

DETECTION AND CLASSIFICATION OF BRAIN CANCER USING DEEP LEARNING

Asvin Kumar A/L Moghan

Bachelor of Engineering

Electrical and Electronics Engineering with Honours

2023

UNIVERSITI MALAYSIA SARAWAK

Grade: ____

Please tick (√) Final Year Project Report Masters PhD

DECLARATION OF ORIGINAL WORK

This declaration is made on the 25th day of July 2023.

Student's Declaration:

I, ASVIN KUMAR A/L MOGHAN, MATRIC NO.: 69148, FACULTY OF ENGINEERING hereby declare that the work entitled BRAIN CANCER DETECTION AND CLASSIFICATION USING DEEP LEARNING is my original work. I have not copied from any other students' work or from any other sources except where due reference or acknowledgement is made explicitly in the text, nor has any part been written for me by another person.

 $25\ \mathrm{JULY}\ 2023$

Date submitted

ASVIN KUMAR A/L MOGHAN (69148)

Supervisor's Declaration:

I, ASSOCIATE PROFESSOR IR DR DAVID BONG BOON LIANG hereby certifies that the work entitled BRAIN CANCER DETECTION AND CLASSIFICATION USING DEEP LEARNING was prepared by the above named student, and was submitted to the "FACULTY" as a * partial/full fulfillment for the conferment of BACHELOR OF ENGINEERING (HONS) IN ELECTRICAL AND ELECTRONICS ENGINEERING, and the aforementioned work, to the best of my knowledge, is the said student's work.

Received for examination by:

Date: 25 JULY 2023

AP IR DR DAVID BONG BOON LIANG

I declare that Project/Thesis is classified as (Please tick ($\sqrt{}$)):

RESTRICTED

CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)* (Contains restricted information as specified by the organisation where research was done)*

OPEN ACCESS

Validation of Project/Thesis

I therefore duly affirm with free consent and willingly declare that this said Project/Thesis shall be placed officially in the Centre for Academic Information Services with the abiding interest and rights as follows:

- This Project/Thesis is the sole legal property of Universiti Malaysia Sarawak (UNIMAS). •
- The Centre for Academic Information Services has the lawful right to make copies for the • purpose of academic and research only and not for other purpose.
- The Centre for Academic Information Services has the lawful right to digitalise the content for the Local Content Database.
- The Centre for Academic Information Services has the lawful right to make copies of the Project/Thesis for academic exchange between Higher Learning Institute.
- No dispute or any claim shall arise from the student itself neither third party on this Project/Thesis once it becomes the sole property of UNIMAS.
- This Project/Thesis or any material, data and information related to it shall not be distributed, published or disclosed to any party by the student except with UNIMAS permission.

Student signature _ (25 JULY 2023)

Supervisor signature: (25 JULY 2023)

Current Address: FACULTY OF ENGINEERING, UNIVERSITI MALAYSIA SARAWAK, JALAN DATUK MOHAMMAD MUSA, 94300 KOTA SAMARAHAN, SARAWAK

Notes: * If the Project/Thesis is **CONFIDENTIAL** or **RESTRICTED**, please attach together as annexure a letter from the organisation with the period and reasons of confidentiality and restriction.

[The instrument is duly prepared by The Centre for Academic Information Services]

DETECTION AND CLASSIFICATION OF BRAIN CANCER USING DEEP LEARNING

ASVIN KUMAR A/L MOGHAN

A dissertation submitted in partial fulfilment of the requirement for the degree of Bachelor of Engineering Electrical and Electronics Engineering with Honours

Faculty of Engineering

Universiti Malaysia Sarawak

2023

ACKNOWLEDGEMENT

First and foremost, I would like to thank our Almighty God for His grace, wisdom and protection throughout the research and writing process. Without His guidance, this project would not have been feasible.

I would also like to extend my deepest gratitude to Associate Professor Ir. Dr. David Bong Boon Liang, my Final Year Project supervisor, for his unwavering guidance and support, as well as for generously sharing his skills from the beginning to the completion of this academic journey.

Additionally, I must thank Universiti Malaysia Sarawak for providing access to research facilities and resources. Especially, I am very grateful to the Department of Electrical and Electronics Engineering at Universiti Malaysia Sarawak for their support and resources throughout this academic endeavour.

Last but not least, I would like to express my heartfelt thanks to my family for their love, support and encouragement over the course of conducting research and writing the paper.

ABSTRACT

Brain cancer is a serious medical condition that requires an accurate and timely diagnosis for effective treatment planning. In recent years, deep learning techniques have shown great potential in the field of medical image analysis. In this study, a brain cancer detection and classification system based on deep learning algorithms is proposed. The system utilises a convolutional neural network (CNN) architecture trained on a large dataset of brain MRI images. The images were preprocessed to enhance relevant features and remove noise. The CNN architecture chosen was GoogleNet. To validate the robustness of the system, a 5-fold cross-validation approach was employed, ensuring reliable and consistent results. The proposed system has the potential to assist medical professionals in the early detection and classification of brain tumours, aiding in accurate diagnosis and treatment decision-making. By automating the classification process, it reduces the burden of manual analysis, potentially saving time and improving the overall efficiency of the diagnostic process. The proposed model achieved an accuracy of $97.5522 \pm 0.2739\%$, a precision of 0.9498 ± 0.0054 , a recall of 0.9494 ± 0.0057 , a specificity 0.9839±0.0018 and an F1 Score of 0.9493±0.0057 across the 5-fold crossvalidation iterations, demonstrating its effectiveness in accurately classifying brain MRI.

ABSTRAK

Kanser otak merupakan keadaan perubatan yang serius yang memerlukan diagnosis yang tepat, dan tepat pada waktunya untuk perancangan rawatan yang berkesan. Dalam beberapa tahun terakhir, teknik pembelajaran mendalam telah menunjukkan potensi besar dalam bidang analisis imej perubatan. Dalam kajian ini, satu sistem pengesanan dan pengkelasan kanser otak berdasarkan algoritma pembelajaran mendalam dicadangkan. Sistem ini menggunakan jaringan saraf terkonvolusi (CNN) berdasarkan senibina GoogleNet yang dilatih menggunakan dataset yang besar dari imej MRI otak. Imej-imej tersebut telah melalui pra-pemprosesan untuk meningkatkan ciri-ciri yang relevan dan mengurangkan kehingaran data. Pendekatan 5-lipatan validasi persilangan diterapkan untuk mengesahkan kebolehpercayaan sistem dengan hasil yang boleh diandalkan dan konsisten. Sistem yang dicadangkan mempunyai potensi untuk membantu profesional perubatan dalam pengesanan awal dan pengkelasan tumor otak, membantu dalam diagnosis yang tepat dan membuat keputusan rawatan. Dengan mengautomatikkan proses pengkelasan, ia mengurangkan beban analisis manual, berpotensi menjimatkan masa dan meningkatkan kecekapan keseluruhan proses diagnostik. Model yang dicadangkan mencapai ketepatan sebanyak 97.5522±0.2739%, kefahaman sebanyak 0.9498±0.0054, pemulihan sebanyak 0.9494±0.0057, khususiti sebanyak 0.9839±0.0018 dan Skor F1 sebanyak 0.9493 ± 0.0057 , melintasi iterasi persilangan, sekali gus membuktikan menunjukkan keberkesanannya dalam mengkelaskan imej MRI otak secara tepat.

TABLE OF CONTENTS

ACKNOWI	LEDGE	EMENT	i
ABSTRACT	Г		ii
ABSTRAK			iii
TABLE OF	CONT	TENTS	iv
LIST OF TA	ABLES	5	vii
LIST OF FI	GURE	S	X
LIST OF FO	ORMU	LAS	xii
LIST OF A	BBREV	/IATIONS	xiv
Chapter 1	INTI	RODUCTION	1
	1.1	Background	1
		1.1.1 Brain Cancer	1
		1.1.2 Deep Learning	3
	1.2	Problem Statement	4
	1.3	Objectives	5
	1.4	Project Contributions	6
	1.5	Project Scope	6
	1.6	Chapter Outline	7
Chapter 2	LITH	ERATURE REVIEW	8
	2.1	Overview	8
	2.2	Related Studies	8
		2.2.1 Brain Cancer	8
		2.2.2 DL for Cancer Detection and Classification	10
		2.2.3 Imaging Modality	11
		2.2.4 Dataset	12

		2.2.5	Pre-processing	15
		2.2.6	Modelling Approach	19
	2.3	Resear	rch gap	30
	2.4	Summ	ary	30
Chapter 3	MET	HODO	LOGY	32
	3.1	Overv	iew	32
	3.2	Prepar	ration	33
		3.2.1	Hardware and Software	33
		3.2.2	Dataset	33
		3.2.3	Image Pre-processing	34
	3.3	Propos	sed Detection and Classification Model	36
		3.3.1	GoogleNet	36
		3.3.2	Transfer Learning	37
		3.3.3	Modified GoogleNet	38
		3.3.4	Fine-tuning	39
		3.3.5	Experimental Settings	40
		3.3.6	Cross-validation	42
	3.4	Testin	g	43
		3.4.1	Confusion Matrix	43
		3.4.2	Class-specific Metrics	45
		3.4.3	Overall Performance Metrics	47
	3.5	Summ	ary	48
Chapter 4	RES	ULTS A	ND DISCUSSION	50
	4.1	Overv	iew	50
	4.2	Experi	imental Results	50
		4.2.1	First Cross-validation Iteration	50

		4.2.2	Second Cross-validation Iteration	55
		4.2.3	Third Cross-validation Iteration	59
		4.2.4	Fourth Cross-validation Iteration	63
		4.2.5	Fifth Cross-validation Iteration	68
		4.2.6	Average	72
	4.3	Analy	sis and Discussion	77
		4.3.1	Modifications to Key Settings	77
		4.3.2	GoogleNet Architecture	78
		4.3.3	Interpretation of Classification Metrics	80
		4.3.4	Misclassifications as Non-meningioma	80
	4.4	Summ	ary	81
Chapter 5	CON	CLUSI	ONS	82
	5.1	Gener	al Conclusions	82
	5.2	Limita	tions	83
	5.3	Future	Scopes	84
REFERENC	ES			86
Appendix A				91
Appendix B				93

LIST OF TABLES

Table

Page

Table 2.1: Baseline Characteristics and Standard Mortality Rates for Brain Cancer	
Patients Who Died of Suicide [7] 10	0
Table 2.2: Brain Tumour Dataset 14	4
Table 2.3: Pre-processing Methods 13	8
Table 2.4: Papers which used CNN 22	2
Table 2.5: Papers which used Non-CNN	8
Table 3.1: Brain MRI Classes and Their Respective Number of Images	3
Table 3.2: Training Settings 4	0
Table 3.3: Weightage of Each Class in the Testing Set of Every Cross-validation	
Iteration	7
Table 4.1: Details of the Training and Validation Process for the First Cross-validation	
Iteration	1
Table 4.2: Confusion Matrix (where G, M, P and N refer to Glioma, Meningioma,	
Pituitary Tumour and Normal, respectively) for the First Cross-validation	
Iteration	2
Iteration	2
Iteration	2
Iteration 52 Table 4.3: No. of Samples and Counts of TP, TN, FP and FN for the First Cross-validation Iteration 52 Table 4.4: Class-specific Metrics for the First Cross-validation Iteration 52	2 3 3
Iteration	2 3 3 4
Iteration	2 3 3 4
Iteration	2 3 3 4 5
Iteration	2 3 3 4 5
Iteration	2 3 4 5
Iteration	2 3 3 4 5 1 5
Iteration	2 3 4 5 1 5
Iteration	2 3 4 5 1 5 7
Iteration	2 3 3 4 5 1 6 7 7

Table 4.11: The Details of the Training and Validation Process for the Third Cross-
validation Iteration
Table 4.12: The Confusion Matrix (where G, M, P and N refer to Glioma, Meningioma,
Pituitary Tumour and Normal, respectively) for the Third Cross-validation
Iteration
Table 4.13: No. of Samples Counts of TP, TN, FP and FN for the Third Cross-
validation Iteration61
Table 4.14: Class-specific Metrics for the Third Cross-validation Iteration
Table 4.15: Overall Performance Metrics for the Third Cross-validation Iteration
Table 4.16: The Details of the Training and Validation Process for the Fourth Cross-
validation Iteration
Table 4.17: The Confusion Matrix (where G, M, P and N refer to Glioma, Meningioma,
Pituitary Tumour and Normal, respectively) for the Fourth Cross-validation
Iteration
Table 4.18: No. of Samples and Counts of TP, TN, FP and FN for the Fourth Cross-
validation Iteration
Table 4.19: Class-specific Metrics for the Fourth Cross-validation Iteration 66
Table 4.20: Overall Performance Metrics for the Fourth Cross-validation Iteration 67
Table 4.21: The Details of the Training and Validation Process for the 5 th Cross-
validation Iteration
Table 4.22: The Confusion Matrix (where G, M, P and N refer to Glioma, Meningioma,
Pituitary Tumour and Normal, respectively) for the Fifth Cross-validation
Iteration
Table 4.23: No. of Samples and Counts of TP, TN, FP and FN for the Fifth Cross-
validation Iteration
Table 4.24: Class-specific Metrics in the Fifth Cross-validation Iteration
Table 4.25: Overall Performance Metrics for the Fifth Cross-validation Iteration 71
Table 4.26: Training and Validation Results
Table 4.27: Class-specific Metrics Average
Table 4.28: Averages of Overall Performance Metrics across the 5-fold Cross-validation
Iterations75
Table 4.29: Misclassifications for Each Iteration 76
Table 4.30: Training Settings 79

Table 4.31: The Differences in Performance between a Non-fine-tuned GoogleNet	
Architecture and a Fine-tuned GoogleNet Architecture	79

LIST OF FIGURES

Figure

Page

Figure 1.1: Human Brain [1]	1
Figure 1.2: Euler's Diagram on AI, ML, NN and DL [3]	3
Figure 1.3: DL can be used to detect the presence of brain cancer in this MRI [4]	4
Figure 2.1: The Steps Taken by Arunachalam and Royappan [23] for Image	
Enhancement	16
Figure 2.2: Data Augmentation that was Performed by Francisco et al [26]	16
Figure 2.3: The Methods Used by Kang et al [27] to Crop the MRIs	17
Figure 2.4: The Procedure Used by Saxena et al [29] to Crop the MRIs	17
Figure 3.1: The Flowchart of the Proposed Approach	33
Figure 3.2: Examples of the Brain MRIs in the Dataset [4]. a) Axial View, b) Corona	ıl
View and c) Sagittal View	34
Figure 3.3: Image Pre-processing Steps	35
Figure 3.4: Architecture of GoogleNet	36
Figure 3.5: Transfer Learning	38
Figure 3.6: Modified Architecture of GoogleNet	38
Figure 3.7: Fine-tuned GoogleNet Architecture	39
Figure 3.8: 5-fold Cross-validation	42
Figure 3.9: Binary Confusion Matrix	43
Figure 3.10: One-vs-all Confusion Matrix (where G, M, P and N refer to Glioma,	
Meningioma, Pituitary Tumour and Normal, respectively) for the First	
Cross-validation Iteration)	44
Figure 4.1: First Fold as Testing Set	51
Figure 4.2: Training and Validation Accuracy for the First Cross-validation Iteration	. 52
Figure 4.3: Training and Validation Loss for the First Cross-validation Iteration	52
Figure 4.4: Second Fold as Testing Set	55
Figure 4.5: Training and Validation Accuracy for the Second Cross-validation Iterati	ion
	56
Figure 4.6: Training and Validation Loss for the Second Cross-validation Iteration	56
Figure 4.7: Third Fold as Testing Set	59

Figure 4.8: Training and Validation Accuracy for the Third Cross-validation Iteration 60
Figure 4.9: Training and Validation Loss for the Third Cross-validation Iteration 60
Figure 4.10: Fourth Fold as Testing Set
Figure 4.11: Training and Validation Accuracy for the Fourth Cross-validation Iteration
Figure 4.12: Training and Validation Loss for the Fourth Cross-validation Iteration 65
Figure 4.13: Fifth Fold as Testing Set
Figure 4.14: Training and Validation Accuracy for the Fifth Cross-validation Iteration69
Figure 4.15: Training and Validation Loss for the Fifth Cross-validation Iteration 69
Figure 4.16: The Folds Combination used for the Comparison

LIST OF FORMULAS

Equation	Formulas	
3.1	Softmax Activation	e^{z_i}
	Function	$\sum e^{z}$
3.2	Accuracy for Glioma	$TP_G + TN_G$
	(G)	$TP_G + TN_G + FP_G + FN_G$
3.3	Accuracy for	$TP_M + TN_M$
	Meningioma (M)	$TP_M + TN_M + FP_M + FN_M$
3.4	Accuracy for	$TP_P + TN_P$
	Pituitary Tumour (P)	$TP_P + TN_P + FP_P + FN_P$
3.5	Accuracy for	$TP_N + TN_N$
	Normal (N)	$TP_N + TN_N + FP_N + FN_N$
3.6	Precision for Glioma	TP_G
	(G)	$TP_G + FP_G$
3.7	Precision for	TP_M
	Meningioma (M)	$TP_M + FP_M$
3.8	Precision for	TP_P
	Pituitary Tumour (P)	$\overline{TP_P + FP_P}$
3.9	Precision for Normal	TP_N
	(N)	$TP_N + FP_N$
3.10	Recall for Glioma	TP_G
	(G)	$TP_G + FN_G$
3.11	Recall for	TP_M
	Meningioma (M)	$TP_M + FN_M$
3.12	Recall for Pituitary	TP_P
	Tumour (P)	$TP_P + FN_P$
3.13	Recall for Normal	TP_N
	(N)	$TP_N + FN_N$
3.14	Specificity for	TN_G
	Glioma (G)	$TN_G + FP_G$

3.15	Specificity for	TN_M
	Meningioma (M)	$TN_M + FP_M$
3.16	Specificity for	TN_P
	Pituitary Tumour (P)	$TN_P + FP_P$
3.17	Specificity for	TN_N
	Normal (N)	$TN_N + FP_N$
3.18	F1 Score for Glioma	$2(Precision_G * Recall_G)$
	(G)	$Precision_G + Recall_G$
3.19	F1 Score for	$2(Precision_M * Recall_M)$
	Meningioma (M)	$Precision_M + Recall_M$
3.20	F1 Score for	$2(Precision_P * Recall_P)$
	Pituitary Tumour (P)	$Precision_P + Recall_P$
3.21	F1 Score for Normal	$2(Precision_N * Recall_N)$
	(N)	$Precision_N + Recall_N$
3.22	Weighted Accuracy	$Acc_{G}N_{G} + Acc_{M}N_{M} + Acc_{P}N_{P} + Acc_{N}N_{N}$
	(Acc)	$W_G + W_M + W_P + W_N$
3.23	Weighted Precision	$Prc_G N_G + Prc_M N_M + Prc_P N_P + Prc_N N_N$
	(Prc)	$W_G + W_M + W_P + W_N$
3.24	Weighted Recall	$Rcl_GN_G + Rcl_MN_M + Rcl_PN_P + Rcl_NN_N$
	(Rcl)	$W_G + W_M + W_P + W_N$
3.25	Weighted Specificity	$Spc_GN_G + Spc_MN_M + Spc_PN_P + Spc_NN_N$
	(Spc)	$W_G + W_M + W_P + W_N$
3.26	Weighted F1 Score	$\frac{F1S_GN_G + F1S_MN_M + F1S_PN_P + F1S_NN_N}{F1S_MN_M + F1S_MN_M + F1S_MN_M$
	(F1 S)	$W_G + W_M + W_P + W_N$
4.1	Recall	
		TP + FN
4.2	F1 Score	2(Precision * Recall)
		Precision + Recall

LIST OF ABBREVIATIONS

No.	Abbreviations	Full Sentence
1	AI	Artificial Intelligence
2	ML	Machine Learning
3	NN	Neural Network
4	DL	Deep Learning
5	MRI	Magnetic Resonance Imaging
6	СТ	Computed Tomography
7	CNN	Convolutional Neural Network
8	SVM	Support Vector Machine
9	3D	Three Dimensional
10	FLAIR	Fluid Attenuated Inversion Recovery
11	CE	Contrast-enhanced
12	SNR	Signal-to-noise Ratio
13	SIST	Shift-invariant Shearlet Transform
14	RGB	Red-green-blue
15	FC	Fully Connected
16	RBF	Radial Basis Function
17	NB	Naïve Bayes
18	K-NN	K-nearest Neighbour
19	RF	Random Forest
20	DAE	Deep Autoencoder
21	BFC	Bayesian Fuzzy Clustering
22	JOA	Jaya Optimization Algorithm
23	DNN	Deep Neural Network
24	ANN	Artificial Neural Network
25	ReLU	Rectified Linear Unit
26	GLCM	Gray Level Co-occurrence Matrix
27	OFPA	Oppositional Flower Pollination Algorithm
28	PFCM	Possibilistic Fuzzy C-means
29	DWT	Discrete Wavelet Transformation

30	KMFCM	K-means with Fuzzy C-means
31	PCA	Principal Component Analysis
32	ACLS	Active Contour by Level Set
33	BWT	Berkeley Wavelet Transformation
34	ERT	Extremely Randomised Trees
35	EM	Expectation-maximisation
36	FFT	Fast Fourier Transform
37	MRMR	Minimal-redundancy-maximal-relevance
38	ELM	Extreme Learning Machine
39	LRF	Local Receptive Fields
40	ELM-LRF	Extreme Learning Machine with Local Receptive Fields
41	FFBPNN	Feed Forward Back Propagation Neural Network
42	WHO	World Health Organisation
43	RAM	Random-access Memory
44	Adam	Adaptive Moment Estimation
45	ТР	True Positive
46	FP	False Positive
47	TN	True Negative
48	FN	False Negative

CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Brain Cancer

The brain, which is displayed in Figure 1.1, is the control centre of the human body and its most complex part. It is responsible for all the body's functions. This organ is the centre of intelligence and controls behaviour, movement, and the interpretation of the senses. It is made up of billions of cells called neurons and glial cells, which work together to transmit and process information.

Figure 1.1: Human Brain [1]

One of the most serious and deadly diseases that can affect the brain is brain cancer. Brain cancer arises when abnormal cells in the brain divide and grow out of control. These cells can combine to generate benign or malignant tumours. Brain tumours that are malignant are more aggressive and can spread to other regions of the body, whereas benign tumours are often less dangerous and do not spread.

According to the Cancer Council of New South Wales [2], brain tumours can be classified into four grades based on their level of aggressiveness. These grades are used to help patients with brain tumours forecast their prognosis and guide treatment options. Brain cancer is classified into four categories based on their malignancy: Grade I, Grade II, Grade III, and Grade IV. Grade I tumours are the least aggressive and are characterised by slow growth and a low risk of recurrence. They can be treated surgically or with a mix of surgery, radiation treatment, and chemotherapy. Grade II tumours are more aggressive than grade I tumours but still have a relatively low risk of recurrence. They may be treated with surgery, radiation therapy, or chemotherapy, depending on the specific characteristics of the tumour. Grade III tumours are more aggressive than grade II tumours and have a higher risk of recurrence. They may be treated with surgery, radiation therapy, but the prognosis for these tumours is generally worse than for lower-grade tumours. Grade IV tumours are the most aggressive and have a high risk of recurrence. They may be treated with surgery, and chemotherapy, but the prognosis for these tumours is generally worse than for lower-grade tumours. Grade IV tumours are the most aggressive and have a high risk of recurrence. They may be treated with surgery, and chemotherapy, but the prognosis for these tumours is generally worse than for lower-grade tumours. Grade IV tumours are the most aggressive and have a high risk of recurrence. They may be treated with surgery, radiation therapy, but the prognosis for these tumours is generally worse than for lower-grade tumours. Grade IV tumours are the most aggressive and have a high risk of recurrence. They may be treated with surgery, radiation therapy, and chemotherapy, but the prognosis for these tumours for the prognosis for these tumours is generally poor.

Some common types of brain tumours include gliomas, meningiomas, pituitary tumours, craniopharyngiomas, primary brain lymphomas, and metastatic brain tumours. Gliomas are tumours that originate in the glial cells, which support and protect the nerve cells of the brain. Gliomas can be either benign or malignant and include astrocytomas, oligodendrogliomas, and ependymomas. Meningiomas are tumours that develop in the meninges. Meningiomas are usually benign but can sometimes be aggressive. Pituitary tumours are cancers that originate from the pituitary gland, a tiny endocrine gland situated at the base of the brain. Pituitary tumours can be either benign or malignant. Craniopharyngiomas are tumours that arise from cells in the pituitary gland and are usually benign. Primary brain lymphoma is a type of cancer that originates in the brain and is usually associated with non-Hodgkin's lymphoma. Tumours that have progressed to the brain from another area of the body, such as the lungs or breast, are known as metastatic brain tumours.

For this research and writing process, the brain cancer detection and classification will cover three types of brain cancer, which are gliomas, meningiomas, and pituitary tumours. Symptoms of brain cancer can differ based on the tumour's location and size. Common symptoms include headaches, seizures, changes in mood or behaviour, weakness or numbness in the limbs, and difficulty with balance and coordination. A physical assessment, imaging tests including MRI or CT scans, and a biopsy to study a sample of tumour tissue are all used to detect brain cancer. The specific treatment and prognosis for a brain tumour will depend on the type and stage of the tumour, as well as the overall health of the patient.

1.1.2 Deep Learning

DL is a sort of ML that analyses and recognises patterns in data using ANNs with several layers. The difference between AI, ML, NN, and DL is shown in Euler's diagram in Figure 1.2.

Figure 1.2: Euler's Diagram on AI, ML, NN and DL [3]

The key characteristic of DL is the utilisation of DNNs, which are composed of multiple layers of interconnected neurons. These networks are designed to mimic the structure and functioning of the human brain, allowing them to learn and model highly complex relationships within the data. Each layer of neurons in a DNN performs specific computations and progressively learns more abstract and high-level representations as information flows through the network.

One of the major breakthroughs in deep learning has been in the field of computer vision, where CNNs have demonstrated exceptional performance in tasks such as image classification, object detection, and segmentation. CNNs can automatically learn spatial hierarchies of features from images, enabling them to identify and distinguish objects with remarkable accuracy. This has opened new possibilities in areas such as autonomous driving, facial recognition, and medical imaging.

In recent years, DL techniques have emerged as powerful tools for medical image analysis, offering the potential to revolutionise brain cancer detection and classification. By leveraging large amounts of data, as can be seen in Figure 1.3, and complex NN architectures, DL models have demonstrated remarkable capabilities in extracting meaningful features from medical images and making accurate predictions.

Figure 1.3: DL can be used to detect the presence of brain cancer in this MRI [4]

The implementation of DL in the identification and classification of brain cancer holds great promise for improving the accuracy and efficiency of these processes and could greatly enhance patient outcomes. However, further study is required to properly comprehend the capabilities and limitations of this approach and to develop robust and reliable methods for implementing it in clinical practise.

1.2 Problem Statement

Detecting and classifying brain cancer manually is a time-consuming process that requires extensive analysis and interpretation of medical imaging data. Radiologists and medical professionals typically examine brain MRI's to identify the presence of brain cancer in them and classify them into specific types. However, this manual approach can be slow and labour-intensive, leading to delays in diagnosis and treatment planning. The interpretation of brain MRI images involves visually analysing intricate details, patterns, and abnormalities in the scans. Radiologists need to meticulously examine multiple slices of the brain to accurately identify and characterise tumors. This process is not only timeconsuming but also susceptible to human error and subjectivity, which can impact the accuracy and consistency of diagnoses. Addressing the time-consuming nature of manual brain cancer detection and classification is crucial to improve patient outcomes and optimize healthcare resources. By leveraging automated techniques, such as DL algorithms, we can develop a system that assists radiologists in the efficient and accurate detection and classification of brain cancer, decreasing the time required for diagnosis and enabling timely treatment interventions.

Other than that, detecting and classifying brain cancer often requires the processing of vast amounts of medical imaging data. This task can present challenges due to the substantial computational resources required. The size and complexity of the datasets, along with the computational demands of sophisticated analysis algorithms, can strain the capabilities of available resources. Limited computational power, memory, or storage capacity may hinder the timely and efficient analysis of brain cancer imaging data. These constraints can lead to longer processing times, delays in diagnosis, and potential limitations in the accuracy and effectiveness of the detection and classification processes. Overcoming these computational resource constraints is crucial for developing efficient and scalable brain cancer detection and classification systems that can handle the increasing volume and complexity of medical imaging data.

1.3 Objectives

There is a need for further research to address these challenges and develop reliable and effective DL approaches for the detection and classification of brain cancer. This will require a multidisciplinary approach that brings together experts in DL, medical imaging, and brain cancer research, as well as clinicians who can provide valuable insights into the needs and constraints of real-world clinical practise. The following are the primary goals of a study on the detection and classification of brain tumours with DL: