP-based material, 268	Gas-filled crevice 124

Gas-sorption testing, 183	Mechanochemical synthesis, 95
Green method, 306	Mechanochemistry, 95, 109
	Mercury removal, 282
Н	Metal coordination polymer, 229
Heavy metals removal, 280, 288	Metal-ligand coordination bond, 167
Heterogeneous catalyst, 213	Metal organic coordination networks
Hexatopic carboxylate-based linker, 40	(MOCNs), 266
HKUST-1, 202, 208	Metal-organic frameworks (MOFs), 8t, 12, 25,
Hydrostatic pressure, 124	26, 27, 32, 35, 52 <i>f</i> , 73, 94, 100, 121,
Hydrothermal	143, 159, 199, 227, 262, 303
approaches, 229	architecture, 143
experiments, 73	based heterogeneous catalyst, 86
methods, 74	based materials, 310
	based nano-composites, 106
	conventional synthesis of, 53, 131
Inductively coupled plasma (ICP), 282	drug storage and delivery in, 14
Industrial Revolution, 73	fabrication, 143
International Union of Pure and Applied	first-generation, 264
Chemistry (IUPAC), 2	framework, 143
Interplay-based metal—organic porous, 227	fundamentals of, 160
Ion- and liquid-assisted grinding method	green methods of, 5
(ILAG), 104	hydrogen storage, 5
Ionic liquids (ILs), 7, 144, 145 <i>f</i> , 154	hydrothermal synthesis of, 76
solvents, 155	industrial synthesis and application, 307
Ionothermal	magnetic properties of, 5
method, 146	materials, 159
synthesis, 146, 154	mechanochemical synthesis of, 93
Ionothermally synthesized MOFs, 154	pelletization or extrusion of, 309
Isoreticular metal-organic frameworks, 200 <i>f</i>	pollutants in wastewater, 266
structure of, 201f	preparation of, 199
Isoreticular metal-organic frameworks	in removal of wastewater pollutants, 269
(IRMOFs), 199, 202, 208	Schematic representation of, 262f
synthesis of, 202	second-generation, 264
topology development, 201	solubility, 159
topology development, 201	solubility of, 161
K	solvent-based synthesis, 5
Kinetically tuned dimensional augmentation	sonochemical synthesis of, 132
(KTDA), 172 <i>f</i>	synthesis, 96, 145, 221
(KIDA), 172j	synthesis of, 131
L	synthesis pathways, 143
_	third-generation, 264
Large-scale industrial procedures, 307	uses of soluble, 165
Layer-by-layer method, 131	for wastewater treatment, 257
Ligandto-metal charge transfer (LMCT), 250,	water-soluble, 161
252	X-ray diffraction analysis patterns, 162f
Light emission-sonoluminescence, 121	Metal–organic framework structures, 135f
Link-link interactions, 193 Liquid assisted grinding method (LAG), 10, 97,	Metal–organic porous CPs, 228
Elquid assisted grinding method (LAG), 10, 97,	Metal-to-ligand ratios, 114
	Methylchlorophenoxypropionic acid, 275
Luminescence sensor, 267	Microwave assisted metal-organic framework,
A4	282
M	Microwave-assisted solvothermal synthesis, 56f
Mechanochemical reactions, 97	Microwave-assisted synthesis, 64, 66

Microwave-assisted synthesis techniques, 55	Secondary building units (SBUs), 262
Mixed-linker coordination copolymers, 43	Sensing and electronic devices, 191
NI	Solvent-free synthesis, 9
N	Solvothermal approaches, 229
Natural zeolites, 227	Solvothermal methods, 74
Neat grinding, 98	Sonochemical method, 185
Non-conventional synthesis methods, 75f	Sonochemical processes, 129
Nonsteroidal anti-inflammatory (NSAID), 279	Sonochemical synthesis
NOVWON, 2D crystal structure of, 236f	advantage, 136
NuMat Technologies, 15	Sonochemistry, 121
Nutrients removal, 289	historical developments, 122
0	SONOPLUS HD 2200 sonicator, 133
O	State-to-ground state electronic transition, 250
Octatopic carboxylate-based linker, 41	Sulfonamide antibiotic, 277
Organic	Supercritical liquids, 6
ligands, 35	Surface-enhanced Raman spectroscopy
linkers, 36, 193	(SERS), 214
liquids, 143	Sustainable metal precursors, 10
Organic solvents, 187	Synthetic zeolites, 12, 227
n	•
P	T
Pharmaceutical products, 276	Teflon-lined bomb, 94
Phase-selective synthesis, 59	Thermal gravimetric analysis (TGA), 181
Physisorption isotherms, 3	Thermodynamics stability, 168
Pillar-layeredMOFs, 223	Thermodynamic stability of MOF, 167
Polar molecules, 56	
Polymorphs, 169	theWorld Health Organization (WHO), 259 TIMZIB, 3D crystal structure of, 242 <i>f</i>
Porosity	TMDSC method, 160
permanent, 228	
Porous coordination networks (PCNs), 29, 51,	Toxic agrochemicals removal, 274
221	Tritopic carboxylate-based linker, 38
Porous coordination polymers (PCPs), 25, 303	Two-coordination for mercury, 285f
Porous materials, 11, 12, 172	
Post-synthesis metathesis and oxidation, 171	U
Postsynthetic modification (PSM), 263	Ultrasonic
PUZWIS, 3D crystal structure of, 246f	baths, 126
PUZWOY, 3D crystal structure of, 247f	energy, 126
PXRD patterns, 185	irradiation, 137
0	probe, 127
Q	
QICSED, 3D crystal structure of, 239f	W
D	Warning signs, 130
R	Wastewater remediation strategies, 261
Radioactive substances removal, 290	Wastewater treatments, 264
Raman spectroscopy, 111, 112	Water-based coordination pillared-layer, 219
Reaction conditions, 61	Water-based metal-organic
REBJEO01, 3D crystal structure of, 249f	frameworks, 304 <i>f</i> , 305 <i>f</i>
REZFAG, 3D crystal structure of, 234f	future challenges for, 309
RIXBEI, 3D crystal structure of, 243f	present, 309
RIXMAP, 3D crystal structure of, 245f	Water-based MOFs, 308
	industrial applications of, 308
S	Water-based porous coordination network, 227
Scale-up procedures, 307	Water-based synthetic pathways, 306

Water-based synthetic routes, 306, 309	Z
advantages of, 306	Zeolites, 182t
Water based zeolitic imidazolate frameworks,	Zeolitic imidazole frameworks, 29, 180f, 182t,
189 <i>f</i>	185, 188 <i>f</i> , 191, 192, 202, 221, 272,
Water-based ZIFs, 187	306, 307
"Water Planet,", 257	composites, 190
Water stability of adsorbents (MOF), 159	mechanochemical synthesis of, 105
Water-stable MOF, 166	topologies of, 179
WEFTUZ01, 3D crystal structure of, 244f	Zinc-based metal-organic frameworks
WERPUH, 3D crystal structure of, 244f	(Zn-MOFs), 85
WIWGAM, 3D crystal structure of, 239f	Zinc chloride, 268
	Zirconium-based connectors, 82
X	Zirconium based MOFs, 278
X-ray diffraction, 112	
Xray diffraction (XRD) patterns, 133	
X-ray powder diffraction (XRD), 75	
X-ray scattering, 75	