

The Multifunctionalised TiO₂/Ag/Cellulose Acetate Photocatalyst with enhanced Photodegradation and Antibacterial Activities

Feniellia Diwvya Anak Kutiang

Master of Science 2023

The Multifunctionalised TiO₂/Ag/Cellulose Acetate Photocatalyst with enhanced Photodegradation and Antibacterial Activities

Feniellia Diwvya Anak Kutiang

A thesis submitted

In fulfillment of the requirements for the degree of Master of Science

(Environmental Chemistry)

Faculty of Resource Science and Technology UNIVERSITI MALAYSIA SARAWAK 2023

DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Malaysia Sarawak. Except where due acknowledgements have been made, the work is that of the author alone. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Month

Signature

Name:

Feniellia Diwvya Anak Kutiang

Matric No.: 20020018

Faculty of Resource Science and Technology

Universiti Malaysia Sarawak

Date : 16th October 2023

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my research supervisor, Assoc. Prof. Dr. Devagi a/p Kanakaraju for her guidance, encouragement and support throughout this research. In addition, the comments and suggestions from my co-supervisor, Assoc. Prof. Dr. Lim Ying Chin (Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM)). The assistance and advice for antibacterial studies by Dr. Micky Ak Vincent are deeply appreciated as well.

My heartiest gratitude to my parents, Kutiang Jeroh and Rashey Perumal, my grandparents, Perumal A/L Maniandi and Dulang Sanyut as well as my siblings, Raffiaella, Cyena and Clansiana for the encouragement and moral support. I would like to extend my gratitude to friends from Kuching Archdiocesan Youth Commission, KAYC as well, for their encouragement and support.

My sincere thanks to all UNIMAS staff for their excellent skills and services which have been tremendously helpful throughout this research. I am grateful to all my friends for their continuous support and technical suggestions throughout my study. I would like to thank the Ministry of Higher Education, Malaysia for supporting this study under the Fundamental Research Grant Scheme [FRGS/1/2019/STG07/UNIMAS/02/3]. Finally, I would like to take this chance to thank all that have been involved directly or indirectly in my studies.

ABSTRACT

Titanium dioxide, TiO₂ photocatalyst has been greatly employed in the photocatalytic treatment of wastewater due to its excellent properties. The combined effects of doping and the inclusion of support material such as cellulose acetate (CA) can enhance the photocatalytic efficiency of TiO₂ photocatalysts. In this study, TiO₂ was synthesised via a green solvent template, ionic liquid, IL (1-butylimidazolium acetate) to produce high surface area photocatalyst and combined with silver (Ag) dopant to improve its photocatalytic performance in visible light. CA was added as support in the photocatalyst for the degradation of multiple dyes namely methylene blue (MB), methyl orange (MO) and rhodamine B (RhB). This study investigated the effect of different volumes of IL (0.5 mL -5.0 mL) used in the synthesis of TiO_2 via the sol-gel method, the effect of different Ag concentrations (0.5 wt% - 5.0 wt%) and CA concentrations (0.5 wt% - 5 wt%) on the photocatalytic performance of TiO₂/Ag. The photocatalytic ability of TiO₂-1/Ag 2 %/CA 0.5% photocatalyst under various operating parameters such as photocatalyst dosage, initial dye concentration, initial pH and effect of radical scavenger was investigated. The recyclability of TiO₂-1/Ag 2 %/CA 0.5% was also determined. The characterisation of TiO₂-1/Ag 2 %/CA 0.5% photocatalyst via X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Energy Dispersive X-Ray (EDX), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) analysis revealed the presence of Ag and CA on the surface of TiO₂. Brunauer Emmett Teller (BET) surface area analysis has shown that the inclusion of IL in the synthesis greatly increased the surface area of TiO₂ from 130.9 m²/g to 174.8 m²/g. Based on the preliminary experiments, 1.0 mL of IL, 0.5 wt% of Ag and 2.0 wt% of CA contributed to the highest photocatalytic degradation of TiO₂/Ag/CA photocatalyst and were chosen for further studies. TiO₂/Ag/CA (IL: 3 mL, Ag: 2 wt% & CA: 0.5%) showed the highest MB dye removal in individual and mixed dye conditions (MB, MO and RhB) after 120 min of treatment time upon UVA irradiation (λ = 365 nm) under solution with pH 7.4. The antibacterial activity of TiO₂-1/Ag 2 %/CA 0.5% investigated via disc diffusion method against *Escherichia coli* (*E. coli*) and *Staphylococcus aureus* (*S. aureus*) bacteria demonstrated inhibition zones, indicating antibacterial effectiveness of TiO₂-1/Ag 2 %/CA 0.5%. As wastewater treatment requires the removal of chemical pollutants and unwanted biological components, TiO₂-1/Ag 2 %/CA 0.5% photocatalyst depicted in this study can be a promising degradative tool to meet this dual goal with high efficiency.

Keywords: Green materials, silver, photocatalysis, mixed dyes, wastewater

Fotopemangkin TiO₂/Ag/Selulosa Asetat Pelbagai Fungsi dengan Peningkatan Aktiviti Fotodegradasi dan Antibakteria

ABSTRAK

Fotopemangkin titanium dioksida, TiO₂ sering digunakan dalam rawatan air kumbahan disebabkan oleh ciri-cirinya yang sangat baik. Gabungan logam dengan semikonduktor dan bahan sokongan seperti selulosa asetat, CA menunjukkan peningkatan kecekapan yang ketara dalam fotopemangkin TiO₂. Dalam kajian ini, TiO₂ disintesis menggunakan pelarut hijau, cecair ionik (1-butylimidazolium acetate), untuk menghasilkan fotopemangkin yang berpermukaan luas dan digabungkan dengan perak (Ag) sebagai dopan untuk memperbaiki aktiviti fotodegradasi dalam cahaya tampak. CA telah ditambah sebagai sokongan dalam fotopemangkin untuk penyingkiran pelbagai pewarna fabrik iaitu metilena biru (MB), metil jingga (MO) dan rodamina B (RhB). Kajian ini menyiasat kesan isi padu cecair ionik yang berbeza (0.5 mL - 5.0 mL) dalam sintesis TiO₂ melalui kaedah sol-gel, kesan kepekatan Ag yang berbeza (0.5 wt% - 5.0 wt%) dan kesan kepekatan CA (0.5 wt% -5 wt%) ke atas prestasi fotopemangkin TiO₂/Ag. Aktiviti fotodegradasi TiO₂/Ag/CA dalam pelbagai keadaan seperti dos fotopemangkin, kepekatan asal pewarna fabrik, pH asal dan kesan penggaut radikal telah dikaji. Kebolehkitaran semula TiO₂/Ag/CA juga telah ditentukan. Pencirian fotopemangkin TiO₂/Ag/CA melalui analisis XRD, FTIR, EDX, SEM dan TEM menunjukkan kehadiran Ag dan CA dalam TiO₂. BET menunjukkan bahawa penggunaan cecair ionik dalam sintesis fotopemangkin TiO₂ berjaya meningkatkan luas permukaannya daripada 130.9 m²/g kepada 174.8 m²/g. Berdasarkan kajian awal, TiO₂/Ag/CA dengan 1.0 mL cecair ionik, 0.5 wt% Ag dan 2.0 wt% CA menyumbang kepada aktiviti fotodegradasi tertinggi dan telah dipilih untuk kajian selanjutnya. TiO₂/Ag/CA (cecair ionik: 3 mL, Ag: 2% wt% dan CA: 0.5% wt%) menunjukkan penyingkiran MB adalah

tertinggi apabila wujud secara individu dan keadaan campuran (MB, MO dan RhB) dalam masa 120 minit di bawah penyinaran UVA ($\lambda = 365$ nm) pada pH 7.4. Aktiviti antibakteria TiO₂/Ag/CA yang dikaji melalui kaedah resapan cakera terhadap bakteria E. coli dan S. Aureus menunjukkan zon perencatan, membuktikan keberkesanan antibakteria TiO₂/Ag/CA. Fotopemangkin TiO₂/Ag/CA yang digambarkan dalam kajian ini menunjukkan kecekapan yang tinggi dalam aktiviti fotodegradasi dan antibakteria. Hasil kajian ini menunjukkan kemampuan fotopemangkin TiO₂/Ag/CA dalam memenuhi matlamat dwi rawatan air kumbahan iaitu penyingkiran bahan pencemar kimia dan komponen biologi yang tidak diingini.

Kata kunci: Bahan hijau, perak, pemfotomangkinan, campuran pewarna fabrik, air kumbahan

TABLE OF CONTENTS

		Page
DECI	LARATION	i
ACK	NOWLEDGEMENT	ii
ABST	TRACT	iii
ABST	FRAK	V
TABI	LE OF CONTENTS	vii
LIST	OF TABLES	xi
LIST	OF FIGURES	xii
LIST	OF ABBREVIATIONS	xiv
CHA	PTER 1 INTRODUCTION	1
1.1	Study Background	1
1.2	Problem Statement	4
1.3	Objectives	6
CHA	PTER 2 LITERATURE REVIEW	7
2.1	Titanium Dioxide, TiO ₂	7
2.1.1	Crystalline Structure of TiO ₂ Photocatalyst	7
2.1.2	Mechanism of TiO ₂ Photocatalysis	10
2.1.3	Limitations of TiO ₂ Photocatalyst	11

2.2	Surface Modification of TiO ₂ via Doping	11
2.2.1	Doping of TiO ₂ with Non-Metal	12
2.2.2	Doping of TiO ₂ with Metal	14
2.3	Silver, Ag as Dopant	16
2.3.1	Synthesis of Ag-Doped TiO ₂	18
2.4	Modifications of Ag-Doped TiO ₂ with Green Materials	24
2.4.1	Addition of Plant-Based Supports	27
2.4.2	Addition of Ionic Liquids, IL	28
2.5	Parameters Affecting The Performance of Ag-Doped TiO ₂	30
2.5.1	Photocatalyst Dosage	30
2.5.2	Initial Concentration of Pollutant	31
2.5.3	Initial pH	32
2.6	Dyes	33
2.6.2	Methylene Blue, MB	37
2.6.3	Methyl Orange, MO	38
2.6.4	Rhodamine B, RhB	39
2.7	Antibacterial Properties of TiO2-based Materials	40
CHAPTER 3 MATERIALS AND METHODS 43		43
3.1	Materials and Reagents	43
3.2	Synthesis of TiO ₂ Photocatalyst	43

3.3	Synthesis of TiO ₂ /Ag Photocatalyst	45
3.4	Synthesis of TiO ₂ /Ag/CA Photocatalyst	46
3.5	Characterisation of Photocatalysts	46
3.6	Determination of Point Zero Charge of TiO ₂ /Ag/CA	47
3.7	Photocatalytic Degradation Experiments	47
3.8	Recyclability Study	49
3.9	Antibacterial Study	50
CHAI	PTER 4 RESULTS AND DISCUSSION	52
4.1	Characterisation of TiO ₂ /Ag/CA Photocatalyst	52
4.1.1	XPS Analysis	52
4.1.2	XRD Analysis	55
4.1.3	FTIR Analysis	56
4.1.4	SEM and TEM Analysis	58
4.1.5	EDX Analysis	61
4.1.6	UV-DRS Analysis	62
4.1.7	BET Analysis	63
4.1.8	The pH Value at the Point Zero Charge of (pH_{pzc}) of TiO ₂ /Ag/CA	66
4.2	Preliminary Experiments	67
4.2.1	Effect of Ionic Liquid and Dosage	67
4.2.2	Effect of Ag Concentration	70

4.2.3	Effect of CA Concentration	71	
4.3	Control Experiments	73	
4.4	Parameters Affecting the Photocatalytic Performance of TiO2-1/Ag 2%/CA		
	0.5%	75	
4.4.1	Effect of Dosage	75	
4.4.2	Effect of MB Concentration	76	
4.4.3	Effect of pH	77	
4.4.4	Effect of Radical Scavenger	77	
4.4.5	Effect of Individual and Mixed Dyes	80	
4.5	Recyclability Study	85	
4.6	Antibacterial Study	87	
4.7	Proposed Mechanism of Degradation	90	
CHAI	PTER 5 CONCLUSION AND RECOMMENDATIONS	93	
5.1	Conclusion	93	
5.2	Recommendations	94	
REFERENCES 96			
APPE	APPENDICES 137		

LIST OF TABLES

Page

Table 2.1	Properties of different phases of TiO ₂	9
Table 2.2	Common methods utilised in the synthesis of TiO_2/Ag single-doped and co-doped materials	21
Table 2.3	The properties of MB, MO and RhB Dyes	35
Table 4.1	Elemental Composition of TiO ₂ Photocatalysts	61
Table 4.2	BET Specific Surface Area of TiO ₂ Photocatalysts	66
Table 4.3	Properties of TiO_2 -based Photocatalysts synthesised through IL-assisted methods	69
Table 4.4	Elemental Compositions of TiO ₂ -1/Ag 2%/CA 0.5% Photocatalyst at different cycles of photocatalytic treatment	86

LIST OF FIGURES

Figure 2.1	The schematic conventional cells for (a) Anatase, (b) Rutile (c) and Brookite ${\rm Ti}O_2$	9
Figure 2.2	Schematic mechanism of TiO ₂ photocatalysis	11
Figure 2.3	Photocatalytic disinfection mechanism of bacteria by TiO ₂ -based Photocatalysts	41
Figure 3.1	Chemical structure of Bmim[Ac]	44
Figure 3.2	Synthesis of TiO ₂ using IL	45
Figure 3.3	Schematic diagram illustrating the photocatalytic degradation of MB dye under UVA irradiation	49
Figure 3.4	Disc diffusion method for the antibacterial study	51
Figure 4.1	XPS Spectra of (a) Ti 2p, (b) O 1s, (c) Ag 3d and (d) C 1s	55
Figure 4.2	XRD patterns of (a) TiO_2-1/Ag 2%/CA, (b) TiO_2-1/Ag 2%, (c) TiO_2-1 and (d) TiO_2-0	56
Figure 4.3	FTIR spectra of (a) TiO_2-1, (b) TiO_2-1/Ag 2% and (c) TiO_2-1/Ag 2%/CA 0.5%	58
Figure 4.4	SEM images of (a) TiO ₂ -0, (b) TiO ₂ -1, (c) TiO ₂ -1/Ag 2%, and (d) TiO ₂ -1/Ag 2%/CA 0.5%, CA alone (e) \times 1000, (f) \times 5000 and (g) \times 10000, (h) TEM image of TiO ₂ -1/Ag 2%/CA 0.5%	60
Figure 4.5	EDX spectra of (a) TiO_2-0, (b) TiO_2-1, (c) TiO_2-1/Ag 2% and (d) TiO_2-1/Ag2%/CA 0.5%	62
Figure 4.6	UV-DRS Spectra of TiO_2-1, TiO_2-1/Ag 2% and TiO_2-1/Ag 2%/CA 0.5%	63
Figure 4.7	BET adsorption-desorption isotherm (a) TiO ₂ -0, (b) TiO ₂ -1, (c) TiO ₂ -1/Ag 2%, and (d) TiO ₂ -1/Ag 2%/CA 0.5%	65
Figure 4.8	The pH_{pzc} plot for TiO_2-1/Ag 2%/CA 0.5% Photocatalyst using 0.1 M NaCl solution	67
Figure 4.9	Photocatalytic degradation of MB using TiO ₂ synthesised with IL (0.0 -5.0 mL), photocatalyst dosage (0.1 g/L -5.0 g/L), initial MB concentration (5 ppm) and unadjusted pH (7.4)	70

Figure 4.10 (a) Photocatalytic degradation of MB by TiO₂-1/Ag with different Ag concentrations (0.5 wt% - 5.0 wt%) and (b) TiO₂-1/Ag 2%/CA with different CA concentrations (0.5 wt% - 5.0 wt%) under UV irradiation

73

Figure 4.11 Photocatalytic degradation of MB under dark condition, visible light and UV light (Experimental conditions: 1.0 g/L photocatalyst dosage, 5 ppm MB dye and unadjusted pH 7.4) 75 Figure 4.12 (a) Photocatalytic degradation of TiO₂-1/Ag 2%/CA 0.5% at different photocatalyst dosages (0.1 - 20.0 g/L), (b) different initial concentrations of MB (5 - 25 ppm), (c) different pHs of MB (pH 3pH 12), and (d) presence of radical scavengers 80 Figure 4.13 Photocatalytic degradation of individual dyes under (a) dark condition, (b) visible light irradiation, (c) UV light irradiation and (d) mixed dyes under dark condition and UV-Vis adsorption spectra for dye degradations under all conditions (Experimental conditions; photocatalyst dosage: 3.0 g/L, initial dye concentration: 5 ppm and pH: unadjusted pH 7.4) 84 Figure 4.14 Photocatalytic Degradation of MB at different cycles 85 Figure 4.15 SEM Images of TiO₂-1/Ag 2%/CA 0.5% photocatalyst at different cycles of photocatalytic treatment 86 Figure 4.16 Antibacterial activity of (a) different TiO₂-1/Ag 2%/CA 0.5% photocatalyst concentrations, (b) TiO₂,TiO₂/Ag 2% and TiO₂/Ag 2%/CA 0.5%, (c) Inhibition zones (mm) by different TiO₂/Ag 2%/CA 0.5% concentrations and (d) Inhibition zones (mm) by TiO₂, TiO₂-1/Ag 2% and TiO₂/Ag 2%/CA 0.5%, against E. coli and S. aureus on MH agar 90 Figure 4.17 Proposed schematic diagram of the degradation of dyes by TiO₂-1/Ag 2%/CA 0.5% Photocatalyst 92

LIST OF ABBREVIATIONS

Ag	Silver
BET	Brunauer Emmett Teller
СВ	Conduction band
EDX	Energy Dispersive X-ray
FTIR	Fourier Transform Infrared Spectroscopy
MB	Methylene Blue
МО	Methyl orange
ROS	Reactive oxygen species
SEM	Scanning Electron Microscope
SPR	Surface plasmon resonance
TiO ₂	Titanium Dioxide
TEM	Transmission Electron Microscope
UV	Ultraviolet
UV-DRS	UV-Vis Diffuse Reflectance Spectroscopy
VB	Valence band
XPS	X-ray photoelectron spectroscopy
XRD	X-Ray Diffraction

CHAPTER 1

INTRODUCTION

1.1 Study Background

The aquatic ecosystem has been severely disrupted by the presence of organic contaminants in water, such as dyes and industrial chemicals. Titanium dioxide (TiO₂) photocatalysis has emerged as one of the most powerful tools for removing organic pollutants from aquatic environments among the various existing techniques. TiO₂ has been widely employed as a photocatalyst due to its important features including being non-toxic, inexpensive, resistant to photochemical corrosion, and having a high oxidizing power (Gopinath et al., 2019). However, there are nonetheless certain shortcomings that could lower the performance efficiency of TiO₂. For instance, its high band gap such as 3.0-3.2 eV that is only excited by ultraviolet (UV) light results in poor adsorption capacity under visible light (Lin & Li, 2021). As a result, various attempts have been undertaken to circumvent these limitations, such as surface modification (Li et al., 2013), stabilization via support structures (Ju, 2019; Yang & Luo, 2021) and the inclusion of magnetic components to facilitate separation (Kanakaraju et al., 2018).

Numerous research studies have shown the improvement of TiO_2 photocatalytic performance by modifying its surface. Metal doping and embedment of support are two effective ways of modifying the surface of pure TiO_2 . Doping noble metals like gold (Au) and silver (Ag) onto TiO_2 has greatly enhanced TiO_2 's photocatalytic properties (Kochuveedu et al., 2012; Avciata et al., 2016). Ag, a noble metal candidate has been applied as a TiO_2 doping agent because of its benefits, particularly in enhancing TiO_2 's physicochemical properties (Wang et al., 2020; Nazhirah et al., 2021). Ag traps and captures

electrons from TiO₂'s conduction band, and then converts the electrons into superoxide radicals. Water molecules will react with holes generated in the TiO₂ valence band to produce hydroxyl radicals, which are required in photocatalytic oxidation (Din et al., 2018). The incorporation of Ag on the TiO₂ surface can achieve an obvious redshift as a result of the narrowing band gap and an improvement in photocatalytic activity (Park et al., 2020). Furthermore, the Ag⁺ ion could substitute the Ti⁴⁺ in the TiO₂ lattice, resulting in the deformation of the crystal lattice (Gao et al., 2015). Also, Ag has an important characteristic such as the surface plasmonic resonance (SPR) effect, that helps in extending light absorption to the visible light region (Khan et al., 2015; Furube & Hashimoto, 2017). Numerous studies have demonstrated that Ag dopant contributed to increased photocatalytic efficiency of TiO₂ (Petica et al., 2019; Zhou et al., 2019). Additionally, Ag is commonly used in antimicrobials since it works effectively against bacteria, fungi, and has shown promise in combating cancer cells (Gurunathan et al., 2015; Jatoi et al., 2019). Ag kills bacteria through its antibacterial action, which involves the breaking down of cell wall membranes, DNA denaturation and blockage of the bacteria's respiratory tracts (Abdelgawad et al., 2014; El-Naggar et al., 2016). TiO₂/Ag demonstrates high bacterial growth inhibition against E. coli and S. aureus (Bezir et al., 2018; Ghosh et al., 2020).

Despite the aforementioned positive characteristics of TiO₂/Ag, some prevalent issues of TiO₂/Ag are the particles may aggregate due to their large active surface area (Ahmad et al., 2016) and leaching out of the photocatalyst system (Wint et al., 2020). It is also recognised that excessive use of Ag can cause adverse effects on the human cells; examples of excessive Ag release are argyria and argyrosis (Jatoi et al., 2019). Therefore, supporting TiO₂/Ag on high surface area materials improves its mechanical strength while minimising the excess release of Ag and maintaining its antibacterial capabilities. Cellulose

acetate (CA) is greatly utilised due to its high specific surface area and porosity as well as interconnected pore structures, making it a suitable material to strengthen the mechanical capacity of TiO₂ (Gebru & Das, 2017). CA is also well known for its excellent biocompatibility, biodegradability, hydrophilicity and high mechanical strength (Ashraf et al., 2020). In addition, CA is structurally rich in hydroxyl groups, allowing metal nanoparticles (NPs) to be immobilised on the surface (Yu et al., 2020). Immobilisation of TiO₂/Ag photocatalyst on cellulose-derived carbon beads with hollow network structure caused the homogeneous distribution of particles and increased availability of active sites (Yang & Luo, 2021). Past research has mainly used CA as a support to increase photocatalyst's surface area (Shalan et al., 2021) and for antibacterial applications (Jatoi et al., 2019). So far, however, there is very limited knowledge of the effects of CA concentration towards the photocatalytic efficiency of TiO₂/Ag. Our recent study revealed that adding CA in low concentration increases the photocatalyst's adsorption capacity and significantly aided the removal of MB (Kanakaraju et al., 2022).

This study aims to include a solvent template, IL in the synthesis of TiO₂ prior to the addition of Ag and CA. It is known that the application of ILs as a template solvent medium greatly influenced the catalytic activity, crystallinity and morphology of the photocatalyst (Mohaghegh et al., 2015). As compared to organic solvents, IL offers greater benefits such as thermal stability and chemical stability, low melting point, excellent electrochemical properties as well as the ability to dissolve various organic and inorganic materials (Ravishankar et al., 2015). Synthesis of TiO₂ with imidazolium ILs such as 1-butyl-3-methylimidazolium has resulted in excellent photocatalytic activity. TiO₂/Ag surface area increased 3 folds when it is synthesised with IL (1-Butyl-3-methylimidazolium trifluoromethanesulfonate) (Yoo & Pak, 2015).

Therefore, in this study, TiO₂ was synthesised via the sol-gel method with IL (1-Butyl-3-methylimidazolium acetate, Bmim[Ac]) to produce photocatalysts with high surface area. TiO₂ is then added to Ag via the wet-impregnation method to enhance its photocatalytic performance and introduce antibacterial properties to the photocatalyst. The photocatalyst was mixed with CA to further increase its adsorption capacity for the removal of dyes. Numerous types of dyes can be found in wastewater, and because their chemical structures differ, it is challenging to apply a single method to degrade them, especially when they are present in a mixture (Garba et al., 2020). To be in line with the idea, the performance of TiO₂/Ag/CA photocatalyst on mixed dyes namely Rhodamine B (RhB), Methylene Blue (MB) and Methyl Orange (MO) was also investigated. The morphology, surface chemical properties and structural composition of TiO₂/Ag/CA were determined and its photocatalytic activity under different operating conditions (photocatalyst dosage, initial dye concentration, and initial pH) was investigated. Antibacterial properties of TiO₂/Ag/CA photocatalyst against gram-negative (*S. aureus*) and gram-positive (*E. coli*) bacteria, and strains were also investigated via disc diffusion method.

1.2 Problem Statement

There are many studies available on the fabrication of TiO₂-based photocatalysts primarily aiming to produce photocatalysts with high photocatalytic performance. One of the commonly applied ways is via the addition of support materials to the photocatalyst. While previous studies are exclusively focused on the application of support materials in TiO₂/Ag to improve its surface area and antibacterial properties (Jatoi et al., 2019; Ashraf et al., 2020), there is very limited knowledge available on the effects of CA concentration in the photodegradation of dyes. A recent study has shown that 2 wt% CA in TiO₂/Ag contributed to the high adsorption of MB and significantly aided the removal of MB

(Kanakaraju et al., 2022). This showed that CA could enhance the efficiency of TiO_2/Ag in the degradation of dyes. However, to the best of our knowledge, there are no studies on $TiO_2/Ag/CA$ which investigate the effects of the photocatalyst on mixed dyes. From the environmental perspective, studies on mixed dyes would be more relevant as pollutants occur in mixtures rather than as an individual component. Therefore, this signifies the importance of investigating the performance of the $TiO_2/Ag/CA$ photocatalyst in the mixed dyes treatment system.

Besides that, the surface area of TiO_2 is equally important in the degradation of pollutants. The ability of ILs to synthesise morphology-controlled TiO_2 -based photocatalysts has been elucidated in numerous studies (Łuczak et al., 2016; Kaur & Singh, 2017; Van Dao et al., 2018; Kuhn et al., 2019). There are studies available on TiO_2 synthesised with various types of IL as a solvent template via the sol-gel method, for instance, 1-Butyl-3-methylimidazolium hexafluorophosphate, (BmimPF₆) (Yan et al., 2018) and choline chloride–zinc chloride IL (Preethi et al., 2017). Imidazolium-based ILs are favourable for several reasons such as its wide range of air, water and electrochemical stability (Dai et al., 2014).

Previous works have shown that imidazolium ILs may oxidatively add to coordinatively unsaturated low-valent metal centres, which implies that it might stabilise metal nanoparticles not only electrostatically but also by coordination involving the cations (Wender et al., 2010). The low vapour pressure of imidazolium-based IL prevents the reduction of the photocatalyst's surface area (Dai et al., 2014). Another advantage of utilising imidazolium-based ILs is that the reaction medium can be removed easily by washing it with water and evaporating the solvent under a vacuum and reusing it for subsequent reactions (Shirini et al., 2012). In addition, imidazolium-based ionic liquid is also less toxic and less volatile as compared to pyridine-based ionic liquid (Majumdar et al., 2014). Since the application of imidazolium-based IL such as 1-Butyl-3-methylimidazolium acetate, Bmim[Ac] has not been established, it is crucial to investigate the effect of Bmim[Ac] as a solvent template to compare its ability with other existing ILs established in the literature.

1.3 Objectives

The primary aim of this study was to investigate the photocatalytic performance of $TiO_2/Ag/CA$ photocatalysts for the degradation of dyes. The following set of objectives was pursued to accomplish this aim:

- i. To synthesise TiO₂ photocatalysts via the sol-gel method with IL, 1-butyl-3methylimidazolium acetate,
- To determine the physicochemical properties of TiO₂/Ag/CA photocatalysts such as morphological, structural, crystallinity, compositional and surface chemical properties prepared via wet-impregnation method (TiO₂/Ag) and mechanical mixing (TiO₂/Ag/CA),
- To investigate the photocatalytic activity of TiO₂/Ag/CA photocatalyst on dye degradation under various operating conditions (e.g. photocatalyst dosage, dye concentration and initial pH); and
- iv. To investigate the recyclability and antibacterial properties of TiO₂/Ag/CA photocatalyst

CHAPTER 2

LITERATURE REVIEW

2.1 Titanium Dioxide, TiO₂

Many organic contaminants released into water bodies are incredibly difficult to decompose or eliminate and may negatively affect aquatic systems and human health. Nanostructured semiconductors have shown great potential for wastewater remediation because of their high photocatalytic oxidation under ultraviolet (UV) radiation. Titanium dioxide, TiO₂ is recognised as a significant photocatalyst as compared to other semiconductors used in environmental remediation because of its excellent photocatalytic activity under UV irradiation, making it an efficient photocatalyst as its oxidation state can change without experiencing decomposition (Gopinath et al., 2020). The widespread application of TiO₂ in pollutant removal can be attributed to its inexpensiveness and properties such as high refractive index, chemical and photostability (Ferreira et al., 2021).

2.1.1 Crystalline Structure of TiO₂ Photocatalyst

 TiO_2 is greatly utilised in various areas such as self-cleaning technology, cosmetics and water purification (Leong & Oh, 2018; Basavarajappa et al., 2020; Nazhirah, Ghoshal, Arifin, & Hamzah, 2021). The main reasons for its wide range of applications include having high oxidising power and chemical stability, non-toxic nature and inexpensive (Gopinath et al., 2020).

 TiO_2 is also known as an n-type semiconductor and it exists in three crystalline phases, namely anatase, rutile, and brookite (Al-Mamun, Kader, Islam, & Khan, 2019). All three crystal phases have a TiO_6 octahedra structure whereby the titanium (Ti^{4+}) atoms are

coordinated with six oxygen (O_2^-) atoms (Scarpelli et al., 2018). Anatase and rutile TiO₂ have a tetragonal geometry while brookite has an orthorhombic geometry (Scarpelli et al., 2018). Figure 2.1 shows the crystalline structures of TiO₂ while Table 2.1 summarises the properties of the crystalline phase of TiO₂.

The anatase phase of TiO₂ is stable at low temperatures whereas the rutile phase of TiO₂ is stable at high temperatures. The brookite phase of TiO₂ is rare, unstable, uncommon, and ineffective option for photocatalytic applications (Al-Mamun et al., 2019). As a result, the application of brookite is greatly limited in comparison to the anatase and rutile phases of TiO₂. Anatase and rutile have been extensively used in various applications because they are more stable as compared to brookite (Scarpelli et al., 2018). The photocatalytic efficiency of TiO₂ is influenced by its crystalline arrangement, with anatase exhibiting the highest activity due to its effective energy separation between the valence and conduction bands upon UV exposure (Ray, Lalman, & Biswas, 2009; Saravanan, Pakshirajan, & Saha, 2009). Additionally, anatase's chemical properties, like heightened electron mobility, low dielectric constant, and low density, further establish it as the favored phase of TiO₂ in the realm of photocatalysis (Gupta & Tripathi, 2011).