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ABSTRACT 

Academic institutions face the timetabling problem every semester. The task of allocating 

lectures to limited timeslots and venues must fulfil certain constraints unique to each 

educational institution. This study investigated heuristic orderings and the variable 

neighbourhood descent approach to tackle the course timetabling problem at the Faculty of 

Computer Science and Information Technology (FCSIT), Universiti Malaysia Sarawak 

(UNIMAS) on the basis of the students. The objectives of the study were to formulate a 

mathematical model and improve a computational bounded heuristics-based solution to 

solve the course timetabling problem at the faculty. A two-stage heuristic algorithm is 

proposed. In stage 1, heuristic orderings were utilised to find a feasible solution using 31 

timeslots instead of the 48 timeslots in the existing timetabling software. In stage 2, the 

variable neighbourhood descent approach with new neighbourhood structures was utilised 

to improve the quality of the solution. The improved algorithm was tested on real-world data 

instances (in semesters 1 and 2 of 2019/2020) at the FCSIT, UNIMAS. The results show that 

certain heuristic orderings (the largest degree or the combination of the largest degree and 

largest enrolment in descending order) are better than others in generating a feasible solution. 

In stage 2, the proposed algorithm with new neighbourhood structures managed to reduce 

the soft constraint violations for instances in semesters 1 and 2. Sensitivity analysis was 

performed on the proposed algorithm. The experimental results demonstrate the flexibility of 

the proposed algorithm in solving the university course timetabling problem (UCTTP) at the 

FCSIT.     

Keywords: University course timetabling, optimisation, heuristic orderings, variable 

neighbourhood descent, perturbation 
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Penambahbaikkan Penurunan Pembolehubah Kejiranan Untuk Menyelesaikan 
Masalah Penjadualan Kursus Universiti Malaysia Sarawak (UNIMAS) 

ABSTRAK 

Institusi akademik berhadapan dengan masalah penjadualan pada setiap semester. Tugas 

memperuntukkan kuliah ke slot masa dan tempat yang terhad mesti memenuhi kekangan 

tertentu yang unik bagi setiap institusi pendidikan. Dalam kajian ini, kaedah penyusunan 

heuristik dan penurunan pembolehubah kejiranan dalam menangani masalah penjadualan 

kursus di Fakulti Sains Komputer dan Teknologi Maklumat (FSKTM), Universiti Malaysia 

Sarawak (UNIMAS) dengan berasaskan pelajar disiasat. Objektif kajian adalah untuk 

menghasilkan model matematik dan membangunkan satu kaedah heuristik dengan 

komputasi terhad untuk menyelesaikan masalah penjadualan kursus di fakulti. Heuristik 

dengan dua fasa telah dicadangkan. Pada fasa 1, penyusunan heuristik digunakan untuk 

mencari jadual waktu yang sah menggunakan 31 slot masa dan bukannya 48 slot masa 

seperti dalam perisian penjadualan yang sedia ada. Pada fasa 2, kaedah penurunan 

pembolehubah kejiranan dengan struktur kejiranan yang baru digunakan untuk 

meningkatkan kualiti jadual waktu. Algoritma yang dicadangkan diuji dengan menggunakan 

data sebenar iaitu semester 1 dan 2 tahun akademik 2019/2020 dari FSKTM, UNIMAS. 

Keputusan menunjukkan kaedah penyusunan heuristik (darjah terbesar dan kombinasi 

darjah terbesar dan pendaftaran terbesar) adalah lebih baik daripada yang lain dalam 

menjana jadual waktu yang sah. Pada fasa 2, struktur kejiranan yang baru berjaya 

meningkatkan kualiti jadual waktu untuk semester 1 dan 2. Analisis sensitiviti dilakukan 

pada algoritma yang dicadangkan. Keputusan eksperimen menunjukkan fleksibiliti 

algoritma yang dicadangkan dalam penyelesaian masalah penjadualan kursus universiti di 

FSKTM.  
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Kata kunci: Penjadualan kursus universiti, pengoptimuman, penyusunan heuristik, 
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CHAPTER 1  
 
 

INTRODUCTION 

1.1 Study Background 

Educational timetabling is defined as the task of allocating events such as exams, 

subjects and courses to rooms and timeslots by fulfilling certain constraints (Tan et al., 2021; 

Thepphakorn & Pongcharoen, 2020; Tan et al., 2020; Assi et al., 2018). Timetabling is a 

challenging combinatorial optimisation problem in theory and practice (Schaerf, 1999). 

Universiti Malaysia Sarawak (UNIMAS) devotes significant resources to the development 

of a feasible and high-quality course schedule for each faculty. Efficient course allocation 

may result in the more effective use of valuable resources such as utility resources (Burke et 

al., 2005). For example, reducing the number of timeslots needed to generate a feasible 

solution. This saves valuable resources, such as electricity costs when lectures can be 

avoided to be conducted at night time. Therefore, it is crucial to find an optimal configuration 

for the variables defined to achieve specific objectives (Habashi et al., 2018). 

 The university course timetabling problem (UCTTP) involves allocating a set of 

courses to limited resources - namely lecturers, venues and timeslots - by fulfilling certain 

constraints (Goh et al., 2020; Goh et al., 2019; Erdeniz & Felfernig, 2018; Goh et al., 2017). 

The UCTTP can be divided into two different categories based on the problem settings and 

requirements, namely the curriculum-based course timetabling problem (CBCTTP) and the 

post-enrolment course timetabling problem (PECTTP). The UCTTP at UNIMAS is closely 

related to the CBCTTP.  Constraints can be classified into two types, hard and soft. The 

fulfilment of hard constraints is mandatory in generating a feasible timetable. For example, 

a student cannot attend two lectures at the same time, while a lecturer cannot lecture on more 
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than one course simultaneously. Meanwhile, the fulfilment of soft constraints is optional but 

will determine the quality of the timetable generated. For example, students should not have 

only one lecture hour per day and lecturers should not have to lecture after five pm. 

The UCTTP is known to be NP-hard (Wang et al., 2019; Song et al., 2018; Assi et 

al., 2018; Gunawan, Ng, & Poh, 2012); that is, the problem cannot be solved exactly in 

polynomial time as the growth of the problem size and its complexity are exponential 

(Babaei et al., 2015; Bardadym, 1996). Exact algorithms are guaranteed to provide optimal 

solutions but they are applicable to small-sized problems (Schaerf, 1999). As an alternative, 

heuristic algorithms are often utilised to provide relatively good solutions in an acceptable 

time (Gora et al., 2010). 

To date, many studies have been conducted on the UCTTP, tackling either 

benchmark or real-world UCTTPs. For most real-world search problems, automatically 

generating high-quality solutions is a difficult challenge (Muklason et al., 2019). Benchmark 

UCTTP are usually oversimplified and meant for objective comparison of methodologies. 

Meanwhile, real-world UCTTP focus on the practicality of solution at academic institutions. 

Even real-world UCTTP vary between them in terms of requirements due to different 

policies, education systems and cultures. The objective is to find a feasible timetable with 

the fewest possible soft constraint violations. Furthermore, the UCTTP requirements differ 

across academic institutions as policies and regulations are unique to each institution. This 

study addresses the UCTTP at the Faculty of Computer Science and Information Technology 

(FCSIT), UNIMAS, using a real-world dataset. The performance of the improved variable 

neighbourhood descent (VND) is investigated. Its performance is compared against the 

existing timetable, which had been constructed using commercial timetabling software. 
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1.2 Problem Statement  

This research focuses on a real-world course timetabling problem at Universiti 

Malaysia Sarawak. The issues addressed are as follows: 

i. Pre-registration data practice 

At UNIMAS, there is no practice of course pre-registration. Student course 

registration only takes place after the timetable has been generated. Therefore, the timetable 

generated cannot cater to all the students individually. 

Student enrolment data is predicted by the program coordinators by gut feeling. 

There are uncertainties in preparing the student-course registration data. Eventually, the 

venue utilisation is low, especially since a large-capacity venue may be allocated but a low 

number of students register. Other than that, “critical courses” involving “graduating 

students” cannot be identified, creating drastic changes to the planned timetable. Critical 

courses refer to courses that must be registered by repeating students for them to graduate. 

ii. Curriculum-based course timetabling  

Curriculum-based course timetabling means that the timetable generated is based on 

the curriculum plan for each program. This causes the “repeaters”, those who need to repeat 

the course/s they failed in the previous semester, to face a certain dilemma as they cannot 

attend both the repeated and current semester courses as these clash. The current timetable 

used by the FCSIT cannot cater to all the “repeater” students because each “repeater” is a 

unique case. For example, one student may need to repeat three courses from the previous 

semester, whereas another may only need to repeat one. In the worst case, a student may 

need to repeat courses from two or three previous semesters. The consequence may be that 


