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ABSTRACT 

Multiwalled carbon nanotubes-Carbon Fiber (MWCNT–CF/) epoxy laminated composites 

are widely used in many applications, and electrophoretic deposition (EPD) is a 

hybridisation method that is often used. This research focuses on improving the technique 

by optimising the input parameters to obtain composites with enhanced tensile properties. 

Various studies have utilized the EPD method, but there hardly any study utilized the water-

methanol mixture as the medium. This study showed that the input parameters (volume ratio 

of suspension medium, deposition voltage, and time) influenced the responses of the research 

(tensile strength and Young’s modulus). Firstly, the optical observation showed good 

distribution of MWCNTs throughout the medium. Secondly, the analyses of Fourier 

Transform Infra-Red (FTIR), Scanning Electron Microscopy (SEM), and tensile properties 

demonstrated that the input factors directly influenced the composites. Thirdly, the ideal 

factors that correspond to the desired responses were obtained through the optimization. For 

the first design of experiment (DoE) (0% water, 100% methanol and 100% water,0% 

methanol), the optimum conditions were a volume ratio of 99.99% water, a voltage of 20V, 

and time of 8.88 minutes, producing maximum tensile strength and young’s modulus of 

7.983 N/mm2 and 268.558 N/mm2, respectively. For the second DoE (20% water,80% 

methanol and 80% water, 20% methanol), tensile strength and young’s modulus of 7.2766 

N/mm2 and 266.78 N/mm2, respectively, were achieved when the ideal conditions were: 

volume ratio of 79.99 % water, voltage of 20V, and time of 5.22 minutes.  

Keywords: MWCNTs, CF, epoxy, EPD, tensile properties 
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Pemendapan Electroforetik Karbon Nanotiub pada Komposit Berlapis Gentian Karbon: 

Kesan Media Ampaian, Voltan dan Masa Pemendapan 

ABSTRAK 

“Multiwalled “Karbon Nanotiub-Gentian Karbon (MWCNT–CF) epoksi komposit 

berlamina digunakan dalam banyak aplikasi, dan pemendapan elekrtoforetik (EPD) ialah 

kaedah hibridisasi yang kerap digunakan. Kajian ini berfokuskan peningkatan teknik 

dengan mengoptimum parameter input bagi mendapatkan komposit dengan sifat tegangan 

dipertingkat. Pelbagai kajian telah menggunakan EPD, tetapi hampir tiada kajian 

menggunakan campuran air-metanol sebagai media. Kajian ini menunjukkan bahawa 

parameter input (nisbah isipadu medium ampaian, voltan dan masa pemendapan) 

mempengaruhi respon kajian (kekuatan tegangan dan modulus “Young”). Pertama, 

pemerhatian optikal menunjukkan pengedaran MWCNTs yang bagus di keseluruhan 

medium. Kedua, analisis spektroskopi inframerah fourier transformasi (FTIR), 

pengimbasan mikroskop electron (SEM) dan sifat tegangan menunjukkan bahawa faktor 

input mempengaruhi komposit secara langsung. Ketiga, faktor ideal yang sepadan dengan 

respon diingini diperolehi daripada pengoptimuman. Bagi desain eksperimen (DoE) 

pertama (0% air,100% methanol dan 100% air,0% metanol), kondisi optimum ialah nisbah 

isipadu 99.99% air, voltan 20V, dan masa 8.88 minit, menghasilkan kekuatan tegangan dan 

modulus “Young” maksima 7.983N/mm2 dan 268.558N/mm2, masing-masing. Bagi DoE 

kedua (20% air,80% methanol dan 80% air,20% metanol), kekuatan tegangan dan modulus 

“Young” 7.2766N/mm2dan 266.78 N/mm2, masing–masing, diperolehi apabila keadaan 

ideal: nisbah isipadu 79.99% air, voltan 20V, dan masa 5.22 minit.  

Kata kunci: MWCNTs, CF, Epoksi, EPD, Sifat Tegangan 
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CHAPTER 1  

INTRODUCTION 

1.1 Background of study 

Carbon fiber (CF)/epoxy composite, also known as carbon fiber–reinforced polymer 

composites (CFRPs), has been used extensively in fields such as automotive, aerospace, 

marine, and energy to replace conventional metal materials. High strength and stiffness 

combined with moderately low density have increased the demand for CFRPs in the 

industries (Rodríguez-González & Rubio-González, 2019). The interfacial interactions of 

the CFs and epoxy matrix greatly influenced the performance of CFRPs, especially their 

mechanical properties (Park & Park, 2020). However, interaction between the matrix and 

fiber for CF and resin epoxy is not favored as the CF surface is non–polar while the epoxy 

resins are polar (Keyte et al., 2019). Additionally, CF surfaces that are chemically inert, 

hydrophobic, and intrinsically smooth have caused low interfacial bonding strength between 

the CF and the polymer matrix (Yao et al., 2018). Hence, the modification must be done at 

the fibre surface to overcome the CF's inertness and obtain strong fiber/matrix interfacial 

adhesion (Salahuddin et al., 2021). 

Studies have shown that the CFRPs’ interfacial properties can be improved by 

introducing carbon nanotubes (CNTs) onto the reinforcing CF (Sheth et al., 2020). Owing 

to their excellent mechanical properties, the addition of CNT may effectively enhance the 

CF–matrix interaction (Moaseri et al., 2016). In addition, the CFs' surface roughness is 

improved with the presence of CNT and subsequently increases the CF–matrix interfacial 

adhesion (Zakaria et al., 2020a). Not only taking advantage of the excellent properties of 
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CNTs, but the reinforced FRP material also maintained the superiority of the conventional 

fiber reinforcements (J. Li et al., 2021).  

 CNT-CF hybrids can be fabricated via several methods such as spray coating, 

chemical vapor deposition (CVD), electrophoretic deposition (EPD), dip coating, etc. Then, 

the nanoparticles are successfully deposited or attached to the CF surface. Among these 

methods, EPD has several advantages compared to the other techniques, which allowed this 

method to be used for CF surface modification (Yao et al., 2018). It is essential to use stable 

suspension media throughout the EPD process to ensure that the particles are dispersed 

stably (Chavez-Valdez et al., 2013). Water is commonly used in the EPD process for several 

reasons: cost effective, low requirement of electric field, easy to regulate throughout the 

process, and environmentally compatible (Ervina et al., 2019). Despite that, water 

electrolysis may occur when high voltage is applied in the process, which compromises the 

depositions’ quality. Organic solvents such as alcohol are used to overcome the issue. 

However, a high applied voltage is needed for pure organic solvents. Apart from that, their 

particle mobility is low due to the little electric charge on the particles. It can be overcome 

by combining organic solvent and water as the solvent for the EPD process (Ouedraogo & 

Savadogo, 2013). 

 Table 1.1 lists some of the previous works in which EPD was used to deposit 

materials and their limitation in comparison to this research study. Based on the articles and 

previous works related to EPD, the number of investigations into the usage of mixture 

suspension medium, especially those involving the usage of methanol and water for the 

MWCNT deposition using the EPD method, is still relatively low. Therefore, this huge 

research gap in working with a methanol-water mixture suspension medium that had not yet 

been highlighted gives the researcher an opportunity to makes improvements in this area of 
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study. Not only can the issue of the MWCNTs’ stability in medium with various ratios be 

resolved, but the impact of the EPD parameters on the tensile properties of composites can 

also be resolved. Apart from that, the optimized values for the input parameters could also 

be obtained. This study investigate the effects of mixture suspension medium for the EPD 

process in enhancing the tensile properties of the composites. 

 This study is done in combination with the Response Surface Methodology (RSM) 

paired with the central composite design (CCD) to help optimize the obtained data. The 

interaction of the parameters used in the research was observed and optimized using RSM. 

Combining mathematical and statistical methods, RSM was able to build models by 

evaluating the effects of multiple independent variables to find the best value for each 

variable and get good results (Breig & Luti, 2021). 

Table 1.1:  Previous works related to EPD, and their limitation compared to this study  

 Author (s) Brief description of parameter 

studied in the article 

Limitation/Gap 

compared to this study 

1 J.Guo et al. (2012) CNT/CF hybrid materials 

prepared using ultrasonically 
assisted EPD by using deionized 
water as medium. 

Parameter of EPD: 20V for 15 
minutes 

Only single solvent is 

used (Deionized water) 

Only single deposition 

voltage and time 

2 Li et al. (2013) Coating of two different CF with 

two types of functionalized 
MWCNTs using aqueous 
suspension deposition method in 
deionized water as medium. 

Parameter of deposition: 20 
minutes; with and without 

additional of surfactant. 

Single solvent used 

(Deionized water) 

Used different types of 

deposition (no electric 
field applied) 

Only one immersion 
time 
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Table 1.1 continued 

3 Cordero-Arias et al 
(2013) 

Chitosan composite coating using 
titania (n-TiO2) nanoparticles by 
EPD using ethanol-water mixture 

as medium. 

Parameter of EPD: Voltage (2 to 

50V), time (15s to 5 minutes) 

Different types of 
materials of deposition 

Uses trial-and-error 
approach for parameter, 
i.e., ratio of medium, 

deposition voltage and 
time (wide range of 
parameter’s value) 

4 Moaseri et al. (2016) Effect of electrostatic repulsion of 
MWCNT-CF hybrid epoxy 
composite on the mechanical 
properties using ethanol as 

medium 

Parameter of EPD: 10V for 20 

minutes 

Using single solvent 
(Ethanol) 

Fixed/ single deposition 
voltage and time 

Presence of electrostatic 
during molding 

5 C.Xiao et al. (2018) CF coated with MWCNTs using 
aqueous suspension deposition 
method in deionized water as 

medium. 

Parameter of deposition: 20 

minutes 

Single solvent used 
(Deionized water) 

Used different types of 
deposition (no electric 
field applied) 

Only one immersion 
time 

6 Ervina et al. (2019) EPD of MWCNT onto CF using 
deionized water, and testing of 
colloidal stability of MWCNT in 

medium (with and without 
presence of voltage) 

Parameter of EPD: Voltage (10 to 
60V), time (3 to 30 minutes) 

Only used single solvent 
(deionized water) 

Wide range of 
deposition voltage and 
time. 

More focus on the 
colloidal stability of 

suspension medium 

 

 Based on the table, it was proven that there is a huge gap in the study of the use of 

mixture suspension medium in depositing MWCNTs via the EPD process, providing 

opportunities for researchers to find out more about this area of study. 
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1.2 Research Problems 

Firstly, the study involving the EPD process commonly utilized water as a single 

suspension medium, as shown in Table 1.1. However, water electrolysis might occur during 

the process when the voltage used is too high, which affects the deposition’s quality 

(Ouedraogo & Savadogo, 2013). This will directly impact the properties of the composites 

produced. Hence, using a mixture of alcohol and water as an EPD medium is encouraged, as 

alcohol by itself requires a high deposition voltage (Ouedraogo & Savadogo, 2013). As a 

result, in this study, methanol and water are used as both a single suspension medium and a 

mixture suspension medium to compare the tensile properties of composites prepared using 

these mediums. 

Secondly, when alcohol is used in the EPD process, ethanol is chosen as the medium. 

However, the ideal suspension medium had a low viscosity but a high dielectric constant, 

which is demonstrated by another type of alcohol, namely methanol. In a book chapter by 

Amrollahi et al., methanol was listed as having better properties as a suspension medium 

compared to ethanol (Amrollahi et al., 2016). Because of that, methanol was selected as the 

organic solvent for the study in order to find out its capability as an EPD suspension medium. 

Thirdly, most of the previous studies, as shown in Table 1.1, are either using trial-

and-error approaches or using repetitive values for the parameters in the study. The tabulated 

data is commonly generated based on previous studies. For instance, in the study by Li et al. 

in 2013, Moaseri et al. in 2016, and Xiao et al. in 2018, all three studies used 20 minutes of 

deposition time. Meanwhile, a study in 2013 by Cordero-Arias et al. used the trial-and-error 

method for their selection of parameters values. Hence, for this reason, in the study, RSM is 

paired with CCD to give more targeted parameters values as well as save time in terms of 

the experimental runs to be done. 


