Skip to main content
Log in

Materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber

Journal of Nanoparticle Research Aims and scope Submit manuscript

Cite this article

Abstract

The development of high-frequency devices has attracted more research interest in electromagnetic wave–absorbing materials having lightweight, low filler content, thin thickness, minimum reflection loss and broad absorption bandwidth. Nevertheless, none of the materials uses steel waste (mill scale) as a potential low-cost catalyst to synthesize carbon nanotubes (CNT) as an electromagnetic (EM) wave absorber. Hence, multiwalled carbon nanotubes loaded in epoxy resin with an increasing polymer composite thickness of 1 mm, 2 mm, and 3 mm were introduced in this study. With varying milling times of mill scale (4 h, 20 h and 40 h) as catalyst, as-synthesized carbon nanotubes were produced using the chemical vapour deposition (CVD) method. Two main phases (carbon and iron carbide) were obtained from the synthesized carbon nanotubes. The samples’ morphology was mostly straight like, spiral, twisted carbon and spring pasta-like structures. The two-dimensional (2D) network structure of as-synthesized CNT loaded into epoxy resin, extends the transmission route of EM wave being absorbed. Moreover, the ratio of ID/IG is consistent at around 1.0 attributed to defective structure or a lower graphitization degree. In addition, higher electrical resistivity in the sample indicates wider separation between CNTs allowing for better EM wave absorption. The as-synthesized carbon nanotubes that are utilized as filler with lightweight properties, improved the reflection loss approach to − 25 dB (10.5 GHz) for growth CNT catalyzed by mill scale milled for 20 h loaded into polymer matrix (GM20h/P) at thickness of 3 mm. As the thickness of the polymer composites increased from 1 to 3 mm, all composite samples reflected a loss peak closer to a lower frequency range. The results demonstrated that the EM wave absorption ability was improved to 99.9% by using nanometer size mill scale waste as a catalyst to grow carbon nanotubes and further used as an EM wave absorber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Malaysia)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Emerson WH (1973) Electromagnetic wave absorber and anechoic chambers through the years. IEEE Trans Antenn Propag 21(4):484–490. https://doi.org/10.1109/TAP.1973.1140517

    Article  Google Scholar 

  2. Liu X (2010) Study on microwave absorbing behavior of multi-walled CNTs. Mod Appl Sci 4(9):124–129. https://doi.org/10.5539/mas.v4n9p124

    Article  CAS  Google Scholar 

  3. Gao C, He X, Ye F, Wang S, Zang G (2021) Electromagnetic wave absorption and mechanical properties of CNTs@GN@Fe3O4/PU multilayer composite foam. Materials 14 (23) 7244, 1–16. https://doi.org/10.3390/ma14237244

  4. Qi XS, Yang Y, Zhong W, Deng Y, Au C, Du Y (2009) Large-scale synthesis, characterization and microwave absorption properties of carbon nanotubes of different helicities. J Solid State Chem 182(10):2691–2697. https://doi.org/10.1016/j.jssc.2009.07.036

    Article  CAS  Google Scholar 

  5. Ren F, Yu H, Wang L, Saleem M, Tian Z, Ren P (2014) Current progress on themodification of carbon nanotubes and their application in electromagnetic wave absorption. RSC Adv 4:14419–14431. https://doi.org/10.1039/C3RA46989A

    Article  CAS  Google Scholar 

  6. Zhan Y, Xia L, Yang H, Zhou N, Ma G, Zhao T, Huang X, Xong L, Qin C, Guangwu W (2021) Tunable electromagnetic wave absorbing properties of carbon nanotubes/carbon fiber composites synthesized directly and rapidly via an innovative induction heating technique. Carbon 175:101–111. https://doi.org/10.1016/j.carbon.2020.12.080

    Article  CAS  Google Scholar 

  7. Yanagi R, Segi T, Ito A, Ueno T, Hidaka K (2021) Carbon-nanotube-based ultralight materials for ultrabroadband electromagnetic wave shielding and absorption Jpn. J Appl Phys 60(8):087003. https://doi.org/10.35848/1347-4065/ac14a5

    Article  CAS  Google Scholar 

  8. Li Q, Zhang Z, Qi L, Liao Q, Kang Z, Zhang Y (2019) Towards the application of high frequency electromagnetic wave absorption by carbon nanostructures. Avanced Science 6(8) 1801057 1–23. https://doi.org/10.1002/advs.201801057

  9. Volder MD, Tawfick S, Baughman R, Hart A (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539. https://doi.org/10.1126/science.1222453

    Article  CAS  Google Scholar 

  10. Liu C, Fan Y, Liu M, Cong H, Cheng H, Dresselhaus MS (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286(5442):1127–1129. https://doi.org/10.1126/science.286.5442.1127

    Article  CAS  Google Scholar 

  11. González M, Crespo M, Baselgaa J, Pozuelo J (2016) Carbon nanotubes scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range. Nanoscale 8(20):10724–10730. https://doi.org/10.1039/c6nr02133f

    Article  Google Scholar 

  12. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200. https://doi.org/10.1038/nature04233

    Article  CAS  Google Scholar 

  13. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534. https://doi.org/10.1126/science.1158877

    Article  CAS  Google Scholar 

  14. Zhu Y, Murali S, Cai W, Li X, Suk J, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  15. Liu J, Rinzler AG, Dai H, Hafner J, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Macias FR, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280(5367):1253–1256. https://doi.org/10.1126/science.280.5367.1253

    Article  CAS  Google Scholar 

  16. Lin Y, Zhao F, Wu Y, Chen K, Xia Y, Li G, Prasad SKK, Zhu J, Huo L, Bin H, Zhang Z, Guo X, Zhang M, Sun Y, Gao F, Wei Z, Ma W, Wang C, Hodgkiss J, Bo Z, Inganäs O, Li Y, Zhan X (2017) Mapping polymer donors toward high-efficiency fullerene free organic solar cells. Adv Mater 29:1604155. https://doi.org/10.1002/adma.201604155

    Article  CAS  Google Scholar 

  17. Guo C, Li C (2011) A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance. Energy Environ Sci 4(11):4504–4507. https://doi.org/10.1039/C1EE01676H

    Article  CAS  Google Scholar 

  18. Bottari G, Torre GDL, Guldi DM, Torres T (2010) Covalent and noncovalent phtalocyanine-carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chem Rev 110:6768. https://doi.org/10.1021/cr900254z

    Article  CAS  Google Scholar 

  19. Zhao Y, Wu W, Li J, Xu Z, Guan L (2014) Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv Mater 26:5113. https://doi.org/10.1002/adma.201401191

    Article  CAS  Google Scholar 

  20. Dai H (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35(12):1035–1044. https://doi.org/10.1021/ar0101640

    Article  CAS  Google Scholar 

  21. Arepalli S (2004) Laser ablation process for single-walled carbon nanotube production. J Nanosci Nanotechnol 4(4):317–325. https://doi.org/10.1166/jnn.2004.072

    Article  CAS  Google Scholar 

  22. Öncel C, Yürüm Y (2006) Carbon nanotube synthesis via the catalytic CVD method: a review on the effect of reaction parameters. Fullerenes, Nanotubes, and Carbon Nonstructures 14:17–37. https://doi.org/10.1080/15363830500538441

    Article  CAS  Google Scholar 

  23. Danafar F, Fakhru’l-Razi A, Salleh MAM, Biak DRA, (2009) Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes—a review. Chem Eng J 155(1–2):37–48. https://doi.org/10.1016/j.cej.2009.07.052

    Article  CAS  Google Scholar 

  24. Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10(6):3739–3758. https://doi.org/10.1166/jnn.2010.2939

    Article  CAS  Google Scholar 

  25. Tessonnier JP, Su DS (2011) Recent progress on the growth mechanism of carbon nanotubes: a review. Chemsuschem 4(7):824–847. https://doi.org/10.1002/cssc.201100175

    Article  CAS  Google Scholar 

  26. Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21(40):15872–15884. https://doi.org/10.1039/C1JM12254A

    Article  CAS  Google Scholar 

  27. Journet C, Picher M, Jourdain V (2012) Carbon nanotube synthesis: from large-scale production to atom-by-atom growth. Nanotechnology 23(14):142001. https://doi.org/10.1088/0957-4484/23/14/142001

    Article  Google Scholar 

  28. Idris FM, Kaco H, Shafie MSE (2019) Recycling and utilization of mill scale to produce current smart electromagnetic absorbing material, Innovation for sustainability and green technology: degradation of inanimate forms. Penerbit USIM, Malaysia

    Google Scholar 

  29. Oddershede J, Nielsen K, Stahl K (2007) Using X-ray powder diffraction and principal component analysis to determine structural properties for bulk samples of multiwall carbon nanotubes. Z Kristallogr 222(3–4):186–192. https://doi.org/10.1524/zkri.2007.222.3-4.186

    Article  CAS  Google Scholar 

  30. Ryu H, Singh BK, Bartwal KS (2008) Synthesis and optimization of MWCNTs on Co-Ni/MgO by thermal CVD, Adv. Condens. Matter Phys. 971457-971462. https://doi.org/10.1155/2008/971457

  31. Somiya S (2013) Handbook of advanced ceramics: materials, applications, processing, and properties. Elsevier, Netherlands

    Google Scholar 

  32. Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119(2):105–118. https://doi.org/10.1016/j.mseb.2005.02.046

    Article  CAS  Google Scholar 

  33. Lambin P, Loiseau A, Culot C, Biro LP (2002) Structure of carbon nanotubes probed by local and global probes. Carbon 40(10):1635–1648. https://doi.org/10.1016/S0008-6223(02)00006-4

    Article  CAS  Google Scholar 

  34. Wang Z, Hui C (2003) Electron microscopy of nanotube. Springer, Berlin

    Book  Google Scholar 

  35. Tessonnier JP, Rosenthal D, Hansen TW, Hess C, Schuster ME, Blume R, Girgsdies F, Pfander N, Timpe O, Su DS, Schlögl R (2009) Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon 47(7):1779–1798. https://doi.org/10.1016/j.carbon.2009.02.032

    Article  CAS  Google Scholar 

  36. Musso S, Giorcelli M, Pavese M, Bianco S, Rovere M, Tagliaferro A (2008) Improving macroscopic physical and mechanical properties of thick layers of aligned multiwall carbon nanotubes by annealing treatment. Diamond Relat Mater 17(4–5):542–547. https://doi.org/10.1016/j.diamond.2007.10.034

    Article  CAS  Google Scholar 

  37. McCaldin S, Bououdina M, Grant DM, Walker GS (2006) The effect of processing conditions on carbon nanostructures formed on an iron-based catalyst. Carbon 44(11):2273–2280. https://doi.org/10.1016/j.carbon.2006.02.030

    Article  CAS  Google Scholar 

  38. Dasa R, Hamid SBA, Alia ME, Ramakrishna S, Yongzhib W (2015) XRD pattern same as also being reported by carbon nanotubes characterization by X-ray powder diffraction – a review. Curr Nanosci 11(1):23–35. https://doi.org/10.2174/1573413710666140818210043

    Article  Google Scholar 

  39. Pawlyta M, Łukowiec D, Danikiewicz ADD (2012) Characterisation of carbon nanotubes decorated with platinum nanoparticles. J Achievements in Mater Manufactur Eng 53(2):67–75

    Google Scholar 

  40. Motojima S, Hoshiya S, Hishikawa Y (2003) Electromagnetic wave absorption properties of carbon microcoils /PMMA composite beads in W bands. Carbon 41(13):2658–2660. https://doi.org/10.1016/S0008-6223(03)00292-6

    Article  CAS  Google Scholar 

  41. Zhao DL, Shen ZM (2008) Preparation and microwave absorption properties of carbon nanocoils. Mater Lett 62(21–22):3704–3706. https://doi.org/10.1016/j.matlet.2008.04.032

    Article  CAS  Google Scholar 

  42. Tang NJ, Zhong W, Au CT, Yang Y, Han MG, Lin KL, Du YWJ (2008) Synthesis, microwave electromagnetic, and microwave absorption properties of twin carbon nanocoils. Phys Chem C 112(49):19316–19323. https://doi.org/10.1021/jp808087n

    Article  CAS  Google Scholar 

  43. Fejes D, Hernadi K (2010) A review of the properties and CVD synthesis of coiled carbon nanotubes. Materials 3(4):2618–2642. https://doi.org/10.3390/ma3042618

    Article  CAS  Google Scholar 

  44. Dunlap BI (1992) Connecting carbon tubules. Phys Rev B 46(3):1933–1936. https://doi.org/10.1103/PhysRevB.46.1933

    Article  CAS  Google Scholar 

  45. Dunlap BI (1994) Relating carbon tubules. Phys Rev B 49(8):5643–5650. https://doi.org/10.1103/PhysRevB.49.5643

    Article  CAS  Google Scholar 

  46. Hikita M, Bradford RL, Lafdi K (2014) Growth and properties of carbon microcoils and nanocoils. University Crystals 4(4):466–489. https://doi.org/10.3390/cryst4040466

    Article  CAS  Google Scholar 

  47. Chiu SC, Yu HC, Li YY (2010) High electromagnetic wave absorption performance of silicon carbide nanowires in the Gigahertz range. J Phys Chem C 114(4):1947–1952. https://doi.org/10.1021/jp905127t

    Article  CAS  Google Scholar 

  48. Che BD, Nguyen BQ, Nguyen LTT, Nguyen HT, Nguyen VQ, Le TV, Nguyen NH (2015) The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites. Chem Cent J 9(10):1–13. https://doi.org/10.1186/s13065-015-0087-2

    Article  CAS  Google Scholar 

  49. Qin F, Brosseau C (2012) A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys 111(6):061301. https://doi.org/10.1063/1.3688435

    Article  CAS  Google Scholar 

  50. Gojny FJ, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6):2036–2045. https://doi.org/10.1016/j.polymer.2006.01.029

    Article  CAS  Google Scholar 

  51. Zeng Y, Liu P, Du J, Zhao L, Ajayan PM, Cheng HM (2010) Increasing the electrical conductivity of carbon nanotube/polymer composites by using weak nanotube–polymer interactions. Carbon 48(12):3551–3558. https://doi.org/10.1016/j.carbon.2010.05.053

    Article  CAS  Google Scholar 

  52. Aguilar JRQ, Avilés F (2010) Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. Express Polym Lett 4(5):292–299. https://doi.org/10.3144/expresspolymlett.2010.37

    Article  CAS  Google Scholar 

  53. Sun X, He J, Li G, Tang J, Wang T, Guo Y, Xue H (2013) Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J Mater Chem C 1(4):765–777. https://doi.org/10.1039/C2TC00159D

    Article  CAS  Google Scholar 

  54. Zhu H, Bai Y, Liu R, Lung N, Qi Y (2011) Microwave absorption properties of MWCNT-SiC composites synthesized via a low temperature induced reaction. J AIP Adv. 1 032140 (3) :1–7. https://doi.org/10.1063/1.3630126.

  55. Kong L, Yin X, Zhang Y, Yuan X, Li Q, Ye F, Cheng L, Zhang L (2013) Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J Phys Chem C 117(38):19701–19711. https://doi.org/10.1021/jp4058498

    Article  CAS  Google Scholar 

  56. Hiura H, Ebbesen TW, Tanigaki K, Takahashi H (1993) Raman studies of carbon nanotubes. Chem Phys Lett 202(6):509–512. https://doi.org/10.1016/0009-2614(93)90040-8

    Article  CAS  Google Scholar 

  57. Cheng J, Zhang X, Luo Z, Liu F, Ye YY, W, Liu W, Han Y, (2006) Carbon nanotube synthesis and parametric study using CaCO3 nanocrystals as catalyst support by CVD. Mater Chem Phys 95(1):5–11. https://doi.org/10.1016/j.matchemphys.2005.04.043

    Article  CAS  Google Scholar 

  58. Cheng T, Fang Z, Zou G, Hu Q, Hu B, Yang X, Zhang Y (2006) A one-step single source route to carbon nanotubes. Bull Mater Sci 29(7):701–704

    CAS  Google Scholar 

  59. Hussein MZ, Zakarya SA, Sarijo SH, Zainal Z (2012) Parameter optimisation of carbon nanotubes synthesis via hexane decomposition over minerals generated from Anadara granosa shells as the catalyst support. J Nanomater 525616:1–9. https://doi.org/10.1155/2012/525616

    Article  CAS  Google Scholar 

  60. Sun GB, Dong BX, Cao MH, Wei BQ, Hu CW (2011) Hierarchical dendrite-like magnetic materials of Fe3O4, gamma-Fe2O3, and Fe with high performance of microwave absorption. Chem Mater 23(6):1587–1593. https://doi.org/10.1021/cm103441u

    Article  CAS  Google Scholar 

  61. Sun KJ, Wincheski RA, Park C (2008) Magnetic property measurements on single wall carbon nanotube polyimide composites. J Appl Phy 103(2). https://doi.org/10.1063/1.2832616

  62. Wincheski B, Kim JW, Sauti G, Wainwright E, Williams P, Siochi EJ (2015) Nondestructive evaluation techniques for development and characterization of carbon nanotube based superstructures., 41st Annual review of progress in quantitative nondestructive evaluation, 34, 1–9. https://doi.org/10.1063/1.4914731

  63. Olmedo L, Hourquebie P, Jousse F (1997) H.S. Nalwa (Ed.), Handbook of organic conductive molecules and polymers, John Wiley and Sons Ltd., Chichester.

  64. Choudhary V, Gupta A (2011) Polymer / carbon nanotube nanocomposites, In Tech.

  65. Barrau S, Demont P, Perez E, Peigney A, Laurent C, Lacabanne C (2003) Effect of palmitic acid on the electrical conductivity of carbon nanotubes-epoxy resin composites. Macromolecules 36(26):9678–9680. https://doi.org/10.1021/ma030399m

    Article  CAS  Google Scholar 

  66. Brosseau C, Beroual A, Boudida A (2000) How do shape anisotropy and spatial orientation of the constituents affect the permittivity of dielectric heterostructures? J Appl Phys 88:7278–7288. https://doi.org/10.1063/1.1321779

    Article  CAS  Google Scholar 

  67. Yazid AF, Mukhtar H, Nasir R, Mohshim DF (2022) Incorporating carbon nanotubes in nanocomposite mixed-matrix membranes for gas separation: a review. Membranes 12(589):1–20. https://doi.org/10.3390/membranes12060589

    Article  CAS  Google Scholar 

  68. Gonzalez-Domínguez JM, Maser W, Benito A, et al. (2008) Carbon nanotubes dispersion towards polymer integration. NanoSpain2008, Braga, Portugal.

  69. Inam F, Peijs T (2007) Re-agglomeration of carbon nanotubes in two-part epoxy system; influence of the concentration. Proceedings of the 5th International Bhurbhan Conference on Applied Science and Technology, Islamabad, Pakistan.

  70. Michielssen E, Sajer JM, Ranjithan S, Mittra R (1993) Design of lightweight, broad-band microwave absorbers using genetic algorithms. IEEE Trans Microw Theory Tech 41(6):1024–1031. https://doi.org/10.1109/22.238519

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the Ministry of Higher Education Malaysia for financial support through Fundamental Research Grant Scheme (FRGS/1/2020/STG05/USIM/02/3) (USIM/FRGS/KGI/KPT/52020) and Long-Term Research Grant Scheme (LRGS/B-U/2013/UPNM/Defence & Security-P2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadzidah Mohd Idris.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd Idris, F., Amin Matori, K., Ismail, I. et al. Materials’ characterization and properties of multiwalled carbon nanotubes from industrial waste as electromagnetic wave absorber. J Nanopart Res 24, 244 (2022). https://doi.org/10.1007/s11051-022-05625-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05625-x

Keywords

Navigation