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ABSTRACT 

Brain cancer is a serious medical condition that requires an accurate and timely 

diagnosis for effective treatment planning. In recent years, deep learning techniques have 

shown great potential in the field of medical image analysis. In this study, a brain cancer 

detection and classification system based on deep learning algorithms is proposed. The 

system utilises a convolutional neural network (CNN) architecture trained on a large 

dataset of brain MRI images. The images were preprocessed to enhance relevant features 

and remove noise. The CNN architecture chosen was GoogleNet. To validate the 

robustness of the system, a 5-fold cross-validation approach was employed, ensuring 

reliable and consistent results. The proposed system has the potential to assist medical 

professionals in the early detection and classification of brain tumours, aiding in accurate 

diagnosis and treatment decision-making. By automating the classification process, it 

reduces the burden of manual analysis, potentially saving time and improving the overall 

efficiency of the diagnostic process. The proposed model achieved an accuracy of 

97.5522 ± 0.2739%, a precision of 0.9498 ± 0.0054, a recall of 0.9494 ± 0.0057, a 

specificity 0.9839±0.0018 and an F1 Score of 0.9493±0.0057 across the 5-fold cross-

validation iterations, demonstrating its effectiveness in accurately classifying brain MRI. 
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ABSTRAK 

Kanser otak merupakan keadaan perubatan yang serius yang memerlukan diagnosis 

yang tepat, dan tepat pada waktunya untuk perancangan rawatan yang berkesan. Dalam 

beberapa tahun terakhir, teknik pembelajaran mendalam telah menunjukkan potensi besar 

dalam bidang analisis imej perubatan. Dalam kajian ini, satu sistem pengesanan dan 

pengkelasan kanser otak berdasarkan algoritma pembelajaran mendalam dicadangkan. 

Sistem ini menggunakan jaringan saraf terkonvolusi (CNN) berdasarkan senibina 

GoogleNet yang dilatih menggunakan dataset yang besar dari imej MRI otak. Imej-imej 

tersebut telah melalui pra-pemprosesan untuk meningkatkan ciri-ciri yang relevan dan 

mengurangkan kehingaran data. Pendekatan 5-lipatan validasi persilangan diterapkan 

untuk mengesahkan kebolehpercayaan sistem dengan hasil yang boleh diandalkan dan 

konsisten. Sistem yang dicadangkan mempunyai potensi untuk membantu profesional 

perubatan dalam pengesanan awal dan pengkelasan tumor otak, membantu dalam 

diagnosis yang tepat dan membuat keputusan rawatan. Dengan mengautomatikkan proses 

pengkelasan, ia mengurangkan beban analisis manual, berpotensi menjimatkan masa dan 

meningkatkan kecekapan keseluruhan proses diagnostik. Model yang dicadangkan 

mencapai ketepatan sebanyak 97.5522±0.2739%, kefahaman sebanyak 0.9498±0.0054, 

pemulihan sebanyak 0.9494±0.0057, khususiti sebanyak 0.9839±0.0018 dan Skor F1 

sebanyak 0.9493 ± 0.0057, melintasi iterasi persilangan, sekali gus membuktikan 

menunjukkan keberkesanannya dalam mengkelaskan imej MRI otak secara tepat. 
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CHAPTER 1  

 

INTRODUCTION 

1.1 Background 

1.1.1 Brain Cancer 

The brain, which is displayed in Figure 1.1, is the control centre of the human body 

and its most complex part. It is responsible for all the body's functions. This organ is the 

centre of intelligence and controls behaviour, movement, and the interpretation of the 

senses. It is made up of billions of cells called neurons and glial cells, which work together 

to transmit and process information. 

 

Figure 1.1: Human Brain [1] 

One of the most serious and deadly diseases that can affect the brain is brain cancer. 

Brain cancer arises when abnormal cells in the brain divide and grow out of control. These 

cells can combine to generate benign or malignant tumours. Brain tumours that are 
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malignant are more aggressive and can spread to other regions of the body, whereas 

benign tumours are often less dangerous and do not spread.  

According to the Cancer Council of New South Wales [2], brain tumours can be 

classified into four grades based on their level of aggressiveness. These grades are used 

to help patients with brain tumours forecast their prognosis and guide treatment options. 

Brain cancer is classified into four categories based on their malignancy: Grade I, Grade 

II, Grade III, and Grade IV. Grade I tumours are the least aggressive and are characterised 

by slow growth and a low risk of recurrence. They can be treated surgically or with a mix 

of surgery, radiation treatment, and chemotherapy. Grade II tumours are more aggressive 

than grade I tumours but still have a relatively low risk of recurrence. They may be treated 

with surgery, radiation therapy, or chemotherapy, depending on the specific 

characteristics of the tumour. Grade III tumours are more aggressive than grade II 

tumours and have a higher risk of recurrence. They may be treated with surgery, radiation 

therapy, and chemotherapy, but the prognosis for these tumours is generally worse than 

for lower-grade tumours. Grade IV tumours are the most aggressive and have a high risk 

of recurrence. They may be treated with surgery, radiation therapy, and chemotherapy, 

but the prognosis for these tumours is generally poor. 

Some common types of brain tumours include gliomas, meningiomas, pituitary 

tumours, craniopharyngiomas, primary brain lymphomas, and metastatic brain tumours. 

Gliomas are tumours that originate in the glial cells, which support and protect the nerve 

cells of the brain. Gliomas can be either benign or malignant and include astrocytomas, 

oligodendrogliomas, and ependymomas. Meningiomas are tumours that develop in the 

meninges. Meningiomas are usually benign but can sometimes be aggressive. Pituitary 

tumours are cancers that originate from the pituitary gland, a tiny endocrine gland situated 

at the base of the brain. Pituitary tumours can be either benign or malignant. 

Craniopharyngiomas are tumours that arise from cells in the pituitary gland and are 

usually benign. Primary brain lymphoma is a type of cancer that originates in the brain 

and is usually associated with non-Hodgkin's lymphoma. Tumours that have progressed 

to the brain from another area of the body, such as the lungs or breast, are known as 

metastatic brain tumours.  

For this research and writing process, the brain cancer detection and classification 

will cover three types of brain cancer, which are gliomas, meningiomas, and pituitary 

tumours. Symptoms of brain cancer can differ based on the tumour’s location and size. 
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Common symptoms include headaches, seizures, changes in mood or behaviour, 

weakness or numbness in the limbs, and difficulty with balance and coordination. A 

physical assessment, imaging tests including MRI or CT scans, and a biopsy to study a 

sample of tumour tissue are all used to detect brain cancer. The specific treatment and 

prognosis for a brain tumour will depend on the type and stage of the tumour, as well as 

the overall health of the patient.  

1.1.2 Deep Learning 

DL is a sort of ML that analyses and recognises patterns in data using ANNs with 

several layers. The difference between AI, ML, NN, and DL is shown in Euler’s diagram 

in Figure 1.2. 

 

Figure 1.2: Euler’s Diagram on AI, ML, NN and DL [3] 

The key characteristic of DL is the utilisation of DNNs, which are composed of 

multiple layers of interconnected neurons. These networks are designed to mimic the 

structure and functioning of the human brain, allowing them to learn and model highly 

complex relationships within the data. Each layer of neurons in a DNN performs specific 

computations and progressively learns more abstract and high-level representations as 

information flows through the network. 
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One of the major breakthroughs in deep learning has been in the field of computer 

vision, where CNNs have demonstrated exceptional performance in tasks such as image 

classification, object detection, and segmentation. CNNs can automatically learn spatial 

hierarchies of features from images, enabling them to identify and distinguish objects 

with remarkable accuracy. This has opened new possibilities in areas such as autonomous 

driving, facial recognition, and medical imaging. 

In recent years, DL techniques have emerged as powerful tools for medical image 

analysis, offering the potential to revolutionise brain cancer detection and classification. 

By leveraging large amounts of data, as can be seen in Figure 1.3, and complex NN 

architectures, DL models have demonstrated remarkable capabilities in extracting 

meaningful features from medical images and making accurate predictions.  

 

Figure 1.3: DL can be used to detect the presence of brain cancer in this MRI [4] 

The implementation of DL in the identification and classification of brain cancer 

holds great promise for improving the accuracy and efficiency of these processes and 

could greatly enhance patient outcomes. However, further study is required to properly 

comprehend the capabilities and limitations of this approach and to develop robust and 

reliable methods for implementing it in clinical practise.     

1.2 Problem Statement 

Detecting and classifying brain cancer manually is a time-consuming process that 

requires extensive analysis and interpretation of medical imaging data. Radiologists and 
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medical professionals typically examine brain MRI’s to identify the presence of brain 

cancer in them and classify them into specific types. However, this manual approach can 

be slow and labour-intensive, leading to delays in diagnosis and treatment planning. The 

interpretation of brain MRI images involves visually analysing intricate details, patterns, 

and abnormalities in the scans. Radiologists need to meticulously examine multiple slices 

of the brain to accurately identify and characterise tumors. This process is not only time-

consuming but also susceptible to human error and subjectivity, which can impact the 

accuracy and consistency of diagnoses. Addressing the time-consuming nature of manual 

brain cancer detection and classification is crucial to improve patient outcomes and 

optimize healthcare resources. By leveraging automated techniques, such as DL 

algorithms, we can develop a system that assists radiologists in the efficient and accurate 

detection and classification of brain cancer, decreasing the time required for diagnosis 

and enabling timely treatment interventions. 

Other than that, detecting and classifying brain cancer often requires the processing 

of vast amounts of medical imaging data. This task can present challenges due to the 

substantial computational resources required. The size and complexity of the datasets, 

along with the computational demands of sophisticated analysis algorithms, can strain the 

capabilities of available resources. Limited computational power, memory, or storage 

capacity may hinder the timely and efficient analysis of brain cancer imaging data. These 

constraints can lead to longer processing times, delays in diagnosis, and potential 

limitations in the accuracy and effectiveness of the detection and classification processes. 

Overcoming these computational resource constraints is crucial for developing efficient 

and scalable brain cancer detection and classification systems that can handle the 

increasing volume and complexity of medical imaging data. 

1.3 Objectives 

There is a need for further research to address these challenges and develop reliable 

and effective DL approaches for the detection and classification of brain cancer. This will 

require a multidisciplinary approach that brings together experts in DL, medical imaging, 

and brain cancer research, as well as clinicians who can provide valuable insights into the 

needs and constraints of real-world clinical practise. The following are the primary goals 

of a study on the detection and classification of brain tumours with DL: 


